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Abstract. The aerodynamics of freely falling objects is one of the most interesting
flow mechanics problems. In a recent study, Andersen, Pesavento, and Wang [J. Fluid
Mech., vol. 541, pp. 65-90 (2005)] presented the quantitative comparison between the
experimental measurement and numerical computation. The rich dynamical behavior,
such as fluttering and tumbling motion, was analyzed. However, obvious discrepan-
cies between the experimental measurement and numerical simulations still exist. In
the current study, a similar numerical computation will be conducted using a newly
developed unified coordinate gas-kinetic method [J. Comput. Phys, vol. 222, pp. 155-
175 (2007)]. In order to clarify some early conclusions, both elliptic and rectangular
falling plates will be studied. Under the experimental condition, the numerical solu-
tion shows that the averaged translational velocity for both rectangular and elliptical
plates are almost identical during the tumbling motion. However, the plate rotation
depends strongly on the shape of the plates. In this study, the details of fluid forces
and torques on the plates and plates movement trajectories will be presented and com-
pared with the experimental measurements.

PACS: 47.11.-j, 47.85.Gj
Key words: Navier-Stokes equations, unified coordinate method, unsteady aerodynamics, falling
plate.

1 Introduction

It is an observed fact that not all falling objects travel straight downward under the in-
fluence of gravity. For examples, leaves, tree seeds, and paper cards all follow compli-
cated downward trajectories as they fall under gravity. In fact, falling leaves and tum-
bling sheets of paper often reverse their downward direction, momentarily rising against
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gravity, as they flutter or tumble through the air. It is therefore clear that any satisfac-
tory explanation of this complicated natural phenomenon must include a description of
the instantaneous fluid forces experienced by the falling object as well as the inertial and
gravitational effects that are present.

Previously, only a limited number of analytical results have been proven with ref-
erence to objects falling through fluid under gravity, and those that do exist most com-
monly address only special limits, such as Stokes flow and inviscid irrotational flow.
Most falling objects, however, encounter unsteady aerodynamic forces as they fall. As a
result, the problem of a rigid body falling through a viscous fluid has recently attracted
some attention, especially with the help of computational fluid dynamics. An excellent
investigation has conducted by Pesvento and Wang [13], where in which the governing
Navier-Stokes equations were solved numerically in the frame of the falling object.

The fluttering, looping, and tumbling motions have been of interest to physicists since
the 19th century, when famed Scottish physicist James Clerk Maxwell studied falling
cards and offered a qualitative explanation of the correlation between the sense of rota-
tion and the drift direction of a tumbling card [10], when the classical aerodynamic the-
ory had not been established yet. In the past decades, most investigation only presented
qualitative or average properties, such as the phase diagram, where the instantaneous
fluid forces were not obtained [2, 4, 5, 14, 15]. Recently, Mittal, Seshadri and Udaykumar
(2004) in [11] solved two-dimensional Navier-Stokes equations for a freely falling cylin-
der. Jones and Shelley [9] suggested a falling card model based on inviscid theory and
the unsteady Kutta condition.

Wang and Pesavento [13] studied the aerodynamics of freely falling plates for a quasi
two-dimensional flow at Reynolds numbers around 103, which is a typical state for a leaf
or business card falling in air. They measured the plates trajectories experimentally us-
ing a high speed digital video at sufficient resolution and determined the instantaneous
plates’ acceleration, from which they obtained the instantaneous fluid force and torque
on the falling objects. Furthermore, besides the experimental measurements, the direct
numerical solutions of the two-dimensional incompressible Navier-Stokes equations for
the falling objects have been obtained. The trajectories and forces on the moving plates
from both numerical computation and experimental measurement have been qualita-
tively compared. The discrepancies, such as the falling trajectories and angular veloci-
ties, were ascribed to the differences in geometries between the rectangular cross-section
in the experiment and the elliptical one in numerical simulation.

In this study, we will investigate the motion of freely falling plates numerically using
a newly developed gas-kinetic scheme, in which the governing Navier-Stokes equations
are solved on a moving grid. In the computations that follow, the grid will be fixed to the
falling plate and so the motion of the grid itself will be determined by the translational
and rotational motion of the plate. Similar to the Lagrangian method, each grid will
follow its own grid velocity during a time step, but the flow update in the whole com-
putational domain around the falling plate is in an common inertial reference of frame.
Therefore, there will have no additional forces related to the non-inertial frame of ref-
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erence in the current computation. Besides simulating the elliptic falling plate studied
by Pesavento and Wang [13], we will also consider a rectangular plate that has the same
cross-section as that used in the experiment. In each case, the instantaneous fluid forces
on the falling plate will be quantitatively evaluated and compared with the experimental
measurements of Andersen, Pesavento, and Wang [1]. Based on the current study, some
discrepancies between the experimental measurements and numerical computations in
the early investigation by Andersen et al. [1], such as the plate trajectory, and fluid forces
and torques on the plate, will be resolved.

2 Unified coordinate method for viscous flow

The Bhatnagar-Gross-Krook (BGK) model of the approximate Boltzmann equation in two
dimensional space is given by [3],

ft+u fx +v fy =
g− f

τ
, (2.1)

where f is the gas distribution function, τ is the particle collision time, and g is the equi-
librium state approached by f . Both f and g are functions of space (x,y), time t, particle
velocity (u,v), and internal variable ζ. With the grid movements, a unified coordinate
transformation from the physical domain (t,x,y) to the computational domain (λ,ξ,η) is
used [6, 7],

dt=dλ,
dx=Ugdλ+Adξ+Ldη,
dy=Vgdλ+Bdξ+Mdη,

(2.2)

where (Ug,Vg) are the grid velocity, and (A,B,L,M) are the geometrical variables, such
as A = ∂x/∂ξ and L = ∂x/∂η, which can be updated through the geometric conservative
laws,

∂A

∂λ
=

∂Ug

∂ξ
,

∂B

∂λ
=

∂Vg

∂ξ
,

∂L

∂λ
=

∂Ug

∂η
,

∂M

∂λ
=

∂Vg

∂η
.

With the above transformation (2.2), the gas-kinetic BGK equation becomes

∂

∂λ
(△ f )+

∂

∂ξ

{

[

(u−Ug)M−(v−Vg)L
]

f
}

+
∂

∂η

{

[−(u−Ug)B+(v−Vg)A] f
}

=
g− f

τ
△, (2.3)

where △= AM−BL is the Jacobian of the transformation.

For an equilibrium flow with a gas distribution f = g, by taking the conservative
moments

φ=(1,u,v,
1

2
(u2+v2+ζ2))T
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to Eq. (2.3), the corresponding inviscid governing equations under the mesh movement in
the inertial Eulerian space can be obtained [8]. Based on the Chapman-Enskog expansion,
up to the 1st order of τ, the gas distribution function becomes

f = g− τ

△

(

∂

∂λ
(△g)+

∂

∂ξ

{

[(u−Ug)M−(v−Vg)L]g
}

+
∂

∂η

{

[−(u−Ug)B+(v−Vg)A]g
}

)

.

Taking moments φ again in Eq. (2.3) with the above gas distribution function, the Navier-
Stokes equations can be obtained.

Figure 1: Schematic configuration around a moving cell interface.

Numerically, we solve the gas-kinetic equation for the viscous flow using a direction
by direction splitting method. The BGK model (2.3) in the ξ-direction is,

∂

∂λ
(△ f )+

∂

∂ξ
{[(u−Ug)M−(v−Vg)L] f}=

g− f

τ
△. (2.4)

For a finite volume scheme, at a moving interface ξ = constant, the normal and tangent
directions are defined by

~n=∇ξ/|∇ξ|=(M,−L)/S , ~t=(L,M)/S,

where S=
√

M2+L2 is the physical length of the cell interface, see Fig. 1 for the schematic
configuration. The particle velocities relative to the moving cell interface are (u−Ug,v−
Vg), which can be decomposed into normal ũ and tangential ṽ velocities,

ũ=(u−Ug)M/S−(v−Vg)L/S,
ṽ=(u−Ug)L/S+(v−Vg)M/S.

(2.5)

Hence, Eq. (2.4) in the ξ-direction becomes

∂

∂λ
(△ f )+

∂

∂ξ
(Sũ f )=

g− f

τ
△.
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The above equation is numerically solved to evaluate a gas distribution function f at the
moving cell interface ξ = constant, and subsequently obtain the numerical fluxes. In the
above equation, △ is the area of the computational cell in the physical space, and S is the
length of the cell interface. Therefore, the above equation is equivalent to

∂

∂λ
( f )+

∂

∂x̃
(ũ f )=

g− f

τ
, (2.6)

where x̃ is the length scale in the normal direction of the moving cell interface in the phys-
ical space. Eq. (2.6) is the BGK model in the local moving frame of reference, which can
be solved numerically using the BGK-NS method [16]. For the low speed incompressible
flow, the gas distribution function at a cell interface can be simplified to [17],

f (ξi+1/2,ηj,t,ũ,ṽ,ζ)= g0(1−τ(aũ+A)+At), (2.7)

where g0 is the equilibrium state at the moving cell interface and −τ(aũ+A)g0 is the
corresponding non-equilibrium part for the viscous terms. Therefore, standing on the
moving cell interface, the fluxes can be explicitly evaluated,









Fρ

Fρũ

Fρṽ

FẼ









i+1/2,j

=
∫

ũ









1
ũ
ṽ

1
2(ũ2+ ṽ2+ζ2)









f (ξi+1/2,ηj,t,ũ,ṽ,ζ)dΞ. (2.8)

Since the local cell interface is moving with a constant translational velocity, the above
fluxes are still in the inertial reference of frame. Since different numerical cells move with
different grid velocities, in order to update the flow variables in the whole computational
domain, we have to update the conservative variables of each cell in a commonly defined
Eulerian space. Therefore, we need to translate the above fluxes in Eq. (2.8) standing on
the moving cell interface into the fluxes for the mass, momentum and energy transport
in the common inertia frame of reference, the so-called inertial physical space which is
not moving with the falling plate. So, the mass, momentum, and energy transport in the
Eulerian space across the cell interface ξ =Constant are calculated by









Fρ

Fm

Fn

FE









i+1/2,j

=
∫

Sũ









1
u
v

1
2(u2+v2+ζ2)









f (ξi+1/2,ηj,t,ũ,ṽ,ζ)dΞ, (2.9)

where S is the length of the cell interface. In order to evaluate the above flux integration,
the easiest way is to write the (u,v) velocities in terms of (ũ,ṽ). Based on the transforma-
tion (2.5), we have

u=Ug+
Mũ+Lṽ

S
, v=Vg+

−Lũ+Mṽ

S
.
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Therefore, Eq. (2.9) becomes









Fρ

Fm

Fn

FE









i+1/2,j

=









SFρ

MFρũ+LFρṽ+SUgFρ

−LFρũ+MFρṽ+SVgFρ

(MUg−LVg)Fρũ+(LUg+MVg)Fρṽ+SFẼ+ S
2 (U2

g +V2
g )Fρ









, (2.10)

where (Fρ,Fρũ,Fρṽ,FẼ) are given in Eq. (2.8).

With the above fluxes, the conservative flow variables can be updated in each moving
computational cell by

Qn+1
i,j =Qn

i,j+
1

∆ξ

∫ tn+1

tn
(Fi−1/2,j−Fi+1/2,j)dt+

1

∆η

∫ tn+1

tn
(Gi,j−1/2−Gi,j+1/2)dt,

where

Q=(ρ△,ρ△U,ρ△V,ρ△E)T

is the total mass, momentum and energy inside each cell and F=(Fρ,Fm,Fn,FE)T is given in
Eq. (2.10). The flux in the η-direction is denoted by G, which can be constructed similarly.

The only free parameter in the above flux functions is the particle collision time, i.e., τ,
which is related to the departure of a gas distribution function away from the equilibrium
state (2.7). Based on the Chapman-Enskog expansion, the relation between the particle
collision time and the flow dissipative coefficient is the following,

τ =µ/p,

where µ is the dynamic viscosity coefficient and p is the local pressure. For a flow prob-
lem, once the Reynolds number is given, i.e., Re = ρUL/µ, the particle collision time
will be uniquely determined locally. Since all simulations presented in this paper are
for smooth flows, the truncation error of the current scheme is O(τ(∆t)2) [12]. For high
Reynolds number flow simulation, the collision time can be much less than the time step
∆t. Therefore, the current method is a high order accurate numerical scheme.

3 Falling plates movement inside a viscous fluid

The falling plate movement inside a viscous fluid can be only described by solving a
coupled system of the Navier-Stokes equations for the fluid and Newton’s law for the
solid plate. Based on the fluid solution, the pressure and viscous forces as well as the
torque on the plate can be explicitly evaluated. Since the computational mesh is fixed on
the falling plate, the mesh velocity can be computed according to the translational and
rotational movement of the plate. The viscous fluid solution around the moving plate is
calculated using the moving mesh method in the last section.
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3.1 Parameterizations of the plate and integration of forces

A freely falling plate is characterized by six dimensional parameters: the width l, the
thickness h, the density ρb of the plate, the density ρ f of the fluid, the kinematic viscosity
ν of the fluid, and the gravitational acceleration G. Based on the above six dimensional
numbers, three non-dimensional numbers, i.e., the thickness to width ratio, β, the dimen-
sionless moment of inertial, I∗, and the Reynolds number, Re, can be defined. Following
the same method used in [13], the parameters defined include:

• the ratio between the thickness and width of the plate,

β=h/l;

• the dimensional moment of inertia I and dimensionless moment of inertia I∗ of the
elliptical plate,

I =
πlh(l2 +h2)ρb

64
, I∗=

h(l2+h2)ρb

2l3ρ f
,

and the rectangular plate,

I =
lh(l2+h2)ρb

12
, I∗=

8h(l2+h2)ρb

3πl3ρ f
;

• the Reynolds number
Re=utl/ν,

where l is the length of the plate and ut is the terminal velocity which is estimated
by balancing gravity against the fluid force on a plate with the drag coefficient equal
to 1. The terminal velocities are

ut =

√

πhg

2
(

ρb

ρ f
−1)

for the elliptical plate and

ut =

√

2hg(
ρb

ρ f
−1)

for the rectangular plate.

The fluid forces on the plate include pressure force and viscous force. These quantities
can be calculated by integrating along the plate surface explicitly once the fluid solution
is obtained around the falling plate. In the following, we will calculate the fluid forces
and torque for both moving elliptic and rectangular plates through the integration of
surface forces. The pressure force can be written as an integral of the pressure over the
boundary Γ of the body,

~Fp =−
∮

Γ
p~nds=−

∮

Γ
p(cosθ,sinθ)ds=−

∮

Γ
(px,py)ds, (3.1)
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Figure 2: Falling trajectory of a rectangle from fluttering to tumbling motion.

where p is the pressure, ~n = (cosθ,sinθ)T is the normal direction of ds, and s is the arc
length along the boundary. Numerically, Eq. (3.1) becomes,

~Fp =−
(

∑i
pi cosθ△si,∑i

pi sinθ△si

)

=(Px,Py),

where i stands for the ith grid on the moving boundary, and △si is the length of the ith
cell interface on the surface of the plate. The total pressure force is decomposed into Px

along the x-direction and Py along the y-direction in the inertia frame of reference.
The viscous force is obtained by integrating the stress µ∂Ut/∂n,

~Fν =−
∮

Γ
µ

∂Ut

∂n
~tds

=−
∮

Γ
µ

∂Ut

∂n
(−sinθ,cosθ)ds=−

∮

Γ
(νx,νy)ds, (3.2)

where t = (−sinθ,cosθ)T is the tangent direction of ds, Ut = ~U ·~t is the velocity in the
tangential direction, and µ is the dynamic viscosity coefficient. Numerically, Eq. (3.2) is
solved by

~Fν =−
(

∑i
νi cosθ△si,∑i

νi sinθ△si

)

=(νx,νy).

The viscous force is decomposed into νx along the x-direction and νy along the y-direction.
The pressure torque is also obtained by the following integrating along the surface of

a falling plate,

τp =
∮

Γ
~r×(−p~n)ds

=∑
i

~ri×(−pi~n)△si =∑
i

[xi(py)i−yi(px)i],



842 C. Q. Jin and K. Xu / Commun. Comput. Phys., 3 (2008), pp. 834-851

where~ri =(xi−xc,yi−yc) is the vector from the geometrical center (xc,yc) of the plate to
the center of the ith grid (xi,yi) on the plate surface. Similarly, the viscous torque can be
calculated by

τν =
∮

Γ
~r×µ

∂Ut

∂n
~tds

=∑
i

~ri×µ
∂Ut

∂n
~t△si =∑

i

[xi(νy)i−yi(νx)i].

So far, the pressure and viscous forces and their torques have been obtained on a plate.
The buoyancy corrected gravitational force ~Fg on the plate in the negative y-direction
becomes

~Fg =−πlh(ρb−ρ f )G

4
,

for the elliptical plate, and
~Fg =−lh(ρb−ρ f )G,

for the rectangular one. The total force ~F is equal to the summation of the pressure force
~Fp, viscous force ~Fν, and the buoyancy corrected gravitational force ~Fg, namely,

~F=~Fp+~Fν+~Fg.

Furthermore, the total force ~F can be decomposed into Fx in the x-direction and Fy in the
y-direction,

~F =(Fx,Fy)=(Px+νx,Py+νy+Fg).

Similarly, the total torque includes the torques due to the pressure and viscous force
τ =τp+τν.

Let ~a = (ax,ay) and ~Ω be the translational and the angular acceleration of the plate,
which are related to the force and torque on the plate through Newton’s law,

Fx =max, Fy =may, τ = IdΩ/dt.

Due to the plate translational and rotational movement, the grid velocity ~U between two
subsequent time steps at the center of a computational cell is given by

~Un+1 =~Un+△tn
~a+△tn

~r×~Ω,

where~r is the vector from the geometric center of the plate to the center of the numerical
cell. The above velocity is fed back into the moving mesh method as the grid velocity
(Ug,Vg).

Even though the grid of the whole computational domain is fixed to the plate and
moving with the plate’s movement, within each time step the grid velocity for each cell
is set to be a constant. Certainly, different cells have different velocities. Therefore, the
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local moving frame of reference is still an inertial one and the forces associated with the
non-inertial reference of frame will not appear. Since the updated flow variables inside
each computational cell are defined relatively to a commonly referenced inertial frame,
such as the water tank in the laboratory, the boundary conditions are constructed by
assigning conservative flow variables in the ghost cells. For the out boundary, the flow
variables inside the ghost cells are set up using the Riemann invariants, and the fluid
in the infinity is considered to have zero velocity. For the boundary around the moving
plate, the fluid variables in the ghost cells are assigned to keep the averaged fluid velocity
on the plate surface being equal to the plate movement velocity, i.e., the so-called no-slip
boundary condition.

3.2 Unsteady falling plates movements

In the two-dimensional experiment conducted by Andersen, Persavento, and Wang [1],
a small rectangular aluminum plate was designed to fall freely in a water tank. For the
falling plate, many physical quantities were measured, such as the plate trajectory and
falling speed. The fluid force and torque on the plate were calculated according to the
experimental data. Here, following the experiment, we apply the above moving mesh
method to solve the two dimensional Navier-Stokes equations to study the rich dynam-
ical behavior of falling plates. In the following, we simulate the plate movement un-
der the following conditions: β = 1/8, h = 0.081cm, ρ f = 1.0gcm−3, ρb = 2.7gcm−3, and
ρb/ρ f = 2.7. In the current simulations, the Reynolds numbers for ellipse and rectangle
are Re = lut/ν=1100 and 837 respectively. The radius of the computational domain has
a value about five times the length of the longer axis of the plate, i.e., r = 5L and L is
the chord length. In order to confirm the convergence of the computational results, a
large domain with r=10L is also used. In both cases, two stretched meshes are generated
around the falling plates with 200×50 and 400×100 grid points separately. Since the solu-
tion close to the plate is well resolved by the small cell size and different mesh stretching
parameters are used, the simulation results on different computational domain basically
capture mesh refinement effects.

In the early investigations [1, 13], due to the limitation of their numerical method, in
order to avoid the singularities at the corners of a rectangular plate, a plate with ellip-
tic cross-section was used in the numerical computation even though a rectangular one
was used in the experiment. Since the current numerical method has no constraint on
the falling plate geometry, hence we will conduct the computations for plates with both
elliptic and rectangular cross-sections. In other words, the current study essentially tries
to resolve the discrepancy presented in early investigation by performing the missing
computation using a plate of rectangular cross-section. Also, the validity of the early
computation will be tested.

Firstly, we present the simulation result for the elliptic plate. Fig. 3 shows the compu-
tational mesh around an elliptic plate with an initial angle of 0.2 radian with respective
to the horizontal axis. Fig. 6 presents two representative trajectories of the falling plate,
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Figure 3: Computational grid around the ellipse. Figure 4: Computational grid around the rectangle.

Table 1: Experimental and numerical falling plate averaged translational and angular velocities.

U [cm/s] V [cm/s] ω [rad/s]

Experiment (Andersen et al. [1]) 15.9±0.3 -11.5±0.5 14.5±0.3

Ellipse 15.3±0.05 -11.2±0.16 16.9±0.01
Computations

Rectangle 15.1±0.30 -11.8±0.37 15.0±0.36

where the black one is the experimental measurement in [1] and the purple one is the
trajectory from our computation. Overall, the two trajectories are very close to each other
and have almost the same slope, but with obvious phase differences. In other words, un-
der the current flow condition the geometrical differences between the ellipse (numerics)
and rectangle (experiment) will not effect much on the plate falling velocities, but they
will severely effect the rotation or angular velocity of the plates. Obviously, due to the
smooth profile of the elliptical plate, its angular velocity is much faster than that of the
rectangular plate. The quantitative falling velocity in the x- and y-directions, as well as
angular velocity are listed in Table 1. Except for the angular velocity, the averaged transla-
tional velocities between the experimental measurement (Vx=15.9cm/s,Vy=−11.5cm/s)
and the numerical computation (Vx =15.3cm/s,Vy =−11.8cm/s) match reasonably. This
observation is different from the numerical solutions (Vx = 15.6cm/s,Vy = −7.4cm/s)
in [1, 13], where the y-direction velocity seems too small in comparison with the experi-
mental measurement. Andersen, Persavento, and Wang attributed this discrepancy to the
geometrical differences between the experimental rectangle and numerical ellipse. Based
on the current computation, it seems that their difference in the y-direction velocities may
be due to the numerical algorithm.

The vorticity field at four instants during a full rotation of the elliptical plate is pre-
sented in Fig. 5. The vorticity field is similar to the numerical one reported in [13]. As
presented in the last section, the kinetic scheme is a finite volume conservative method.
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Figure 5: Vorticity field around a falling ellipse at four instants during a full rotation.

The updated flow variables are the mass and momentum densities inside each compu-
tational cell. The vorticity field in our case is numerically obtained by the direction-by-
direction discretization of the velocity field. The velocity field is pretty smooth in our
case and the noise in the vorticity distribution is due to our method to calculate it. The
method in [13] directly updates the vorticity flow variable. In Fig. 8, the instantaneous
fluid fores are also plotted, where the red one is the total fluid force on the plate, the green
one is the pressure force, and the blue one is the viscous force. The constant buoyancy
corrected gravitational force m′G, i.e., m′ = (ρb−ρ f )πlh/4, is not included there. Fig. 8
clearly shows that the viscous force is always in the opposite direction of the elliptic plate
movement except at the singular turning point.

Following the experimental strategy, the rectangle plate is released at an initial an-
gle of 0.25π radian with respective to the horizontal axis, with an initial velocity U =
(−8.92cm/s,−8.92cm/s). The computational grid around the rectangle is shown in Fig. 4.
For the rectangular plate, the plate motion is much more complicated than that of the
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Figure 6: Trajectories of falling ellipse: experiment
(black) and computation (purple).

Figure 7: Trajectories of the falling rectangle in the
tumbling section: experiment (black) and computa-
tion (red).

Figure 8: Fluid forces on the ellipse in the tum-
bling process: total fluid force (red), pressure force
(green), and viscous force (blue).

x [cm]

y
[c

m
]

-1 0 1 2 3 4 5

-35

-34
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Figure 9: Fluid forces on the rectangle: total fluid
force (red), pressure force (green), and viscous force
(blue).

ellipse, see Fig. 2 for the trajectory. For example, with the above initial condition, the
rectangular plate first has a fluttering motion from side to side, then after a while it starts
to tumble. Since the experimental results presented in [1] were for the tumbling section,
the numerical data in the corresponding section is extracted and compared with the ex-
perimental data. Fig. 7 shows the rectangular plate trajectory of the current simulation
and experimental measurement [1]. From this figure, the improvement of the rotational
velocity of the plate can be clearly identified. Quantitatively, the averaged x- and y-
direction velocity components become (Vx =15.1cm/s,Vy =−11.8cm/s), and the angular
velocity is (ω=15.0rad/s), which have an excellent match with the experimental results,
especially for the angular velocity. Due to the rectangular shape, the rotational speed
becomes much slower than that for the elliptical one. The vorticity field at four instants
during a full rotation is presented in Fig. 11, which behaves more violent and unsteady
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Figure 10: x-direction fluid force Fx on the plate during the tumbling process for both ellipse and rectangle.
The horizontal axis are rotational angle (left) and dimensionless time (right).

Figure 11: Vorticity field of a falling rectangle at four instants during a full rotation.



848 C. Q. Jin and K. Xu / Commun. Comput. Phys., 3 (2008), pp. 834-851

2 3 4 5 5.5

0

0.5

1

1.5

2

2.5

3

θ [ π ]

F
y 

[ m
’ g

 ]

ellipse

rectangle

experimental data

12 14 16 18 20 22 24 26 28 30

0

0.5

1

1.5

2

2.5

3

Time [ l / u
t
 ]

F
y 

[ m
’ g

 ]

 

 

ellipse

rectangle

Figure 12: y-direction fluid force Fy on the plate during the tumbling process for both ellipse and rectangle.
The horizontal axis are rotational angle (left) and dimensionless time (right).
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Figure 13: Torques on the plate during the tumbling process for both ellipse and rectangle. The horizontal axis
are rotational angle (left) and dimensionless time (right).

than the corresponding one in the elliptic case. For example, the flow separation point
around the rectangle is much close to the leading edge of the plate. Fig. 9 shows the in-
stantaneous fluid fores one the plate, where the red one is the total fluid force, the green
one is the pressure force, and the blue one is viscous force.

Besides the magnitude differences of the viscous forces on the elliptical and rectan-
gular plates, see Figs. 8 and 9, the interesting phenomenon is the direction of the viscous
force, especially during the plate upward movement. For the elliptical plate, the viscous
force is always in the opposite direction of the plate movement. However, for the rect-
angular one, due to the separation and unsteadiness, during the short upward flight,
the viscous force can become a driving force for the moving plate even with a very small
magnitude. During the upward rising period, the separated fluid around the plate moves
faster than the plate itself. Also, the numerical observation shows that the total pressure
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Figure 14: Comparison of the Fx force from two computations with different computational domain, i.e., 5 and
10 chord lengths, for falling ellipse (left) and rectangle (right).
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Figure 15: Comparison of the Fy force from two computations with different computational domain, i.e., 5 and
10 chord lengths, for falling ellipse (left) and rectangle (right).

force on the elliptic plate is almost perpendicular to the long axis of the plate. However,
for the rectangular one the pressure force can be tilted relative to the long symmetric axis
of the plate due to the two small sections at the two ends of the rectangle plate. Based on
the numerical computations, Figs. 10-13 present the components of the fluid forces and
their torque as a function of the plate orientation (phase) and evolution time respectively.
In Fig. 10, the horizontal axis of the left plot is the angle of the tumbling plate. However,
the horizontal axis of the right plot uses the real evolution time. The phase error in the
plates movement can be clearly observed from the right plot. From these figures, reason-
able agreements between the experimental data [1] and the current numerical solutions
are obtained. The elliptic plate rotates much faster than the rectangular one. Based on the
simulations, we basically agree with the conclusion in Mittal et al’s paper. Firstly, compu-
tations show that the moment for rotation is manly from the pressure and not the shear
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stress. This can be seen in the different magnitude of the pressure and stress forces, espe-
cially for the rectangular case. Secondly, the moment on the plate is produced primarily
by low pressure on the leeward side of the plate due to the shedding of vortices.

In order to clarify the boundary effect on the numerical solution, a large computa-
tional domain with a radius of 10 times the chord length has also been used to repeat the
above computation. The fluid forces from both computations are presented in Figs. 14-
15. Basically, both results are close to each other. The forces with a larger computational
domain are slightly closer to the experimental measurements.

4 Conclusion

In this paper, we investigate the aerodynamics of freely falling plates using a newly de-
veloped moving mesh method for the Navier-Stokes equations. During the tumbling
movement, the plate trajectory, fluid force, and translational and angular velocities are
extracted and compared with the experimental measurements. Good agreements be-
tween them are obtained. The current investigation clarifies some discrepancies between
the experimental data and the numerical computations in an early study by Andersen,
Persavento, and Wang [1]. For example, the current study shows that the plate falling
velocity and trajectory are almost the same for the elliptical and rectangular plates under
the experimental condition in [1]. The main dynamical differences due to the geometrical
shapes are the angular velocity, where the rectangular plate rotates much slower than the
elliptical plate. Overall, for the falling plate problem, the fluid dynamics associated with
the unsteadiness of the flow and these shed vortices as well as its subsequent effect on
the motion of the object can be complex enough to make theoretical treatment difficult.
The numerical simulation becomes an indispensable tool, from which the rich unsteady
aerodynamics in the whole flight process can be extracted.
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