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Abstract. The original ghost fluid method (GFM) developed in [13] and the modi-
fied GFM (MGFM) in [26] have provided a simple and yet flexible way to treat two-
medium flow problems. The original GFM and MGFM make the material interface
”invisible” during computations and the calculations are carried out as for a single
medium such that its extension to multi-dimensions becomes fairly straightforward.
The Runge-Kutta discontinuous Galerkin (RKDG) method for solving hyperbolic con-
servation laws is a high order accurate finite element method employing the useful
features from high resolution finite volume schemes, such as the exact or approximate
Riemann solvers, TVD Runge-Kutta time discretizations, and limiters. In this paper,
we investigate using RKDG finite element methods for two-medium flow simulations
in one and two dimensions in which the moving material interfaces is treated via non-
conservative methods based on the original GFM and MGFM. Numerical results for
both gas-gas and gas-water flows are provided to show the characteristic behaviors of
these combinations.
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1 Introduction

In this paper, we investigate and compare between the RKDG finite element methods
employed for two-medium flow simulations in which the different non-conservative
methods based on the original ghost fluid method (GFM) [13] and the modified GFM
(MGFM) [26] are used to treat the moving material interface.

The Runge-Kutta discontinuous Galerkin (RKDG) method [8–12], for solving hyper-
bolic conservation laws given as

{

Ut+∇·F(U)=0
U(x,0)=U0(x),

(1.1)

is a high order finite element method employing the useful features from high resolution
finite volume schemes, such as the exact or approximate Riemann solvers, TVD Runge-
Kutta time discretizations [35, 36], and total variation bounded (TVB) limiters [34] or
weighted essential non-oscillatory (WENO) type limiter [31, 32]. RKDG methods have
been widely applied and perform very well to solve for single-medium compressible
flow problems.

On the other hand, a relatively dominant difficulty for simulating compressible two-
medium flow is the treatment of the moving material interfaces and their immediate
vicinities. There can arise severe nonphysical oscillations in the vicinity of the material
interface especially in the presence of shock and large density ratio even when a well-
established numerical method for single-medium flow is applied directly to the multi-
medium flow. As such, there are numerous works published in the literature on how to
overcome this difficulty [1, 2, 4, 7, 20, 22, 24].

In the fairly recent times, the ghost fluid method (GFM) as proposed by Fedkiw et
al. [13] has provided an alternative and yet flexible way to treat the two-medium flow.
The main characteristic of the GFM is its simplicity, ease of extension to multi-dimensions
and maintenance of a sharp interface without smearing. Essentially, the GFM makes the
interface ”invisible” during calculations by defining ghost cells and ghost fluids, and the
ensuring computations are then carried out as for a single-medium manner via solving
two respective single-medium GFM Riemann problems. As such, its extension to multi-
dimensions becomes fairly straightforward. Also, since only single-fluid flux formula-
tions are required for the GFM, the said method can be employed for any two fluids of
vastly different EOS (equation of state), compressible-incompressible or viscous-inviscid
two-fluid flow [5]. There is subsequently developed variations of the original GFM [14]
with other applications as can be found in [2, 21].

However, it is precisely the manner of treatment of the single medium across the in-
terface in the GFM that may cause numerical inaccuracy in the presence of a strong shock
wave interacting with the interface [26]; this is especially so if such wave interaction with
the interface is not taken into account properly in the definition of ghost fluid states. This
happens because the dynamics of shock refraction at the material interface and the re-
sultant interfacial status are highly dependent on the material properties on both sides
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of the interface. Therefore, it is imperative that reasonable ghost fluid states have to be
specially formulated taking into account the influence of both the material properties and
wave interaction with the interface. This has resulted in a modified GFM (MGFM) [26].
The predicted ghost fluid status is obtained via solving implicitly the two non-linear
characteristic equations interacting and applicable at the interface [24,25]. In fact, certain
conditions called Condition I and Condition II have to be satisfied for the ghost fluid state
in order to ensure that the two GFM Riemann problems provides the correct solution in
the respective real fluids [23]. Those techniques developed in [24, 25] will also be used to
calculate the flow interface state in the multi-medium RKDG algorithm as proposed in
this work.

It may be mentioned, generally, algorithms proposed for solving two-medium com-
pressible flow comprise of two parts. The first part is the method for solving the single-
medium flow, while the other relates to the treatment of the interface of the two fluids.
In [5, 13, 14], Fedkiw and his coworkers employed the 3rd order ENO methods together
with the GFM for treating the interface, while the Godunov-type or MUSCL (monotone
upwind schemes for conservation laws) are used in [1, 2, 4, 23–26]. Using GFM to treat
a moving interface, the final algorithm/method is usually nonconservative. The prelim-
inary analysis on the conservative errors for various existing GFM algorithms may be
found in [26, 37]. It was concluded that the conservative errors caused by the MGFM-
based algorithm [26] is well-limited in comparison to the GFM-based algorithm [13]. Re-
cently, efforts have also been made to develop a conservative GFM [3, 15]; this includes
the incorporation of RKDG method with a conservative treatment of the material inter-
face via ghost nodes/ghost fluids for two-medium flow in one dimension [30]. As we are
aware, however, a practical conservative GFM algorithm has yet to be developed.

As we are aware, there is much less work related to a DG method applied to multi-
medium compressible flow. In literature, the basic scheme for solving compressible flow
field is usually a finite difference scheme when the GFM is applied to treat the material
interface. Although the basic procedure is similar to that of a finite difference scheme,
some special cares are required when a DG method is coupled to the GFM applied to
multi-medium flow. Comparison to the finite difference method, one major advantage of
DG is its compactness. More specifically, the number of ghost cells required for finite dif-
ference method is depended on the order of accuracy of the scheme, the number of ghost
cells for the DG method is only two cells and independent on the order of DG (for 1D).
Another advantage of using DG method is that higher order accuracy is easily gained in
the region of smooth solution in comparison to finite difference method. In this paper, our
intention is, therefore, to investigate the use of RKDG finite element methods coupled to
the GFM technique for two-medium flow simulations. Similar to the above-mentioned
algorithms developed for multi-medium compressible flows, the present methods pro-
posed also comprise of two parts. One is the usual RKDG algorithm for solving the flow
field away from the material interface; the other is the newly developed techniques for
treating the moving interface based on the original GFM [13] and the MGFM [26].

In Section 2, we first briefly review the usual RKDG method over a fixed and regu-
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lar mesh system, and then we describe in some details the non-conservative approaches
based on both the GFM and MGFM techniques for treating the moving material inter-
face. Extensive numerical results are presented in Section 3 to illustrate and compare the
behaviors of the RKDG methods incorporating the different techniques for treating the
moving interface based on either the original GFM or MGFM. Concluding remarks are
given in Section 4.

2 Implementation of RKDG methods for two-medium flow

simulations

In this section we describe in some details the construction and implementation of RKDG
methods for two-medium inviscid compressible flow simulations.

We consider both the one dimensional Euler equation (1.1) with

U =(ρ,ρv,E)T , F(U)=(ρv,ρv2+p,v(E+p))T ,

and the two dimensional Euler equation (1.1) with

U =(ρ,ρu,ρv,E)T , F(U)=(F1(U),F2(U)),

F1(U)=(ρu,ρu2+p,ρuv,u(E+p))T , F2(U)=(ρv,ρuv,ρv2 +p,v(E+p))T .

Here ρ is the density, (u,v) is the velocity components in the respective x1 and x2 direc-
tions, m=ρu and n=ρv are the moments, E is the total energy, p is the pressure, which is
related to the total energy by E = ρe+ 1

2 ρ(u2+v2) (where e is the specific internal energy
per mass). For closure of system, the equation of state (EOS) is required. The γ−law used
for gases is given as

ρe= p/(γ−1) (2.1)

and Tait EOS used for the water medium [6, 13, 24] is expressed as

ρe=(p+NB)/(N−1), (2.2)

where B= B−A, N =7.15,A=1.0E5 Pa,B=3.31E8 Pa and ρ0 =1000.0kg/m3.

2.1 Description of RKDG method

Given a partition consisting of cells △j (intervals in 1D, triangles or quadrilaterals in 2D,
etc.), a semi-discrete discontinuous Galerkin method for solving the conservation law
(1.1) is obtained by multiplying (1.1) with a test function Φ(x), integrating over a cell △j,
and integrating by parts:

d

dt

∫

△ j

U(x,t)Φ(x)dx−
∫

△ j

F(U)·∇Φdx+
∫

∂△ j

F(U)·nΦds = 0 (2.3)
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where n is the outward unit normal of the cell boundary ∂△j. We seek a piecewise poly-

nomial U in P
k (of degree at most k, k could actually change from cell to cell, but for

simplicity we assume it is a constant over the whole cells), such that (2.3) holds for any
test function Φ also in P

k. The boundary integral in (2.3) is typically discretized by a
Gaussian quadrature of sufficiently high order of accuracy

∫

∂△ j

F ·nΦds≈ |∂△j |
q

∑
k=1

ωkF(U(Gk,t))·nΦ(Gk)

and F(U(Gk,t))·n is replaced by a monotone numerical flux (approximate or exact Rie-
mann solvers in the system case). For example, one could use the simple Lax-Friedrichs
flux, which is given by

F(U(Gk,t))·n≈ 1

2

[(

F(U−(Gk,t))+F(U+(Gk,t))
)

·n−α
(

U+(Gk,t)−U−(Gk,t)
)]

,

where α is taken as an upper bound for |F′(U)·n| in the scalar case, or the absolute value
of eigenvalues of the Jacobian in the n direction for the system case, and U− and U+

are the values of U inside the cell △j and outside the cell △j (inside the neighboring
cell) at the Gaussian point Gk. The idea of using such a numerical flux is borrowed from
finite volume methodology. The test function Φ in the boundary integral in (2.3) is taken
from inside the cell △j. The volume integral

∫

△ j
F(U)·∇Φdx in (2.3) is either computed

exactly or by a numerical quadrature with sufficient accuracy, see [8, 10] for details. The
semidiscrete scheme (2.3), written as

Ut = L(U),

is then discretized in time by a total variation diminishing (TVD) Runge-Kutta method
[35], for example the third order version given by

U(1) =Un+∆tL(Un),

U(2) =
3

4
Un+

1

4
U(1)+

1

4
∆tL(U(1)), (2.4)

Un+1 =
1

3
Un+

2

3
U(2)+

2

3
∆tL(U(2)).

In the following, we describe RKDG method in detail for one dimensional case. The
computational domain is divided into N cells with boundary points a = x 1

2
< x 3

2
< ···<

xN+ 1
2
=b. We denote the cells by Ii=[xi− 1

2
,xi+ 1

2
], the cell centers by xi=

1
2(xi− 1

2
+xi+ 1

2
) and

the cell sizes by ∆xi = xi+ 1
2
−xi− 1

2
, h = supi ∆xi. The solution as well as the test function

space is given by Vk
h ={p: p|Ii

∈Pk(Ii)}, where Pk(Ii) is the space of polynomials of degree

≤k on the cell Ii. We adopt a local orthogonal basis over Ii, {Φ
(i)
l (x), l=0,1,··· ,k}, namely

the scaled Legendre polynomials:

Φ
(i)
0 (x)=1, Φ

(i)
1 (x)=

x−xi

∆xi/2
, Φ

(i)
2 (x)=

(

x−xi

∆xi/2

)2

− 1

3
, ···
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The numerical solution Uh(x,t) of Eq. (1.1) in the test function space Vk
h can then be writ-

ten as

Uh(x,t)=
k

∑
l=0

U
(l)
i (t)Φ

(i)
l (x), for x∈ Ii (2.5)

and the degrees of freedom U
(l)
i (t) are the moments defined by

U
(l)
i (t)=

1

al

∫

Ii

Uh(x,t)Φ
(i)
l (x)dx, l =0,1,··· ,k

where al =
∫

Ii
(Φ

(i)
l (x))2dx are the normalization constants since the basis is not orthonor-

mal. In order to determine the approximate solution, we need to evolve the moments

U
(l)
i . By substituting (2.5) into Eq. (1.1), we can obtain the governing equations for the

moments as

d

dt
U

(l)
i +

1

al

(

−
∫

Ii

F(Uh(x,t))
d

dx
Φ

(i)
l (x)dx+F(Uh(xi+1/2,t))Φ

(i)
l (xi+1/2)

−F(Uh(xi−1/2,t))Φ
(i)
l (xi−1/2)

)

=0, l =0,1,··· ,k. (2.6)

Eq. (2.6) has to be solved approximately. In order to enforce the entropy condition,
the flux F(Uh(xi+1/2,t)) is usually approximated using a monotone numerical flux
F̂(U−

i+1/2,U+
i+1/2), resulting in a semi-discretization scheme as

d

dt
U

(l)
i +

1

al

(

−
∫

Ii

F(Uh(x,t))
d

dx
Φ

(i)
l (x)dx+ F̂(U−

i+1/2,U+
i+1/2)Φ

(i)
l (xi+1/2)

−F̂(U−
i−1/2,U+

i−1/2)Φ
(i)
l (xi−1/2)

)

=0, l =0,1,··· ,k, (2.7)

where U±
i+1/2 = Uh(x±i+1/2,t) are the left and right limits of the discontinuous solution

Uh at the cell interface xi+1/2, F̂(U−,U+) is a monotone flux (non-decreasing in the first
argument and non-increasing in the second argument) for the scalar case and an exact or
approximate Riemann solver for the system case. In this work, the simple Lax-Friedrichs
flux is used, which is given as

F̂(U−,U+)=
1

2

[(

F(U−)+F(U+)
)

−α
(

U+−U−)]

,

where α is taken as an upper bound for the absolute value of eigenvalues of the Jacobian
for the system case. The integral term in (2.7) can be computed either exactly or by a
suitable numerical quadrature accurate to at least O(hk+l+2). In this paper we use three
and four point Gauss-Lobatto quadrature for P1 and P2 cases, respectively.

The semi-discrete scheme (2.7) can be generalized as

Ut = L(U),
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which is discretized in time by a Runge-Kutta time discretization, e.g. the third order
version (2.4).

If there are strong discontinuities in solution, the scheme (2.3)-(2.4) generates signif-
icant oscillations and even nonlinear instability. To avoid such difficulties, typically a
slope limiter is used after each Runge-Kutta inner stage to control the numerical oscilla-
tions. The limiter adopted in [10] is described below in some detail. We denote

U−
i+1/2 =U

(0)
i +Ũi, U+

i−1/2 =U
(0)
i − ˜̃Ui.

Here

Ũi =
k

∑
l=1

U
(l)
i Φ

(i)
l (xi+1/2), ˜̃Ui =−

k

∑
l=1

U
(l)
i Φ

(i)
l (xi−1/2).

Ũi and ˜̃Ui are modified by either the standard minmod limiter [18]

Ũ
(mod)
i =m(Ũi,∆+U

(0)
i ,∆−U

(0)
i ), ˜̃U

(mod)
i =m( ˜̃Ui,∆+U

(0)
i ,∆−U

(0)
i ),

where m is given by

m(a1,a2,··· ,an)=

{

s·min1≤j≤n |aj|, if sign(a1)= sign(a2)= ···= sign(an)= s,
0, otherwise,

(2.8)

or the TVB modified minmod function [34]

m̃(a1,a2,··· ,an)=

{

a1, if |a1|≤Mh2,
m(a1,a2,··· ,an), otherwise,

(2.9)

where M>0 is a constant dependent on solution of the problem.
For two dimensional case, the limiter adopted in [8, 12] is performed on the two first

moment using the differences of means.
For the system cases, in order to achieve better qualities at the price of more compli-

cated computations, the limiter is always used with a local characteristic field decompo-
sition; see, e.g., [9, 12] for details.

2.2 Description of treatment of interface cell with ghost fluid methods

In this section, we describe in detail the interfacial treatment via the technique of the
ghost fluid method coupled to the DG method.

2.2.1 Outline of a GFM-based algorithm

In a GFM-based algorithm, the Level Set technique is usually employed to capture the
moving interface. A band of 2 to 5 grid points as ghost cells is defined in the vicinity of
the interface. At the ghost cells, ghost fluid and real fluid co-exist. Once the ghost fluid
nodes and ghost fluid status are defined for each medium, one employs one’s favorite
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pure medium numerical scheme/solver (in this work, the DG method) to solve for each
medium covering both the real fluid and ghost fluid grid nodes/cells. By combining the
solution for each medium according to the new interface location, one obtains the overall
solution valid for the whole computational domain at the new time step.

2.2.2 Outline of a GFM-based DG algorithm

Although the basic procedure is similar to that of a finite difference scheme, there are
some differences and special cares required when the DG method is coupled to the GFM
applied to simulate multi-medium flow. Unlike the finite difference method, where only
a nodal value for the ghost fluid is required in each ghost cell, a solution function has
to be defined in each ghost fluid cell in order that the DG method can be applied across
the interface. In addition, unlike the finite difference method, where the number of ghost
cells required is dependant on the order of accuracy of the scheme, the number of ghost
cells for the DG method is only two cells (for 1D). Assuming that the interface is located
in cell Ij at time t = tn (see Fig. 1 for illustration) and the solution at t = tn is known, we

want to compute for the flow field at the next time step of t = tn+1. Below are the steps
for the 1D GFM-based DG algorithm:

Step 1: Calculate the time stepsize, which satisfies the stability condition over the
whole computational domain.

Step 2: Obtain the new location of the interface via solving the governing equation
of the Level Set function Φ with re-initialization using the fifth order WENO scheme, if
necessary. (Readers can refer to [13, 24, 28, 29] for the detail of level set methods and we
shall not repeat it here.)

Step 3: Compute the flow field for Fluid I. To do so, cells Ij+1 and Ij+2 are defined as
the ghost fluid cells for Fluid I (see Fig. 1), and then the ghost fluid solution functions are
assigned to these ghost fluid cells. The way of defining these functions will be specified
according to the specified GFM implementation to be given in the sections below. Once
this is done, one applies the DG method for solving for Fluid I from cell 1 to cell Ij+1.

Step 4: Compute the flow field for Fluid II. Similarly, cells Ij−1 and Ij−2 are defined as
the ghost fluid cells for Fluid II (see Fig. 2), and then the ghost fluid solution functions are
assigned to these ghost fluid cells. Finally, one applies the DG method to get the solution
for Fluid II from cell Ij−1 to the last cell.

Step 5: Obtain the final solution according to the new location of the interface. For
cells fully immersed in Fluid I (Fluid II) at t = tn+1, the solution of Fluid I (Fluid II) is
taken as the final solution in those cells at the new time step. For the cell where interface
is located, either solution of Fluid I or Fluid II can be taken as the final solution at t= tn+1

for this cell. For purpose of plotting, if the interfacial cell is mainly occupied by Fluid I,
the solution of Fluid I is taken as the final solution, otherwise, the solution of Fluid II is
taken as the final solution at t= tn+1 for this cell.

Step 6: Repeat Step 2 to Step 5 for each sub-step of the Runge-Kutta temporal dis-
cretization given in 2.4.

Step 7: Check if the stop criterion is satisfied. If it is not, repeat Step 1 to Step 6.
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Obviously, by using the GFM technique in the normal direction of the interface, the
GFM-based DG algorithm can be easily implemented for multi-dimensions. Here we
briefly state its extension to two-dimensions in general. First, we define a rectangu-
lar computational domain [I1K, I2K]×[J1K , J2K] and an identification matrix SK for each
medium (the Kth medium), where SK(i, j) = 1 if grid point (not grid cell) (i, j) is taken
by the Kth medium, otherwise it is set to 0. We carry out the DG computation for
each medium respectively, and denote the result by Un+1

K after defining the ghost fluid
states for each ghost fluid cell. Then the final solution at the new time step is given by
Un+1=ΣSn+1

K Un+1
K , where Sn+1

K is the new identification matrix of the Kth medium, which
is obtained in advance by the level set technique. One can define a computational domain
for each medium that includes boundary points and grid points in the interfacial regions
associated with this medium within a band of 2 to 4 grid points defined by Φ< ε . Here
Φ is the level set distance function and ε is set to be about 2max[∆x1,∆x2]; ∆x1 and ∆x2

are spatial step sizes in the respective x1 and x2 directions.
Now we briefly summarize the programming procedures for the 2D GFM-based DG

algorithm. We assume the flow variables at t= tn are known, and the following steps are
taken to obtain quantities at the next time step.

Step 1: Calculate the time stepsize, which satisfies the stability condition over the
whole computational domain.

Step 2: Advance the level set function Φ to the next time step and update the identi-
fication matrix SK for each medium over the total domain.

Step 3. Define the computational domain for each medium.
Step 4. Map the previous (sub-step) flow field in the Kth medium computational do-

main to the working space; define ghost fluid states for each ghost fluid cell according to
the specific GFM implementation to be given in the sections below.

Step 5: Use the DG solver to obtain Un+1
K and update Un+1 =Un+1+Sn+1

K Un+1
K . (Un+1

is initialized to zero at the beginning.)
Step 6: Repeat of Steps 4 and 5 from the first medium to the last medium, and then

proceed to the next time sub-step of the RKDG.
Step 7: Check if the stop criterion is satisfied. If it is not, repeat Step 1 to Step 6.
Next, we shall describe the approach based on the original GFM technique [13] and

the MGFM [26] for treating the interface cell Ij and its vicinity. In order to advance the
solution for Fluid I, we have to construct the solution function (i.e. the moments) in cells
Ij+1 and Ij+2 for Fluid I and the solution function for Fluid II in cells Ij−2 and Ij−1 as well.

2.2.3 The technique based on the original GFM [13]

In the original GFM, to define the ghost fluid state for Fluid I, the pressure and velocity
(for Fluid II) in cells Ij+1 and Ij+2 are directly taken as the ghost fluid pressure and ve-
locity. To define the ghost fluid density, the entropy of Fluid I at the center of cell Ij−1

is used. In other words, the entropy of the ghost fluid is assumed to be equal to that of
Fluid I at the center of cell Ij−1. With the entropy defined, the ghost fluid density can be
obtained. We then project the flow states to the base function space in cells Ij+1 and Ij+2,
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j-2 j-1 j U* U*j-2 j-1 j U* U*

Uj+1 U j+2

Fluid I

U -- real fluid state
U* -- ghost fluid state

-- real fluid cell
-- ghost fluid cell

Uj+1 U j+2

j+1 j+2

j+1 j+2

Interface

Fluid II

Figure 1: Define ghost fluid for Fluid I.

j-1 U*j j+1U*

j-1 j

Uj

Fluid I

U -- real fluid state
U* -- ghost fluid state

-- real fluid cell
-- ghost fluid cell

Uj-1

j+2

Interface

Fluid II

j+3

Figure 2: Define ghost fluid for Fluid II.

respectively, to obtain the zero-order moments. Because the derivatives of physical solu-
tion are discontinuous across the interface in general, the higher-order moments are set
to be zero. Similarly, the ghost fluid states for Fluid II can be defined. With the definitions
of ghost fluid states, we carry out computation for each fluid across the interface using
the DG method. The final solution can then be obtained according to the new interface
location as described in Section 2.2.2.

To apply the original GFM-based DG method to multi-dimensional two medium flow,
we define the ghost fluid states for each fluid by following exactly the same way as given
in [13] to define the normal velocity, tangential velocity, pressure and entropy in the ghost
cells. We then project the flow states to the base function space and set the higher-order
moments to be zero to construct the solution function in the ghost fluid cells. Once this is
done, the DG is used to advance the solution for each fluid to the next time step. By com-
bining the solution for each fluid together according to the new location of the interface,
the final solution is determined. This algorithm is named RKDG-GFM for convenience
of discussion in this work.
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2.2.4 The technique based on the MGFM [26]

In the MGFM-based algorithm, to define the ghost fluid states, a multi-medium Riemann
problem is defined and exactly or approximately solved to predict the interface status.
The predicted interface status is then employed to define the ghost fluid states for each
fluid. For one dimensional problems, the fluid states in cell Ij−1 and cell Ij+1 are used
to define the multi-medium Riemann problem. The defined Riemann problem is then
approximately solved using the approximate Riemann problem solver developed in [24,
26]. The obtained interface state for Fluid I is applied to replace the flow state in cell Ij

and also to define the ghost fluid states in cell Ij+1 and cell Ij+2 for Fluid I. We then project
the flow states to the base function space in cells Ij, Ij+1 and Ij+2, respectively, to obtain
the zero-order moments and set the higher-order moments to be zero at the same time.
Similarly, the ghost fluid states for Fluid II can be defined using the predicted interface
state for Fluid II. Once the ghost fluid states are defined, the remaining steps are the same
as the original GFM-based DG algorithm.

To extend the MGFM-based DG method to multi-dimensional two medium flow, we
first define a multi-medium Riemann problem in the normal direction of the interface by
following exactly the same way as described in [37]. The defined Riemann problem is
also solved using the approximate Riemann problem solver developed in [24, 26]. The
predicted interface normal velocity, pressure and density are then used to replace the
flow normal velocity, pressure and density at the cell of interface located and propagated
to the ghost fluid cells using the technique developed in [13]. The tangential velocity in
the ghost cells can be defined by following the same way as given in [13]. The rest of
steps is the same as the original GFM-based algorithm. The MGFM-based DG algorithm
is named RKDG-MGFM for convenience of discussion in this work.

3 Numerical results

In this section we present the results of numerical experiments for various two-medium
flows by the RKDG-GFM and RKDG-MGFM schemes described in Section 2. From the
results in one dimensional cases listed below, we can see that the RKDG-MGFM scheme is
more effective than RKDG-GFM. It should be noted that the RKDG-GFM suffers similar
difficulties as pointed out in [23, 26] when applied to a strong shock or jet impacting on
the interface. One may refer to [23, 26] for the detailed discussion and analysis; we will
not repeat the analysis here. The results by the RKDG-GFM schemes in two dimensional
cases will also not be shown to save space. As expected, the DG-based MGFM algorithm
works even better than a finite difference based MGFM algorithm (the MUSCL-based
MGFM) [23, 26] in the region of smooth solution because a DG is usually easy to gain
local high accuracy in such regions, the comparison between results for MUSCL-MGFM
scheme and the second order RKDG-MGFM are shown in Example 3.1 and 3.5.

As it is well known that the TVB limiter constant M is dependent on the problem. We
have experimented with several constants and have settled on the following procedure:
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Figure 3: Example 3.1 by MUSCL-MGFM and
RKDG-MGFM methods. t = 0.0007. Solid line:
the exact solution. Square: numerical solution by
MUSCL-MGFM. Plus: numerical solution by RKDG-
MGFM with k=1.

instead of using a constant M, we use two constants as denoted by M1 for Fluid I limit-
ing procedure and the other M2 for Fluid II. In the present numerical experiments, 200
cells are used and the CFL numbers are taken as 0.3 and 0.18 for k =1 and k =2, respec-
tively. Units for density, velocity, pressure, length and time are kg/m3, m/s, Pa, m and s,
respectively.

Example 3.1. This is an air-helium shock tube problem taken from [13], with the initial
conditions as

(ρ,v,p,γ)=(1,0,1×105 ,1.4) for x≤0.5; (ρ,v,p,γ)=(0.125,0,1×104 ,1.2) for x>0.5.

The computed density ρ, velocity v and pressure p by the MUSCL-MGFM scheme and
the second order RKDG-MGFM scheme with the TVB limiter constant M1=1 and M2=10
are plotted at t=0.0007 against the exact solution in Fig. 3.

The location of the material interface is captured correctly by both the MUSCL-MGFM
and RKDG-MGFM schemes. The resolution of computed results are reasonable, and the
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overall results by both schemes are comparable to analysis. The RKDG-MGFM works
better than MUSCL-MGFM in the region of smooth solution and shock. The results ob-
tained via the RKDG-MGFM scheme indicate perceptibly better concurrence with the
analytical solution.

Example 3.2. This is a problem of a shock wave refracting at an air-helium interface
with a reflected rarefaction wave. This example is also taken from [13]. The flow initial
conditions are

(ρ,v,p,γ)=







(4.3333,3.2817
√

105,1.5×106,1.4), for x≤0.05,
(1,0,1×105,1.4), for 0.05< x≤0.5,

(0.1379,0,1×105, 5
3), for x>0.5.

The strength of the shock is pL/pR =15 and initially located at x=0.05, with the initial
state ahead of the shock given as (ρ,v,p) = (1,0,1×105). The initial interface of air and
helium is located at x∗(0) = 0.5. The computed density ρ, velocity v and pressure p by
both RKDG-GFM and RKDG-MGFM schemes with k=1 and k=2 are plotted at t=0.0005
against the exact solution in Fig. 4. In this case, we choose the TVB limiter constant M1=1
and M2 =30 for the case of k=1, and M1 =1 and M2 =300 for the case of k=2.

It is clear that the location of the material interface is captured correctly by both
RKDG-GFM and RKDG-MGFM schemes with k = 1 and k = 2. The computed results of
density by the RKDG-GFM scheme with both k=1 and k=2 and RKDG-MGFM scheme
with k=1 depict a little oscillatory feature in the neighborhood of the interface, whereas
that from the RKDG-MGFM scheme with k =2 is essentially oscillatory free. Other than
that, the overall computed results are in reasonably agreement with the analysis, except
for a little hump detected in the fluid on the left, which is also found in [13]. Closer ex-
amination of the computed results reveals that the RKDG-MGFM scheme exhibits better
agreement with the analysis.

Example 3.3. We consider the Euler equation (1.1) with the following Riemann initial
conditions

(ρ,v,p,γ)=







(1.3333,0.3535
√

105,1.5×105,1.4), for x≤0.05,
(1,0,1×105,1.4), for 0.05< x≤0.5,
(3.1538,0,1×105,1.249), for x>0.5.

The computed density ρ, velocity v and pressure p for both RKDG-GFM and RKDG-
MGFM schemes with k=1 and k=2 are plotted at t=0.0017 against the exact solution in
Fig. 5. In this example, we choose the TVB limiter constant M1 =1 and M2 =300 for the
case of k=1, and M1 =1 and M2 =30000 for the case of k=2.

We can see that the interface of the two-medium is located at the correct cell by both
RKDG-GFM and RKDG-MGFM schemes with k = 1 and k = 2. The computed results
by both schemes are comparable to the analysis. The computed results for density are
essentially oscillation free in the neighborhood of the interface for both k = 1 and k = 2
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Figure 4: Example 3.2 by RKDG-GFM and RKDG-MGFM methods. t=0.0005. Solid line: the exact solution.
Square: numerical solution by RKDG-GFM. Plus: numerical solution by RKDG-MGFM. Top: Density; Middle:
Velocity; Bottom: Pressure. Left: k=1; Right: k=2.
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Figure 5: Example 3.3 by RKDG-GFM and RKDG-MGFM methods. t=0.0017. Solid line: the exact solution.
Square: numerical solution by RKDG-GFM. Plus: numerical solution by RKDG-MGFM. Top: Density; Middle:
Velocity; Bottom: Pressure. Left: k=1; Right: k=2.
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cases. The computed results by the RKDG-GFM scheme are comparable to those by the
RKDG-MGFM scheme.

Example 3.4. Next we consider a strong shock impacting on a gas-gas interface with the
strength of right shock wave to pL/pR =100, with the following initial conditions

(ρ,v,p,γ)=







(0.3884,27.1123
√

105,1.0×107, 5
3), for x≤0.3,

(0.1,0,1×105, 5
3), for 0.3< x≤0.4,

(1,0,1×105,1.4), for x>0.4.

The computed density ρ, velocity v and pressure p by both RKDG-GFM and RKDG-
MGFM schemes with k=1 and k=2 are plotted at t=0.0001 against the exact solution in
Fig. 6. In this example, we choose the TVB limiter constant M1 =1.0 and M2 =0.1 for the
case of k=1 and M1 =0.1 and M2 =0.001 for the case of k=2.

This example is the Case 1 in [26], the intent of Liu et al. [26] is to show that the
MUSCL with the original GFM does not work properly for the problem with a strong
shock impacting on a gas-gas interface. From our calculations, it is evidently clear that
the shock positions in both Fluid I and Fluid II are found located at the correct cell by
the RKDG-MGFM scheme with k = 1 and k = 2. Similar to the results in [26], we found
that the shock locations in both Fluid I and Fluid II by the RKDG-GFM scheme with k=1
and k=2 are located in the wrong cell, at least 2 cells away from the correct one. For this
example, the RKDG-MGFM scheme work much better than the RKDG-GFM scheme.

Example 3.5. This is a gas-water shock tube problem with very high pressure in the gas
medium. The initial condition are

(ρ,v,p,γ)=

{

(1270,0,8×108 ,1.4), for x≤0.5,
(1000,0,1×105 ,7.15), for x>0.5.

In this underwater explosion problem, the initial pressure in the gas is extremely high
and thus, a very strong shock is generated in the water. The computed density ρ, velocity
v and pressure p by the MUSCL-MGFM scheme and the second order RKDG-MGFM
scheme with the TVB limiter constant M1=1 and M2=1 are plotted at t=0.00016 against
the exact solution in Fig. 7.

The location of the material interface is captured correctly by both the MUSCL-MGFM
and RKDG-MGFM schemes. The resolution of computed results are reasonable, and the
overall results by both schemes are comparable to analysis. The RKDG-MGFM works
better than MUSCL-MGFM in the region of smooth solution and shock. The results ob-
tained via the RKDG-MGFM scheme indicate perceptibly better concurrence with the
analytical solution.

Example 3.6. We greatly increase the energy of the explosive gaseous medium in Exam-
ple 3.5. The initial condition becomes

(ρ,v,p,γ)=

{

(1630,0,7.81×109 ,1.4), for x≤0.5,
(1000,0,1×105 ,7.15), for x>0.5.
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Figure 6: Example 3.4 by RKDG-GFM and RKDG-MGFM methods. t=0.0001. Solid line: the exact solution.
Square: numerical solution by RKDG-GFM. Plus: numerical solution by RKDG-MGFM. Top: Density; Middle:
Velocity; Bottom: Pressure. Left: k=1; Right: k=2.
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Figure 7: Example 3.5 by MUSCL-MGFM and
RKDG-MGFM methods. t = 0.00016. Solid line:
the exact solution. Square: numerical solution by
MUSCL-MGFM. Plus: numerical solution by RKDG-
MGFM with k=1.

The computed density ρ, velocity v and pressure p are plotted at t=0.0001 against the
exact solution in Fig. 8. In this example, we choose the TVB limiter constant M1 =1 and
M2 =1 for the case of k=1, and M1 =4 and M2 =4 for the case of k=2.

We can observe that the computed gas-water interface is found located at the cor-
rect cell by both the RKDG-GFM and RKDG-MGFM schemes with k = 1 and k = 2. The
computed results of density by the RKDG-GFM schemes with k=1 and k=2 exhibit un-
dershoot and overshoot before and after the interface of gas and water, while those by the
RKDG-MGFM schemes with k =1 and k =2 are effectively oscillatory free. It is obvious
that the computed results for density by the RKDG-MGFM schemes are much better than
those by the RKDG-GFM schemes.

Example 3.7. We consider the two dimensional Euler equation (1.1).

We examine an initial Mach 1.22 air shock impacting on a helium bubble. The
schematic for this problem are given in Fig. 9, where the upper and lower boundary
conditions are nonreflective open boundaries. The left and right boundary conditions
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Figure 8: Example 3.6 by RKDG-GFM and RKDG-MGFM methods. t=0.0001. Solid line: the exact solution.
Square: numerical solution by RKDG-GFM. Plus: numerical solution by RKDG-MGFM. Top: Density; Middle:
Velocity; Bottom: Pressure. Left: k=1; Right: k=2.
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are the inflow and outflow, respectively. The nondimensionalized initial conditions are:

(ρ,u,v,p,γ)=







(1,0,0,1,1.4), for pre-shocked air,
(1.3764,0.394,0,1.5698,1.4), for post-shocked air,

(0.138,0,0,1, 5
3), for helium.

and the level set function φ =
√

x2+y2−1, where φ≤0 represents helium and φ >0 rep-
resents the air. The post-shock air state is given for x<−1.2.

Helium
bubble

Post-
shocked
Air

Pre-shocked Air

(-3,-3)

(4,3)

x=-1.2

Gas

Post-shocked
water

Pre-shocked water

(-4,-3)

(3,3)

x=-1.2

Figure 9: Physical domain for Example 3.7 (left) and Example 3.8 (right).

This problem has been experimentally investigated in [17] and numerically studied in
detail in [19,33]. Very complex physics occurs in this problem especially after a re-entrant
jet forms and impact the rear of the helium bubble. To capture the complex physics
occurring in the late time stage, very fine mesh or adaptive mesh refinement technique
has to be employed as done in [19,33]. In this work, our computation stopped before the
formation of the re-entrant jet. The computed results was quite comparable to the results
shown in [17] even over a relatively coarse mesh.

The computed density ρ with 280×240 uniform cells is plotted at t=0.5, t=1.0, t=2.0
and t=4.0 in Fig. 10. In this case, we choose the TVB limiter constant M1=0.1 and M2=0.1
for both the cases of k=1 and k=2.

When the incident shock hits the bubble, the incident shock refracts at the bubble
surface. The incident shock is partly transmitted inside the helium bubble and partly
reflected from the bubble surface and back into the air. As the sound speed in helium
is faster than that in air, this causes the initial regular shock refraction soon becomes
irregular and the bifurcation of the incident shock on the bubble surface, leading to the
formation of a precursor to the incident shock as indicated by the experimental results
and also the present numerical results at t=0.5 shown in Fig. 10. At t=1.0, the transmitted
shock inside the bubble has interacted with the rear of the bubble and transmits into the
air, while the incident shock just passed over the top of the bubble. With the transmission
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Figure 10: Example 3.7 by RKDG-MGFM method with 280×240 cells, 30 equally spaced density contours from
0.1 to 1.6. Left: k=1; Right: k=2. From top to bottom are t=0.5, t=1.0, t=2.0, t=4.0, respectively.
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of the shock inside the bubble into the air, the whole bubble starts to moves towards the
right. At t = 2.0, the incident shock has passed over the whole bubble and the bubble
has deformed and evolved into a kidney shape. After that, a re-entrant jet starts to form.
At t=4.0, the re-entrant jet has been formed. As the re-entrant jet becomes stronger and
stronger, the interface instability occurs. As time further goes, the re-entrant jet impacts
the rear side of the bubble and bubble collapses. To capture all these later stages fine
physics, the adaptive mesh refinement has to be applied. Our computation stopped at
the nondimensional time t=4.0.

For this problem, the RKDG-MGFM schemes with k=1 and k=2 provide very similar
results.

Example 3.8. In the final problem, we consider a planar underwater shock interacting
with a gas bubble in an open domain. Similar problems have previously been studied
in [16, 25, 27].

We examine an initial Mach 1.653 underwater shock wave makes impact on a gas
bubble. The schematic for this problem are given in Fig. 9. The nondimensionalized
initial conditions are:

(ρ,u,v,p,γ)=







(1000,0,0,1,7.15), for pre-shocked water,
(1176.3333,1.1692,0,9120,7.15), for post-shocked water,
(1,0,0,1,1.4), for gas.

and the level set function φ =
√

x2+y2−1, where φ ≤ 0 represents the gas and φ > 0
represents the water. The post-shock water state is given for x<−1.2, as shown in Fig. 9.

Again, very complex physics occurs in this problem especially when a jet forms and
bubble collapses in the very late stage. To capture, the later stage fine physics, very fine
mesh or adaptive mesh has to be applied as done in [27]. Our computations stopped just
before bubble collapse.

In the earlier stage, the shock refraction on the bubble surface is regular initially but
transits into an irregular type after the incident shock past over a critical angle [16, 25].
The detailed physical analysis can be found in [25] especially for the earlier stage. For the
detailed physics in the late time stage, one may refer to [27].

In our computation, 280×240 uniform cells was used. Fig. 11 show the computed
density ρ at t=0.06, t=0.19, t=0.357, and t=0.481, respectively. In this case, we choose
the TVB limiter constant M1 =0.1 and M2 =0.1 for both the cases of k =1 and k =2. The
RKDG-MGFM schemes with k=1 and k=2 show similar results.

4 Concluding remarks

We have investigated extensively using the discontinuous Galerkin finite element meth-
ods for two-medium flow simulations in one and two dimensions via incorporating the
ghost fluid method (GFM) and the modified ghost fluid method (MGFM) to treat the
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Figure 11: Example 3.8 by RKDG-MGFM method with 280×240 cells, 30 equally spaced density contours from
1.0 to 1200. Left: k=1; Right: k=2. From top to bottom are t=0.06, t=0.19, t=0.357, t=0.481, respectively.
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moving material interfaces. Numerical results for both gas-gas and gas-water flows in
one and two dimensions have been provided to illustrate the behavior of this procedure.
Numerical results show that behavior of RKDG with the modified ghost fluid method is
perceptibly better than that by the RKDG with the original ghost fluid method.
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