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Abstract. The surface diffusion of an axi-symmetric solid, a whisker, subject to applied
uniaxial stress, is studied numerically based on a new boundary integral formulation
for periodic stress configurations. An efficient semi-implicit time-stepping scheme is
developed to treat the serve stiffness due to high-order derivatives. When the initial
perturbation is small the effect of the stress on the motion of the whisker is found to
agree with the linear stability analysis. Numerical simulations of a fully nonlinear case
are also presented, and a potential break-up of the whisker is observed.
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1 Introduction

When a solid is heated, the atoms on the outer surface diffuse to form a thermodynam-
ically lower energy configuration. Such a surface diffusion motion of a thin solid rod, a
whisker, driven by surface energy only, was first studied by Nichols and Mullins [8].
They derive the Rayleigh criteria for stability of a cylinder, i.e., it is unstable to axi-
symmetric perturbations whose wavelength exceeds the circumference of the unper-
turbed cylinder. This result is analogous to the classical Rayleigh instability of a cylinder
of a fluid under surface tension. In both cases, the instability causes the cylinder to pin-
choff forming a chain of spheres that minimizes the surface energy for a fixed volume.
Through second- and higher-order perturbation arguments and finite-element calcula-
tions, Coleman et al. [2, 3] have shown that a cylinder is unstable to perturbations of
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certain combination of linearly stable wavelengths. The surface diffusion and the self-
similar axi-symmetric pinchoff of a cylinder have been examined using asymptotic, nu-
merical and analytical methods by several authors. For a review and the references, see
Bernoff et al. [1].

The effect of elastic stress on the morphological instability of a whisker has been stud-
ied by linear stability analysis in Colin et al. [4] and Kirill et al. [6]. The results show
that short-wavelength instability can develop when the applied stress is beyond a critical
value and non-axisymmetric modes can be excited under certain conditions.

In this work, we investigate the fully nonlinear evolution of an axi-symmetric whisker
when the stress is present. In Section 2, we state the problem in which the whisker is peri-
odic in one direction and subject to a periodic applied stress. In Section 3, two equivalent
boundary integral formulations of the problem are derived, enabling the sharp-interface
numerical simulation.

The nonlinear evolution equation for the whisker involves surface diffusion of the
interface curvature. This fourth-order derivative term puts a severe constraint on the
time-step when explicit temporal schemes are used. On the other hand, any fully implicit
schemes require solving nonlinear systems at every time-step, and it is extremely expen-
sive. In this paper, we present an efficient semi-implicit temporal scheme for interfaces in
axi-symmetric geometry based on the local decomposition technique [9,11,15]. Realizing
that the meridian term in the mean curvature for an axi-symmetric interface dominates
the stability property of a temporal scheme, we express it in terms of the tangent angle
of the interface. As a result, the most stiff term reduces to a fourth-order derivative of
the tangent angle, and it becomes linear in Fourier space. We treat this term implicitly
and the rest of the nonlinear terms in low-oder derivative explicitly. A detailed descrip-
tion of the numerical methods is presented in Section 4. In Section 5, our formulation of
the problem and numerical methods are validated using the results from linear stability
analysis and the effect of elastic stress is investigated in nonlinear evolution region.

2 Governing equations

Consider an infinite cylinder, periodic on the x-direction with period Lp, as shown in
Fig. 1. Denote the cylinder by Ω, its boundary/surface by ∂Ω, and its outward unit
normal by n. Let ∂Ωl be a cross section of the cylinder with a plane perpendicular to x-
axis, and ∂Ωr be the first periodic image of ∂Ωl to the right. ∂Ωp is the one-period section
of cylinder surface that is between ∂Ωl and ∂Ωr.

The surface of the cylinder evolves due to surface diffusion which minimizes the sum
of the surface energy and elastic energy. Its normal velocity is given by ([6] and references
therein)

vn =
∂x

∂t
·n=∇

2
s (βgel

−κ), (2.1)

where κ = ∇·n is the sum of the principle curvatures, gel is the elastic energy density,
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Figure 1: Sketch of a periodic whisker.

and the dimensionless parameter β measures the relative magnitude of the elastic energy
compared with the surface energy. Both gel and β will be defined later.

The presence of the elastic effects arises due to applied stresses in the solid. Next
we describe the governing equations for obtaining the elastic energy. The solid is at
mechanical equilibrium in absence of body forces,

∇·σ =0, for x in Ω, (2.2)

where σ denotes the stress tensor. Since outside the solid is vacuum, the surface of the
cylinder is a traction-free surface,

t≡σ ·n=0, for x on ∂Ω. (2.3)

The relation between the stress and strain tensors follows Hooke’s law for isotropic elas-
ticity, i.e. σij = 2µǫij +λǫkkδij, where µ and λ are the Lamé constants. Stress in the solid
arises due to an applied stress in the solid. The stress is applied such that

∫

∂Ωr

tdA=F, (2.4)

where F is a constant vector and the normal to ∂Ωr is the unit vector along x-axis e1 =
(1,0,0). It is important to note that the condition (2.4) is actually satisfied at any cross
section of the cylinder because of Eqs. (2.2) and (2.3) and the divergence theorem. The
elasticity problem is complete by adding the periodic boundary conditions

u(x+Lpe1)−u(x)=U, t(x+Lpe1)+t(x)=0, (2.5)

for any x in the solid. Note the normal vectors in the second equation of (2.5) are in
opposite directions at x and its periodic image x+Lpe1. In this work, we specify a con-
stant vector U = (U1,0,0). For the axi-symmetric case, it is clear that F2 = F3 = 0 where
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(F1,F2,F3) is the Cartesian coordinates of F. Also, it can be shown (see Appendix) that the
first component of U1 is related to F1 through the following integral equation

LpF1 =(2µ+λ)

[

πσ2
r U1−2π

∫

C
u1σdσ

]

+2πλ
∫

C
uσσdx, (2.6)

where σr is the radius of the disk ∂Ωr, u=(u1,uσ,0) in the cylindrical coordinates (x,σ,φ),
C is the oriented contour of the surface ∂Ωp in (x.y)-plane in the direction of increasing
x, σ=y is the distance of C to x-axis.

Given U or F, the displacement u and the traction t on ∂Ω can be obtained by solving
the equations (2.2)–(2.6). Then, the elastic energy density gel = 1

2 σ ·ǫ can be computed
through a local coordinate transformation [5, 13].

3 Boundary integral formulation

Suppose V is a finite volume of the solid enclosed by the surface S. For a point x on S,

∫∫

S

[ui(y)−ui(x)]Tijk(y−x)nk(y)dAy =
∫∫

S

ti(y)Gij(y−x)dAy, (3.1)

where j=1,2,3. Here, Gij and Tijk are the Green’s functions associated with the displace-
ment and stress, respectively. Einstein summation notation is used in this work. Note the
integrands in Eq. (3.1) are weakly singular and there are no principal value integrals.

If V is one period of the solid Ω, restricting our attention to a system that is Lp-
periodic in x-axis and applying the boundary conditions Eqs. (2.3) and (2.5), we obtain
from Eq. (3.1)

∫∫

∂Ωp

[ui(y)−ui(x)]TP
ijk(y−x)nk(y)dAy =−Ui

∫∫

∂Ωr

TP
ijk(y−x)nk(y)dAy, (3.2)

where TP
ijk are the corresponding Green’s functions that are Lp-periodic on the x-direction.

Alternatively, we can decompose the stress field (σ,u) into a uniaxial stress, σ
(0) =

diag(1,0,0) and u(0) = (x,−νy,−νz), and the disturbance field, (σ
D,uD) for a point x =

(x,y,z) in Cartesian coordinates.
We specify u(0) according to Eqs. (2.6) such that the disturbance fields uD ≡u−u(0)

and tD ≡ t−t(0) are Lp-periodic on the x-direction.
Applying Eq. (3.1) to (uD,tD) for one period of the solid, we obtain

∫∫

∂Ωp

[uD
i (y)−uD

i (x)]TP
ijk(y−x)nk(y)dAy =−

∫∫

∂Ωp

t
(0)
i (y)GP

ij(y−x)dAy. (3.3)

It can be shown that Eqs. (3.2) and (3.3) are equivalent.
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When F= F1e1, we have

u(0) =
U1

Lp
(xe1−νye2−νze3)=

U1

Lp
(xe1−νσσ̂)

t(0)
≡σ

(0)
·n=

U1

Lp
diag(E,0,0)·n=

U1En1

Lp
e1,

(3.4)

where σ̂ denotes the unit vector in σ-direction of the cylindrical coordinates (x,σ,φ), E=
2µ(1+ν) is the Young’s modulus and n1 is the x-component of the outward unit vector
n normal to C. The value of U1 is related to F1 according to Eq. (2.6), or equivalently (see
Appendix)

LpF1 =
U1

Lp
EVp−2π(2µ+λ)

∫

C
uD

1 σdσ+2πλ
∫

C
uD

σ σdx, (3.5)

where Vp is the volume of the solid in one period Ωp.

4 Numerical methods

The motion of interface C, x(α,t)e1+σ(α,t)σ̂, can be reposed in terms of its local arclength
derivatives sα and its tangent angle θ defined implicitly from the definition of the tangent
vector,

s(α,t)=(xα,σα)/sα =(sinθ(α,t),cosθ(α,t)). (4.1)

Then θ and sα satisfy

sαt =Tα+θαvn, (4.2)

θt =−
vnα+Tθα

sα
, (4.3)

where s is the tangential direction of the interface with T as a specified tangential velocity.
Notice that the choice of T does not affect the motion of the interface C, and it only affects
the definition of α. In particular, the tangential velocity,

T(α,t)=−
α

2π

∫ 2π

0
θα′ vndα

′

+
∫ α

0
θα′ vndα

′

, (4.4)

leads to a constant sα in space satisfying

L(t)

2π
≡ sα(α,t), (4.5)

where L is the length of C. Accordingly, the equation (4.2) for sα becomes

Lt =−

∫ 2π

0
θα

′ vndα
′

. (4.6)
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The curvature κ can be decompose into

κ≡κ2d +κ∞, (4.7)

where κ2d and κ∞ are the curvatures in the meridian and azimuthal directions respec-
tively:

κ2d =
σαxαα−σααxα

s3
α

= θs, κ∞ =
xα

σsα
. (4.8)

In an axi-symmetric geometry, the surface Laplacian reduces to

∇
2
s =

∂2

∂s2
+

σs

σ

∂

∂s
. (4.9)

Thus the evolution equation (2.1) becomes

vn =−θsss+P, (4.10)

where

P=−
σs

σ

∂κ2d

∂s
+∇

2
s (−κ∞+βgel). (4.11)

Similar to the numerical method for axi-symmetric vortex sheets [9], the evolution equa-
tion for θ is decomposed locally with one term involving the fourth order of derivative
and the rest of terms only involving low order derivatives:

θt =−θssss+(Ps+Tθs). (4.12)

The equation for the corresponding Fourier coefficients of θ becomes

θ̂t =−

(

2π

L

)4

k4θ̂(k)+ Â(k), (4.13)

where Â(k) is the Fourier coefficient for Ps+Tθs.

Because the temporal stability constraint is dictated by the term with the highest or-
der of derivative, a standard explicit scheme, such as a Runge-Kutta or a linear multi-step
type of method, applied to Eq. (4.13) requires a time-step proportional to the inverse of k4.
On the other hand, a fully implicit temporal scheme on Eq. (4.13) leads to nonlinear sys-
tems that have to be solved at every time-step. For both approaches, the computational
costs are very expensive, and become prohibitive for medium to large spatial resolutions.

Realizing that the fourth-order derivative term is linear (and diagonalized in Fourier
space) and decoupled from the terms with lower order derivatives in Eq. (4.13), one can
treat the k4 θ̂(k) term implicitly and the nonlinear term explicitly such that the stability
constraint associated with the fourth-order derivative term is removed without the need
of solving any nonlinear systems.
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In particular, one can apply the Crank-Nicholson discretization on the linear term and
the leapfrog method on the nonlinearity in Eq. (4.13) to obtain

θ̂n+1(k)− θ̂n−1(k)

2△t
=−k4

[

(

2π

Ln+1

)4

θ̂n+1(k)+

(

2π

Ln−1

)4

θ̂n−1(k)

]

+ Â(k). (4.14)

This equation can be easily solved explicitly for θn+1. Similar approaches have been suc-
cessfully applied for two-dimensional vortex sheets and Hele-shaw flows [10,15] as well
as for axisymmetric vortex sheets [9]. In addition, Eq. (4.13) can also be approximated
using the integration factor methods [15] and modified integration factor methods [7]
that have advantages of damping small-scale numerical oscillations to make simulations
more robust and stable.

In order to evaluate the elastic energy density gel in Eq. (4.13) at each time step, we
must solve the boundary integral equations for the elasticity, either Eq. (3.2) or Eq. (3.3).
The weakly singular integrals in the equations are partially de-singularized through the
identities. A collocation method is carried out for the integral equations in which the in-
tegrals are approximated by the composite six-point Guassian quadratures. The quadra-
ture points are obtained via the quintic spline interpolation of the equally spaced nodes
representing the interface. The FFT is used to calculate the derivatives of various quan-
tities and the pseudo-spectral method is applied for the nonlinear terms (e.g. P). The
discretized equations for the displacement and the traction at the nodes are solved using
GMRES [12]. Once the displacement and traction are obtained, the elastic energy density
gel can be computed as in [5, 13].

5 Results

The dynamics of the whisker depends on the dimensionless parameter β≡R0Eǫ̃2/γ. This
parameter measures the relative strength of the elastic energy compared with the surface
energy. Here, R0 is the radius of the undisturbed cylinder used as the length scale, E is
Young’s modulus, ǫ̃ =U1/R0 is the scale of the applied strain, and γ is the solid-vapour
surface tension. The corresponding time scale is chosen as R4

0kT/(DsγV2
a A0), where Ds

is the surface diffusivity coefficient, Va is the atomic volume, A0 is the number of atoms
per unit area on the interface, and kT is the thermal energy.

To validate the numerical implementation, we test an exact solution of the straight
cylinder for the elasticity equations (3.2). It is found that the numerical calculation of
the integrals involving the x-component is usually more accurate than those involving
the σ-component. This is mainly due to the nature of singularity of the integrands in
the σ-components. It is also observed that the numerical solutions from solving Eq. (3.3)
are more accurate than the ones from Eq. (3.2) when the disturbance field is relatively
small compared with the applied stress field. The difference is owing to the fact that
the numbers of significant digits in the solutions of Eqs. (3.2) and (3.3) are the same but
Eq. (3.2) solves for the total field u while Eq. (3.3) solves for the disturbance field uD that
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Figure 2: Comparison with the linear analysis in [4, 6] for a cylindrical whisker with the initial profile σ = 1+
0.001cos(2kπx) and the wavenumber k=0.1. The contours of the whisker are shown at the nondimensionalized
time t=10 and 30, where the solid and dashed lines are obtained from the numerical simulation and the linear
stability analysis respectively.

can be treated as a small correction term to the principal term u(0). For the rest of the
paper, the elasticity energy density gel is computed based on the numerical solutions of
Eq. (3.3).

Next, we compare our numerical simulation with the result of linear analysis [4, 6].
The applied stress on the whisker given by the condition (2.4) of this paper agree with that
in the linear studies up to the leading order. We show that our results match well with the
prediction in [4,6] for small-wavenumber disturbance. Fig. 2 displays the shape evolution
of a slightly disturbed circular cylinder, σ =1+0.001cos(2kπx) for the wavenumber k =
0.1, the elastic parameter β=1/2 and the Poisson ratio ν=1/3. The solid lines in Fig. 2 are
obtained from our numerical simulation while the dashed lines correspond to the linear
solution σ =1+0.001exp(ωt)cos(2kπx) where the growth rate is the small-k asymptotic
result ω∼ (1+2β)k2 +O(k4) given in [6].

We turn to investigate the effect of elasticity on the evolution of a cylindrical whisker
where the initial shape significantly away from a straight cylinder. The initial whisker
profile is given by σ=1+0.1cos(2kπx) with the wavenumber k=1.2.

Fig. 3 shows a time series of the whisker profiles for ν = 1/3 and β = 1/8. It is clear
that the whisker evolves to a straight circular cylinder agreeing with the linear analysis
that predicts stability at these values of wavenumber and the elastic parameter. In order
to show the accuracy of the computation, we have shown the numerical results of two
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Figure 3: Evolution of a cylindrical whisker with the initial profile σ = 1+0.1cos(2kπx) with the wavenumber
k=1.2 and β=1/8. The cross sections in the (x,y)-plane of the whisker are shown at the nondimensionalized

time t=10/1.24≈4.823 and t=80/1.24 ≈38.580. The figure shows both the results obtained with the number
of marker points n=64 (the dashed lines) and with n=128 (the solid lines).

different discretizations: the solid lines are for the number of marker points n=128 while
the dashed lines in the figure are for n=64. The results are indistinguishable in the plot,
demonstrating that the resolution with n=64 is enough for the case. Thus, in this paper,
we have obtained the results starting with n=64.

When β is raised to 1/4, the whisker becomes unstable based on the linear analysis.
Fig. 4 shows the snap shots of the whisker profiles at times t=2/1.24,3.6/1.24,3.98/1.24.
The numerical results show that the whisker pinches at the narrow sections and the dy-
namics accelerates as the whisker collapses. Further detail at the pinching portions are
under current study.

5.1 Conclusions

In this work, we have developed a model such that the effect of elastic stress on surface
diffusion can be investigated numerically for an axi-symmetric, periodic whisker. In par-
ticular, the applied stress must satisfy the relationship (2.6) between the traction and the
displacement in the solid, and the displacement vector must have a jump between two
periodic boundaries for a stressed solid in the periodic configuration.

To facilitate numerical simulation using sharp-interface methods, we have derived
the boundary integral equations for the elasticity problem using the three-dimensional,
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Figure 4: Evolution of a cylindrical whisker with the initial profile σ = 1+0.1cos(2kπx) with the wavenumber
k = 1.2 (shown by the solid line) and β= 1/4. The cross sections in the (x,y)-plane of the whisker are shown

at the nondimensionalized time t = 2/1.24 ≈ 0.965 (the dashed line), 3.6/1.24 ≈ 1.736 (the dotted line), and

3.98/1.24 ≈1.919 (the dash-dotted line).

axi-symmetric Green’s functions. The boundary integral approach reduces the original
three-dimensional problem to a two-dimensional one, and, further, restricting to axi-
symmetry makes it a one-dimensional computation in which the details of the dynamics
can be obtained accurately. To deal with the stiffness associated with the surface diffusion
on the curvature, we have developed an efficient semi-implicit temporal scheme for the
interface motion in axi-symmetric geometry. In the new scheme, the most stiff term re-
formulated in Fourier space becomes a diagonal system, thus an implicate treatment can
be easily implemented without extra costs. This new temporal scheme allows us perform
long-time and robust simulations to examine the effect of elasticity.

We have performed simulations of fully nonlinear evolution of a whisker under in-
fluence of applied stress. Our results agree well with the linear stability analysis when
the initial perturbation from the equilibrium shape is small. We also have presented the
whisker profiles at different times for a linearly unstable configuration.

In absence of stress, an axi-symmetric whisker may pinch off in finite time, minimiz-
ing its surface energy. Further, it has been shown that the pinch-off structure is self-
similar and there is a unique observable cone angle during pinch-off. [1] In contrast, in
two-dimensional studies, solid surfaces form cusps under applied stress. [14,16] It would
be interesting to examine whether an axi-symmetric whisker pinches off first or develop
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a surface singularity first, under stress. The dynamics of this kind is under current inves-
tigation.
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A Derivation of Eqs. (2.6) and (3.5)

The Cartesian coordinates is used unless where it is specified otherwise. As shown ear-
lier, for any cross section ∂Ωc of the cylindrical solid with normal n=(1,0,0),

Fi =
∫∫

∂Ωc

tidA=
∫∫

∂Ωc

σijnjdA=
∫∫

∂Ωc

σi1dA. (A.1)

For isotropic elasticity, the Hooke’s law gives

σi1 =2µǫi1+λδi1ǫkk,

or

σ11 =(2µ+λ)u1,1+λ(u2,2+u3,3),

σi1 =µ(ui,1+u1,i), i=2,3. (A.2)

Using Green’s Theorem and the axi-symmetry, we have
∫∫

∂Ωc

u1,2dA=
∫

Cc

u1dz=u1

∫

Cc

dz=0,

∫∫

∂Ωc

u1,3dA=−

∫

Cc

u1dy=−u1

∫

Cc

dy=0, (A.3)

where Cc is the boundary of ∂Ωc.
Express Cc by the parametric equations y = σc cosθ,z = σc sinθ where σc is the radius

of the circular disk ∂Ωc, and write the displacement u=u1e1+uσσ̂ (in cylindrical coordi-
nates, σ̂ is the unit vector in σ-direction) as u=u1e1+uσ cosθe2+uσsinθe3. Using Green’s
Theorem and calculating the line integrals, we obtain

∫∫

∂Ωc

u2,2dA =
∫

Cc

u2dz= πσcuσ

∫∫

∂Ωc

u3,3dA =−

∫

Cc

u3dy= πσcuσ.

(A.4)
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Using the Hooke’s law (A.2),

F1 =
∫∫

∂Ωc

σ11dA=
∫∫

∂Ωc

[(2µ+λ)u1,1+λ(u2,2+u3,3)]dA

=(2µ+λ)
∫∫

∂Ωc

(u1,1+u2,2+u3,3)dA−2µ
∫∫

∂Ωc

(u2,2+u3,3)dA. (A.5)

Integrate (A.5) over one period of the solid, and use the divergence theorem and Eq. (A.4),
to derive

LpF1 =(2µ+λ)
∫∫∫

ΩP

(u1,1+u2,2+u3,3)dV−4πµ
∫

C
uσσdx,

LpF1 =(2µ+λ)
∫∫

∂Ωl+∂Ωr+∂Ωp

u·ndA−4πµ
∫

C
uσσdx. (A.6)

Using the condition (2.5), we get

LpF1 =(2µ+λ)
∫∫

∂Ωr

(u(x)−u(x−Lpe1))·ndA

+(2µ+λ)
∫∫

∂Ωp

u·ndA−4πµ
∫

C
uσσdx,

LpF1 =(2µ+λ)U1πσ2
r +(2µ+λ)

∫∫

∂Ωp

u·ndA−4πµ
∫

C
uσσdx. (A.7)

To simplify, we compute u·n on the contour C,

u=u1e1+uσe2, n=−
dy

ds
e1+

dx

ds
e2. (A.8)

Due to axi-symmetry and dA=σdφds, where s is the arclength along C, we have

∫∫

∂Ωp

u·ndA=2π
∫

C
(−u1σdy+uσσdx). (A.9)

Thus, Eq. (A.7) can be simplified to

LpF1 =(2µ+λ)

[

πσ2
r U1−2π

∫

C
u1σdy+2π

∫

C
uσσdx

]

−4πµ
∫

C
uσσdx, (A.10)

which is the formula (2.6).
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To obtain the formula (3.5), decompose u = uD+u(0) and note the periodic uD and
plug into the first equation of (A.6), using the definitions (3.4)

LpF1 =(2µ+λ)
∫∫∫

ΩP

(∇ ·uD+∇·u(0))dV−4πµ
∫

C
(uD

σ +u
(0)
σ )σdx

=(2µ+λ)
U1

Lp
(1−2ν)Vp+(2µ+λ)

∫∫

∂Ωl+∂Ωr+∂Ωp

uD
·ndA

−4πµ
∫

C

U1

Lp
(−νσ2)dx−4πµ

∫

C
uD

σ σdx (A.11)

Using the definition λ=2µν/(1−2ν) and the periodicity of uD, we can simplify (A.11) to

LpF1 =
U1

Lp
2µ(1−ν)Vp+(2µ+λ)

∫∫

∂Ωp

uD
·ndA+

U1

Lp
4µν

∫

C
πσ2dx−4πµ

∫

C
uD

σ σdx.

By the definition of Vp, we have

LpF1 =
U1

Lp
2µ(1−ν)Vp+(2µ+λ)

∫∫

∂Ωp

uD
·ndA+

U1

Lp
4µνVp−4πµ

∫

C
uD

σ σdx, (A.12)

which gives

LpF1 =
U1

Lp
EVp+(2µ+λ)

∫∫

∂Ωp

uD
·ndA−4πµ

∫

C
uD

σ σdx. (A.13)

Similar to the simplification procedure from Eq. (A.7) to (2.6), Eq. (A.12) can be reduced
to (3.5).
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