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Abstract. Social networks play an important role in determining the dynamics and
outcome of language change. Early empirical studies only examine small-scale lo-
cal social networks, and focus on the relationship between the individual speakers’
linguistic behaviors and their characteristics in the network. In contrast, computer
models can provide an efficient tool to consider large-scale networks with different
structures and discuss the long-term effect of individuals’ learning and interaction on
language change. This paper presents an agent-based computer model which simu-
lates language change as a process of innovation diffusion, to address the threshold
problem of language change. In the model, the population is implemented as a net-
work of agents with age differences and different learning abilities, and the population
is changing, with new agents born periodically to replace old ones. Four typical types
of networks and their effect on the diffusion dynamics are examined. When the func-
tional bias is sufficiently high, innovations always diffuse to the whole population in
a linear manner in regular and small-world networks, but diffuse quickly in a sharp
S-curve in random and scale-free networks. The success rate of diffusion is higher in
regular and small-world networks than in random and scale-free networks. In ad-
dition, the model shows that as long as the population contains a small number of
statistical learners who can learn and use both linguistic variants statistically accord-
ing to the impact of these variants in the input, there is a very high probability for
linguistic innovations with only small functional advantage to overcome the threshold
of diffusion.
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1 Introduction

Social network is considered as a determining factor in language change, contact, main-
tenance and shift, etc. (Labov 2001, de Bot & Stoessel 2002). In sociolinguistics, empirical
studies of social network often examine in detail the networks of small communities and
focus on the relation between individuals’ social network properties and their linguis-
tic performance (Milroy 1980/1987, Eckert 2000). A classic study in this area done by
Milroy and colleagues (Milroy 1980/1987) examined three stable inner-city communities
of Belfast in Britain, and found that the working class communities have “close-knit”
social networks in common. These networks are of high density and multiplex: indi-
viduals usually have multiple relationships, being relatives, neighbors, friends, and/or
colleagues, and they vary in their degrees of integration into the community, some hav-
ing very few links with individuals outside their social group, while others having fewer
links within the group but more links outside. Studies have quantitatively shown that
individuals’ linguistic behaviors are highly correlated with their degrees of integration
into the network: in situations where linguistic variations are present in the community,
the more integrated an individual is into the community, the less variation (s)he has, and
the better (s)he conforms to the speech norm of the community.

Most of such empirical studies only focus on synchronic linguistic variations in small
communities, and few have touched upon the question on how different social networks
affect language change at a larger historical scale. In fact, social network has created
a paradox in the study of language change: although intuitively one would think that
social network should be an important factor in determining language change, very few
empirical data have been able to show the effect of social network quantitatively over
long periods of time (de Bot & Stoessel 2002). It is hardly possible to get a clear picture of
the social structure of a large community at present with respect to individuals’ linguistic
behaviors, not to mention the social structure in the past.

This gap can be filled by computer simulation which provides a convenient platform
to systematically study the effect of social network under controlled conditions (Gong
2007, Parisi & Mirolli 2007). Computer simulation can manipulate various parameters,
such as population size, network connectivity, and so on, and it is particularly effective
in addressing problems at a large time-scale beyond empirical studies of social networks.
These problems include how the dynamics differ in populations with different social
structures, how the structure of social network affects the rate of change, and so on.

However, despite of these advantages, existing computer models of language change
either do not consider the actual population structure (Niyogi & Berwick 1997, Niyogi
2006), or simply assume the population structure as regular or random networks (Nettle
1999a). For instance, in Nettle’s model of language change, the population structure is
implemented as a weighted regular network, as shown in Fig. 1, in which each agent is
connected to all his neighbors, and the strength of connection is inversely proportional
to the distance between two agents.

Recent studies on large-scale complex networks in the real world (Barabási 2002) re-
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Figure 1: The social network in Nettle’s model of language change (1999). The numbers represent agents at
different age stages. Nodes 1 and 2 represent infants and children, 3, 4 and 5 represent adults.

veal that most sparsely connected networks, such as the Internet, scientist collaboration
networks, friendship networks, etc., are neither regular nor random. Two important fea-
tures have been discovered in these networks: small-world (Watts & Strogatz 1998) and
scale-free (Barabási & Albert 1999). Recently a few computer models studying the evolu-
tion of vocabulary show that random networks and scale-free networks produce differ-
ent outcome in the convergence of vocabulary in the population (Dall’Asta & Baronchelli
2006, Dall’Asta et al. 2006, Kalampokis et al. 2007). In this paper, we will examine the
effect of social networks on the dynamics and outcome of language change, using a com-
puter model that simulates language change as a process of innovation diffusion.

2 Language change as a diffusion process

Language change can be viewed as a diffusion process of some new linguistic elements
(linguistic innovations) in a language community (Shen 1997, Nettle 1999a, Wang et al. 2004).
This process can be divided into two sub-processes: “innovation” and “diffusion” (or
“propagation”) (Croft 2000)†. In this paper, we focus on the diffusion process and as-
sume that the innovation is present at the beginning of the process without considering
its source.

It has been largely accepted that most adults change their language little after child-
hood, and language change mainly happens through children’s learning (c.f. see a critic
in Croft 2000). In biological evolution, when a new mutant trait arises in an individual,
it has a good chance to be passed on to the offspring of that individual, as long as the
mutant is not severely deleterious or actually lethal. But linguistic transmission is dif-
ferent from genetic transmission. Instead of inheriting genes from one or two parents, a
language learner samples at least a proportion of the language community, which may
include a fairly large number of people in the generations above him as well as in his peer
group. Therefore, the innovation, or the mutant, being the minority at the beginning, is
unlikely to be learned by the next generation. This is the “threshold problem” of lan-
guage change (Nettle 1999b). In order for an innovation to spread and become the new
norm in a language community, it must pass “a threshold of frequency” (ibid).

†There have been similar proposals of dividing the process of language change into two sub-processes, for
example, Weinreich et al. (1968)’s “actuation” and “transmission”, and Chen & Wang (1975)’s “actuation”
and “implementation”, though there are minor differences in the definitions of these terms (Croft 2000).
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There are two possibilities for the innovation to overcome the threshold (Nettle 1999b).
One is “functional selection”, i.e., there is a functional bias toward the innovation over the
original norm. Studies on language universals and language evolution have proposed
various functional accounts, such as perceptual salience, production economy, marked-
ness, iconicity, etc. (Croft 1990/2003, Kirby 1999). The other possibility to cross the
threshold is “social selection”, in which the innovation originates from some influential
speakers who have higher influence, or “social impact”, than others, and learners may
favor learning from them.

Nettle proposed a model to study the threshold problem in language change. This
model is adapted from the Social Impact Theory that simulates attitude change in so-
cial groups (Nowak et al. 1990). In the model, the population is structured with age and
social status. The language learner chooses one of the competing linguistic variants by
evaluating their impact in the community. Individuals within a shorter social distance
or with a higher social status have a stronger impact on the learner. This model demon-
strates that in a community homogeneous in social status, the functional bias needs to
be unrealistically high in order for an innovation to spread successfully; but with social
selection, in a community heterogeneous in social status, an innovation with a very small
functional advantage has a high chance to spread. Concluding from these simulation re-
sults, Nettle suggests that functional biases may affect the direction of language change,
but cannot provide a sufficient condition for change to occur. “Without the potential for
change provided by differences in social influence, functionally favored variants might
never overcome the threshold required to displace prior norms” (Nettle 1999b: 116).

However, Nettle’s conclusion that language change requires the existence of super-
influential agents to ensure the diffusion of an innovation faces a challenge in explaining
“changes from below” (Labov 2001): there are a lot of changes in which innovations diffuse,
not from the highest social class, but from the upper working class or lower middle class,
who are considered as having less social impact. In addition, the regular population
structure in Nettle’s model is also problematic. In this paper, we will present a new
model with various network structures and different types of learners. The model shows
that these factors can affect not only the dynamics but also the threshold for innovation
to diffuse.

3 The model

In our model, the population is represented as a network containing N nodes (agents)
and some connections among them. Each agent has one of the two linguistic states, us-
ing either unchanged form “U” or the innovation, i.e. the changed form “C”, based on
which form they have learned. The model adopts the age structure in Nettle’s model,
but unlike Nettle’s grid structure, children and adults are randomly distributed in the
network. Each agent has an age stage ranging from 1 to 5. Agents at stage 1 are infants
who can only learn from their connected teachers; agents at stage 2 can both learn and
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teach others. Therefore, agents at stage 1 and 2 are learners, while agents at stage 3-5
are adults who can only teach learners and cannot change their own states. The ratio
between adults and learner is 3:2. After each time step, all agents advance in age by one
stage, and those at stage 5 will be replaced by new infants who inherit the connections
of the adults they replace, but have their linguistic states undetermined till they start to
learn.

Here we give an illustration on how a learner may learn from his connected neigh-
bors. When there are both “U” and “C” present in the input, the learner will learn a form
that has a higher fitness. The fitness of a form is measured by a function of incorporat-
ing the functional value and the frequency of that form, as represented by the equations
below:

F(U)= fUqU, (3.1)

F(C)= fCqC, (3.2)

in which fU and fC are the functional values of the two forms U and C respectively, while
qU and qC are their frequencies in the learner’s connected neighborhood. The state of the
learner L is determined by

S(L)=

{

U i f F(U)> F(C),
C i f F(U)≤F(C).

(3.3)

For example, in a network with 10 agents, a learner is connected with 4 agents, three
of which use “U” and one uses “C”. If the functional values for U and C are 1 and 4,
then F(U)=3 and F(C)=4. Therefore the learner will learn the “C” form. For the sake of
convenience, hereafter we will assume fU =1, and use a parameter called the functional
bias β, which measures the functional advantage of C over U, i.e., β= fC/ fU .

The model compares the diffusion processes in four different kinds of network struc-
ture: random, regular, small-world and scale-free networks. A regular network is built
as a ring, each node having an equal number of connections to its nearest neighbors, and
a random network is set up by connecting two nodes based on a probability which is
determined by the given connectivity of the network. A small-world network is built
based on the model proposed by Watts & Strogatz (1998). It starts from a regular net-
work, and rewires a number of regular links randomly according to a probability p. The
rewiring probability p determines statistically how many numbers of regular connections
are changed into shortcuts. In this study, p is set as 0.01, which is within the range where
the small-world characteristics are best represented. A scale-free network is built follow-
ing the growth model proposed by Barabási & Albert (1999).

4 The effect of different types of networks

We first simulate the diffusion process in the above four types of networks, each for 20
runs, with the same set of conditions: the network size N is 500, the average degree <k>
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is 20 and the functional bias β is 20. The innovation C is randomly generated from one
adult; all other agents are set as U. The simulation results are shown in Fig. 2, in which
each curve in a graph tracks one diffusion process. Under this condition, diffusion is
successful in all runs, but the diffusion curves are different in different networks. The in-
novation diffuses in a linear way in a regular network, while in other networks, the diffu-
sion follows a sharp S-curve. The diffusion rate is much slower in a regular network than
in other networks, which can be explained by its lack of “short-cut” connections between
distant nodes in the population, while the other three networks have these “short-cuts”.
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Figure 2: Diffusion dynamics in four types of networks in 20 runs (x axis: the number of generations, y axis:
the percentage of changed form used in the population) (population size N=500, average degree <k>=20,
functional bias β=20, and number of innovators I=1). (a) regular network; (b) small-world network; (c) random
network; (d) scale-free network.

It is obvious that when the functional bias is large enough, diffusion always com-
pletes, reaching the whole population. Fig. 3 shows the diffusion dynamics under an-
other set of condition: functional bias decreases from 20 to 10, and the number of inno-
vators increases to 10, randomly distributed. Regular and small-world networks show
similar gradual diffusion, while random and scale-free networks still exhibit the rapid
diffusion. The fact that the small-world networks now show a pattern different from the
first condition indicates that number of short-cuts in a small-world network is still small,
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Figure 3: Diffusion dynamics in four types of networks in 20 runs under another set of condition: N=500,
<k>=20, β=10, I=10. (a) regular network; (b) small-world network; (c) random network; (d) scale-free
network.

and when the functional bias is not big enough, the C has to diffuse slowly into the whole
population in a small-world network. In contrast, the random and scale-free networks
have a large number of shortcuts, and the diffusion in them is insensitive to the func-
tional bias, always appearing in a sharp form, which we will continue to see in other sets
of conditions in the following.

When the functional bias is further decreased to 2, the innovation cannot spread un-
less there are a large number of innovators. Fig. 4 shows the results when there are 100
innovators. This situation may correspond to the case of a massive immigration flow. It is
clear that regular and small-world networks again show gradual diffusion, and random
and scale-free networks show rapid diffusion in a sharp S-curve. Moreover, there are a
large number of runs with unsuccessful diffusion in the latter two types of networks; in
both cases, the rate of unsuccessful diffusion is about 85%. If real social networks are like
random or scale-free networks, the different outcomes under the same condition may ex-
plain why while similar linguistic innovations constantly appear, only a small number of
them successfully diffuse into the population.

In the following, we statistically test the effect of functional bias and number of in-
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Figure 4: Diffusion dynamics in four types of networks in 20 runs with a small functional bias (β=2) but a
large number of innovators (I=100). (a) regular network; (b) small-world network; (c) random network; (d)
scale-free network.
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Figure 5: (a) Probabilities of successful diffusion under different functional biases; (b) Average diffusion time
over 100 runs (N=400, <k>=20, I=10).

novators in these 4 types of networks. Fig. 5 gives the probability of successful diffusion
over 100 runs under different functional biases. Fig. 5(a) shows that when functional bi-
ases are small (β<3), there is no diffusion in all networks; for a range of functional biases
(β=3∼7), regular and small-world networks have higher probabilities of successful diffu-
sion than scale-free and random networks (Fig. 5(a)). In other words, the last two types of
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networks have a higher threshold of functional bias for successful diffusion. Meanwhile,
the last two types of networks take much less time to complete the diffusion than the first
two, as indicated by the average diffusion time over 100 runs shown in Fig. 5(b). When
the functional bias is high enough (β>7), there are little differences between the four
types of networks. Therefore, within a range of small functional bias and small number
of innovators, the four types of networks exhibit different characteristics. The dynamics
in small-world networks is similar to that in regular networks, i.e., high success proba-
bility, but slow diffusion rate. The dynamics in scale-free networks is similar to that in
random networks, i.e., fast diffusion rate, but lower success probability.

The simulation results of the two types of dynamics in these four types of networks
illustrate the importance and necessity of identifying the actual linguistic interaction net-
work in reality.

5 Effect of two types of learners

In the above simulations, the agents in the model, faced with the presence of the two
competing variants, learn and use only one of them. This is inconsistent with the em-
pirical findings from the studies of on-going language change, in which the co-existence
of variation in individual speakers is prevalent. Ke (2004) proposed that there could be
two types of learners, “categorical” and “statistical”, in terms of their capacity to accom-
modate competing variants. A categorical learner only learns and uses the form which is
encountered often and early enough during the acquisition period, while a probabilistic
learner acquires both forms and uses them in proportion to their frequency in the input‡.
Recent empirical studies on learning artificial language also show that there exist two
types of learners given input with variation: some learn the probabilistic characteristics
of the variation, while some others tend to generalize and show a categorical learning
outcome (Hudson Kam and Newport 2005). Therefore, in our model, we take account of
this distinction in agents’ learning behaviors.

The learners in our model learn from all connected neighbors. At age stages 1 and
2, learners evaluate the impact of the forms, if they encounter more than one during
their learning period. The impact of the variant form is measured by the product of its
functional bias and frequency as given in Eqs. (3.1)-(3.2). A categorical learner adopts
only the form which has higher impact, while a probabilistic learner may adopt both
forms and use them probabilistically proportional to their impact.

At the beginning when the innovation “C” is still rare in the population, learners
will most likely only encounter “U”, and therefore, they only learn and use “U”. But at
later stages of the change when the innovation has diffused to more speakers, learners
are likely to be exposed to both “U” and “C”. If a learner has encountered “U” three
times and “C” twice from his teachers, and if the functional bias β is 2, then a categorical

‡These two types of learning, categorical and probabilistic, may correspond to the majority and voter models
in the physics literature (Liggett 1985).
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learner will use “C” consistently in his adulthood, while a probabilistic learner will use
both forms with different probabilities, prob(U) : prob(C)=3 :4.

With the existence of probabilistic learners, the innovation with a small functional
bias can spread much more easily than in a population with only categorical learners.
Fig. 6 shows the diffusion of an innovation with a functional bias of value 2, starting
from only one adult, in a small-world and a scale-free network. Under this condition, the
innovation has no chance to diffuse at all in a population with all categorical learners. If
the learners are all probabilistic learners, diffusion is possible. And consistent to earlier
findings, small-world networks ensure more successful diffusions, but require longer
time to complete than scale-free networks do.
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Figure 6: The diffusion dynamics in a population with all probabilistic learners in two networks. (N=500,
<k>=20, β=2, I=1). (a) small-world network; (b) scale-free network.

We compare the effect of probabilistic learners under conditions of different func-
tional biases, shown in Fig. 7. In a small-world network, if all learners are categorical, the
threshold of functional bias for successful diffusion is 13, but with 10% of probabilistic
learner, the threshold drops to 5. If half of the population is probabilistic learners, then
an innovation with functional bias of 2 will have more than 50% of chance to diffuse
successfully. If the whole population is probabilistic learners, a functional advantage of
1.3 will allow 99% successful diffusion. Similar phenomena can be observed in scale-free
networks.

From the simulation results, we suggest that it is because of the existence of proba-
bilistic learners that language change is so frequent; many innovations can successfully
spread as long as they have a small functional bias to replace the original norm.

6 Effect of different population size

Nettle (1999b) suggests using simulation results from his model that a larger community
requires longer time for changes to complete, and thus fewer changes will occur, which
seems to support the data of the linguistic diversity in the world. In his model, however,
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Figure 7: Probability of successful diffusion in populations with different proportions of probabilistic learners,
under different functional biases. (N=500, <k>=20, I=1). Upper panel: small-world network; lower panel:
scale-free network.

as mentioned earlier, the social network is a kind of weighted regular network. Here
we compare regular networks with other three types of networks using the model with
50% probabilistic learners in the population. As shown in Fig. 8, in regular networks,
the diffusion increases almost linearly with the increase of population size, similar to
what Nettle’s model suggests. However, the other three types of networks show different
results. There is little increase in the diffusion time, compared to the regular network.

One possible explanation for the differences between regular and other networks is
that the latter three types of networks have short average path length independent of
the network size, as shown in Fig. 9. In other words, the increase of the network size
does not lead to the increase of the distance of any two nodes in these networks, and
therefore the time for diffusion to take place is hardly affected. Dall’Asta et al. (2006)
report a similar discussion in their model of the emergence of linguistic convention, in
which “the small-world property holds when the diameter of the network grows slowly,
i.e. logarithmically or slower, with its size N. This ensures that every part of the network
is rapidly reachable from any other part, in contrast to what happens in regular lattices”
(p10).

Wichmann et al. (ms) discuss the rate of language change with respect to population
size using a computer model that differentiates internal change, diffusion and shift in
agents. They show that the rate of change is not correlated with the population size in
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Figure 8: The relation between population size and the rate of change in four types of networks (N=500,
<k>=20, I=1, 50% probabilistic learners). (a) regular network; (b) small-world network; (c) random network;
(d) scale-free network.

0

10

20

30

40

50

60

0 500 1000 1500 2000
network size

regular nw

random nw

smallworld nw

scalefree nw

Figure 9: The average path length with respect to different network sizes in the four types of networks.

most cases, except under the condition when the probability for diffusion is high and the
diffusion is globally based. Nettle (1999b)’s claim that smaller languages change faster
may be valid under some special conditions.

7 Discussion for the models of language change and future

works

We have presented a computer model to study language change. The model simulates
language change as a process of innovation diffusion. We have examined four typical
types of networks and their effect on the diffusion dynamics. When the functional bias is
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sufficiently high, innovations always spread in a linear manner in regular and small-world
networks, but diffuse quickly in a sharp S-curve in random and scale-free networks. The
success rate of diffusion is higher in regular and small-world networks than in random
and scale-free networks.

These two types of dynamics lead to questions for both empirical and modeling stud-
ies. On the one hand, the model raises the question for empirical studies on the relation
of language change and social networks, to explain historical data: did social networks
at different historical periods differ a lot? So far there have been few data of large-scale
social networks with linguistic behavioral data. This question is of particular interest in
studies of the various situations in language contact. More systematic analysis of the so-
cial networks in those contact situations may provide useful data for network modeling
to build upon.

On the other hand, it is pressing to find out which type of networks is more appropri-
ate for representing the real population structure. Which type of network is more realis-
tic, the small-world or the scale-free network, or a new type of network model that can
incorporate both the small-world and scale-free, and other features? The model needs to
accommodate the presence of a large proportion of local regular connections for the ma-
jority of agents, the presence of some hubs in the network, the age structure, and social
class distinctions that have often shown significant effect in language change. Newman
and Park (2003) discuss various features that social network differ from other types of
networks. For instance, social networks have high clustering and transitivity, and exhibit
assortative mixing. Several proposals have been reported for modeling, such as Newman
and Girvan (2003)’s model of community structure. Schnegg (2006) proposes a model
that considers the reciprocity characteristics in human interactions, i.e. the tendency to
give to those from whom one has received in the past, based on the B-A scale-free grow-
ing model, to account for the significantly lower scaling exponents in social networks
shown in ethnographic data. A model proposed by Schwämmle (2005) for language
competition, which takes into account the ageing and reproduction in a changing popu-
lation, may be considered with modification. Other network formation models proposed
in economics may also be candidates for further exploration (Jackson 2004).

Our model suggests a new answer to the threshold problem of language change.
While functional and social selection may account for the successful diffusion of an inno-
vation to replace the old norm, these conditions may not be as stringent as early models
suggest (Nettle 1999b). Our model shows that as long as the population contains a small
number of statistical learners who can learn and use both linguistic variants statistically
according to the impact of these variants in the input, there is a very high probability for
a linguistic innovation with only a small functional advantage to diffuse. This may in
part explain why language changes are so prevalent.

The current model is very simplistic regarding the representation of the object of
change, which is only in the form of an abstract innovation. When more realistic lin-
guistic features are taken into account in the model, it can be used to simulate different
situations of change, such as lexical diffusion, chained change, and different conditions of
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language contact. The computer modeling studies on language competition (Schulze and
Stauffer 2006) developed in recent years will also be a fruitful area to explore by taking
into account more realistic linguistic representations and social considerations discussed
above, to address questions such as the rate of language change, linguistic diversity, and
so on.
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