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Abstract. Outflow boundary conditions (OBCs) are investigated for calculation of in-
compressible flows by spectral element methods. Several OBCs, including essential-
type, natural-type, periodic-type and advection-type, are compared by carrying out a
series of numerical experiments. Especially, a simplified form of the so-called Orlan-
ski’s OBCs is proposed in the context of spectral element methods, for which a new
treatment technique is used. The purpose of this paper is to find stable low-reflective
OBCs, suitable and flexible for use of spectral element methods in simulation of in-
compressible flows in complex geometries. The computation is firstly carried out for
a 2D simulation of Poiseuille-Bénard channel flow with Re=10, Ri=150 and Pr=2/3.
This flow serves as a useful example to demonstrate the applicability of the proposed
OBCs because it exhibits a feature of vortex shedding propagating through the out-
flow boundary. Then a 3D flow around an obstacle is computed to show the efficiency
in the case of more general geometries. Among the tested OBCs, the advection-type
OBCs are proven to have better behavior as compared with the others.

AMS subject classifications: 65M70, 74S25, 76M22
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1 Introduction

For the numerical solution of channel or external viscous flow problems, we often have
to truncate the original unbounded domain into a bounded one in order to make the
problems computable. By doing that, we need to introduce appropriate artificial bound-
ary conditions (ABCs) on the artificial external boundary for the closure purpose. The
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ABCs must meet a fundamental requirement: a unique solution inside the finite compu-
tational domain exists and can be computed within the desired accuracy as compared to
the original solution given by the infinite domain problem.

This paper is focused on outflow ABCs (OBCs), which are critical in many flow sim-
ulations. It has been observed that unsuitable OBCs may result in undesired artificial
boundary layer, which furthermore render the calculation unstable. On the other hand,
the construction of the exact OBCs is generally very difficult. There exists much work
concerning numerical and theoretical investigations on the OBCs, mainly done in the
framework of finite difference and finite element methods, see for example [2, 11, 16, 25,
29, 30, 34]. In [26], five OBCs are compared in the framework of finite volume meth-
ods. Roughly speaking, these OBCs can be classified into three categories: essential-type,
natural-type and Orlanski’s type [27]. Similar to many other investigations [1,17,27], the
numerical experiments presented in [26] show that the OBC of the Orlanski’s type is a
low-reflective boundary condition. We refer to [1, 36] for a review of OBCs for elliptic
flows.

The aim of this paper is to compare several OBCs for the computation of certain un-
steady channel or external flows by using spectral element methods. The tested OBCs
include the traditional boundary condition of essential-type and natural-type, as well as
of advection-type (a simplified form of the so-called Orlanski’s boundary condition). The
use of the latter is based on an essential assumption saying that the Navier-Stokes equa-
tions can be linearized in the far field against the free-stream background. We will check
the behavior of the advection-type OBCs by discussing its implementation method and
accuracy in the context of spectral element methods. It is known that the choice of OBCs
is related to the numerical method used in the simulation. Different methods treat the
boundary conditions in different manners. In other words, the boundary conditions suit-
able for the finite difference method are not necessarily applicable to the finite element
or spectral methods. Generally, low-order methods, like finite difference methods, treat
the boundary conditions in a more arbitrary way as compared to the high order meth-
ods, like spectral methods. The latter is heavily based on the variational formulation, and
requires global integration of the boundary conditions into the uniform formulation. It
is well-known that when the solution of the problem is sufficiently smooth, the conver-
gence of the spectral method is exponential. However, to keep this convergence rate, the
treatment of the boundary conditions must be as accurate as the spectral approximation.

In this paper, we restrict ourselves to the following OBCs: 1) periodic conditions; 2)

essential OBCs; 3) natural OBCs,
∂ϕ
∂n = 0; 4) advection OBCs,

∂ϕ
∂t +V

∂ϕ
∂n = 0. In the above

expressions, ϕ stands for the related variables (mostly, the velocities or temperature), V
is a vector to be determined, n is the outward normal on the outflow boundary (here-
after we use letters of boldface type to denote vectors and vector functions). Among
these OBCs, only the essential one is a standard boundary condition for spectral element
approximations to the Navier-Stokes equations; the others have to be modified or trans-
formed before application. Especially, we will propose an implementation technique to
deal with the advection OBCs in the framework of spectral element methods. For com-
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parison, we will also present the results from the periodic OBCs. Part of the results has
been previously reported in [39], but the numerical method used here and the 3D simula-
tion results are new. We mention in passing that in the framework of spectral collocation
methods, a similar technique, combined with the local low order interpolation, has been
proposed in [9, 10]. However for spectral element approximations, it is highly desirable
to transform the advection condition into an essential one, as will be shown in this paper.

The numerical experiments will be firstly carried out for a 2D simulation of Poiseuille-
Bénard channel flow, with Re=10, Ri=150 and Pr=2/3, for which numerous experimental
results exist [7, 20, 28, 30, 35], making the comparison possible. Then a 3D flow around
an obstacle is computed to show that the proposed implementation techniques can be
realized in more general geometries.

The outline of this paper is as follows. In Section 2, we present the governing equa-
tions and describe the numerical methods. The treatment details of the advection OBCs
for spectral element methods will be given. In Section 3, an efficient iteration method
is presented. The numerical experiments are carried out in Section 4, where we make
comparisons for various OBCs. The conclusion is given in Section 5.

2 Governing equations and numerical methods

2.1 Governing equations

The flow of an incompressible fluid is governed by the following Navier-Stokes equa-
tions:







∂u

∂t
−

1

Re
∆u+(u·∇)u+∇p= f in Ω (Momentum equation) ,

∇·u=0 in Ω (Continuity equation) ,
(2.1)

where u :=(u1,··· ,ud), d≤3, and p are respectively the adimensioned velocity and pres-
sure, f is the forcing term, Ω⊂R

d is the computational domain. The characteristic scales
for the velocity and pressure are respectively mean velocity U0 and ρ0U2

0 , where ρ0 is the
density. Re is the Reynolds number, based on the characteristic length, mean velocity
U0, and the kinematic viscosity ν. There are many computational issues that arise from
working with these equations. One of these issues is related to boundary conditions: if
the computational domain is bounded, then appropriate boundary conditions must be
specified in order for the problem to have a unique solution.

For the Poiseuille-Bénard flow, additional to the momentum and continuity equations
(2.1), the governing equations also include an energy equation. More precisely, if assume
the Boussinesq approach holds, then we have



















∂u

∂t
−

1

Re
∆u+(u·∇)u+∇p= Ri Tk in Ω ,

∇·u=0 in Ω ,
∂T

∂t
+(u·∇)T−

1

Re Pr
∆T =0 in Ω (energy equation) ,

(2.2)
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Figure 1: Domain configuration for the Poiseuille Bénard flow.

where T is the adimensioned temperature. The characteristic scale for the temperature is
the temperature difference between the top side and bottom side T1−T0. The spatial and
temporal variables are respectively scaled by the channel height H and the ratio H/U0.
Ri := gβ(T1−T0)H/U2

0 is the Richardson number, Pr := ν/k is the Prandtl number, with
β,k and g are respectively heat expansion, thermodiffusion and gravity coefficients, and
k is the usual unit vertical vector.

The computational domain and the boundary conditions are shown in Fig. 1. The
initial conditions are

u1(x,y,0)=6y(1−y), u2(x,y,0)=0, T(x,y,0)=1−y+ε,

where ε is the temperature perturbation parameter. The perturbation amplitude needed
to provoke the thermodynamic instability depends on the problem configuration, such
as domain size, mesh size, adimensioned parameters Re,Ri and Pr etc. In all calculations
performed in this paper, we use ε=10−2.

The simulations of the 3D flow past an obstacle are carried out in a domain similar to
the one given in Fig. 2, with one periodic direction (z-periodic direction). In this figure a
spectral element mesh on a xy−plane is particularly shown, and the outflow boundary
is the face marked by “OBCs”. The approximation in the z-periodic direction makes use
of a Fourier method.

2.2 Boundary conditions on the outflow boundary

Let ∂Ω = ΓD∪ΓN , where ΓD stands for the part of boundary on which we impose the
essential boundary conditions, ΓN denotes the natural boundary, which may be empty.
We compare the following four types of OBC on Γo:

1) OBC1 (only for the configuration of Fig. 1): periodicity, u(L,y,t)=u(0,y,t), T(L,y,t)=
T(0,y,t). In this case we have ΓN = ∅. Generally, for the problems with periodic
solution, the periodic OBC is adequate: there is no reflection of the outflow bound-
ary, neither of the inflow boundary. Unfortunately, it usually requires anticipated
knowledge on the wavelength of the solution in order to correctly set up the com-
putational domain.
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Figure 2: An example of the domain for the 3D flow past the circular cylinder: a spectral element mesh in a
xy−plane is shown.

2) OBC2: u= u0, T = T0, where u0, T0 are chosen to be consistent with the initial con-
ditions. For this essential boundary condition we have ΓN = ∅. On one side, this
OBC is a high-reflective artificial boundary condition, tending to create numerical
boundary layers and, on the other side, from the point of view of the computational
complexity, the essential boundary condition is simpler to implement as compared
with the other OBCs. Moreover, it results in a linear system possessing better alge-
braic properties.

3) OBC3: 1
Re

∂u1
∂n −p=0, 1

Re
∂u2
∂n =0, ∂T

∂n=0, ΓN=Γo. This OBC, so called the natural bound-
ary condition or “open boundary condition” in some of the literature, is imposed
in a weak way via the variational formulation. It is generally believed that OBC3 is
lower-reflective than OBC2 [36]. A disadvantage of this OBC, as confirmed later by
our numerical tests, is that the resulting linear system exhibits worse properties as
compared to OBC2.

4) OBC4: ∂u
∂t +U0

∂u
∂n =0, ∂T

∂t +U0
∂T
∂n =0. This advection condition is a simplified form of

the so-called Orlanski’s OBCs, which is popular in the finite difference community
due to its low-reflective feature [26]. Although a rigorous theoretical foundation
is still missing, the justification for use of this OBC is based on the fact that the
Navier-Stokes equations can be linearized in the far field against the free-stream
background. Our main goal in this paper is to propose an efficient method to em-
ploy the OBC4 in the spectral element framework.

2.3 Time discretization

We use the semi-Lagrangian method [6,41], which is a variant of the operator-integration-
factor (OIF) splitting technique, to treat the convective terms. In many applications, this
method has shown advantage over the classical semi-implicit methods due to the fact
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that the OIF method allows for time-step sizes exceeding standard CFL limited time-step
sizes.

The semi-Lagrangian temporal discretization results in a saddle point problem cou-
pling the velocity and pressure. To decouple the velocity and pressure, we use an ad-
ditional splitting step via a matrix factorization. Such an approach was first analyzed
and applied to various computations in the papers of Perot [33], Couzy et al. [6], and Fis-
cher [8], then generalized by Lin et al. [19] to the viscous/inviscid coupled equation. This
approach has a common foundation with the traditional projection approaches which
lead to a Poisson equation for pressure. Therefore, no boundary conditions are needed
for the pressure. More precisely, we use the following second-order time scheme to dis-
cretize (2.2)



















3un+1−4ũn+ũn−1

2∆t
−

1

Re
∆un+1+∇pn+1 = Ri Tn+1k in Ω,

∇·un+1 =0 in Ω,
3Tn+1−4T̃n +T̃n−1

2∆t
−

1

Re Pr
∆Tn+1 =0 in Ω,

(2.3)

where △t is the time step, ũn, ũn−1, T̃n and T̃n−1 are the transports at different instants of
the previous solutions on the characteristics. A detailed description of this method was
given in [41].

2.4 Spatial discretization and treatment of OBCs

The semi-discretized equations (2.3), subject to appropriate boundary conditions g, gT,
ϕ, and ϕT, can be rewritten into



















































αun+1−
1

Re
∆un+1+∇pn+1 = s in Ω,

∇·un+1 =0 in Ω,
un+1 = g on ΓD,

B1un+1 = ϕ on ΓN ,

αTn+1−
1

Re Pr
∆Tn+1 = sT in Ω,

Tn+1 = gT on ΓD,
B2Tn+1 = ϕT on ΓN ,

(2.4)

where α= 3
2∆t , s, sT are the source terms, Bi,i=1,2, are suitable boundary operators.

The starting point of the spectral element method to the problem (2.4) is to consider
its variational formulation (for the sake of simplification, we omit for the moment the
time step superscripts and only consider the equations for the velocity and pressure):
find u∈H1(Ω)d, p∈L2(Ω), u|ΓD

= g, such that

{

α(u,v)+
1

Re
(∇u,∇v)−(p,∇·v)=(s,v), ∀v∈V,

(∇·u,q)=0, ∀q∈L2(Ω),
(2.5)
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where V = {v∈ H1(Ω)d,v|ΓD
= 0}, (·,·) stands for the standard inner product of L2(Ω).

Here we assume that the boundary condition ϕ has been incorporated into the source
term in the right hand side.

Remark 2.1. When ΓD = ∂Ω or in the case of periodic boundary condition, an addi-
tional condition is necessary to uniquely determine the pressure. We use the condition
∫

Ω
p dxdy=0 in this paper.

In the spectral element discretization, the computational domain is first broken into a
number of geometrically conforming macro-elements:

Ω̄=∪K
k=1Ω̄

k, and Ω
k∩Ω

l =∅ , ∀k,l,k 6= l. (2.6)

Then piecewise (high order) polynomials are used to approximate the variables. The
standard spectral element approximation to problem (2.5), so-called PN×PN−2 method,
reads: find uN ∈H1(Ω)d∩PN,K(Ω)d,pN ∈PN−2,K(Ω), uN |ΓD

= IN g, such that
{

α(uN ,vN)+
1

Re
(∇uN,∇vN)−(pN ,∇·vN)=(s,vN), ∀vN ∈VN,

(∇·uN ,qN)=0, ∀qN ∈PN−2,K(Ω),
(2.7)

where IN is an interpolation operator into an appropriate piecewise polynomial space,
and

VN =V∩PN,K(Ω)d,

with

PN,K(Ω)={v∈L2(Ω); v|Ωk ◦ f k ∈PN(Λ
2),1≤ k≤K}.

Here f k is the transformation function from the reference domain Λ2, with Λ=(−1,1), to
Ωk and PN is the space of the polynomials of degree not exceeding N.

In the implementation, all the integrals are evaluated by using the Legendre Gauss-
Lobatto quadrature [3, 32]. This is for the following reasons. First, the exact evaluation
of the integrals is expensive if general basis functions are used. We may try to construct
a particular orthogonal basis in order to reduce the evaluation cost. However, this idea
seems impractical for problems with variable coefficients and/or in complex geometries.
Second, for the spectral element method, it has been shown that using the Gauss-Lobatto
quadrature rule together with the Lagrangian basis one can efficiently and accurately
calculate the integral of a polynomial function.

According to the formulation (2.7), the discrete velocity and temperature are com-
puted in the Legendre-Gauss-Lobatto points, defined by the tensor product of the zeros
of (1−x2)L′

N(x) in [−1,1]. The pressure is computed in the Legendre-Gauss points based
on the zeros of LN(x) in [−1,1]. There are (N+1)d−1 velocity and temperature points
in the edge (face in 3D case) of two joint elements, hence the continuity of the velocity
and temperature on the elemental interfaces are naturally imposed. It is worthwhile to
note that the pressure is not required to be continuous across the interfaces between the
macro-elements.
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Treatment of the outflow boundary conditions

Without loss of generality we only consider the equations for the velocity and pressure:

1) OBC1: Periodicity on the input and output boundaries can be regarded as the con-
tinuity of the velocity field at the periodic boundary pair. In fact, in our code the
periodic boundaries are treated as fictitious elemental interfaces. We emphasize
that in the periodic case, the flow is no longer driven by the specified mean ve-
locity, but via appropriate forcing such that the flow-rate attains the correct value
depending on the Reynolds number (see e.g. [12] for details).

2) For OBC2, we have ΓD = ∂Ω, hence the outflow boundary conditions are imposed
by simply specifying the velocity on the corresponding Gauss-Lobatto collocation
points.

3) In the case of OBC3, ΓD = ∂Ω\Γo, the outflow boundary conditions are implicitly
imposed in the variational formulation.

4) For OBC4, we introduce the following implementation method: once the velocity
at time step n is obtained, we solve the transport equation

∂u

∂t
+U0

∂u

∂n
=0 (2.8)

to determine the condition on the outflow boundary at time step tn+1=(n+1)∆t. In
fact, if u is known at tn, then the exact expression of u at tn+1 is: u(x,tn+1)=u(x−U0·
n∆t,tn). This implies that the value of the velocity at a mesh point on the outflow
boundaries at tn+1 is equal to the value of u at the corresponding characteristics
foot at tn. In Fig. 3(a) we show the schematic diagram, where the four outflow
elements are plotted. In this figure, the mesh nodes on the outflow boundary and
the corresponding characteristic feet are respectively marked by ◦ and •. In our
domain configuration, we have U0=(u0

1,0), i.e., the vertical component of the mean
velocity vanishes, hence

u(x,y,tn+1)=u(x−u0
1∆t,y,tn).

As a result, each outflow boundary node and its characteristic foot lie on a line parallel
to the x-axis, so that the value of u(x−U0 ·n∆t,tn) at each node can be easily obtained
by an one-dimensional interpolation based on the elemental Gauss-Lobatto points lying
on this line. In fact, in many applications we can construct a spectral element mesh
with OBCs elements meeting this requirement. Otherwise, in more general cases two-
dimensional interpolations based on all elemental Gauss-Lobatto points will be needed to
evaluate u(x−U0 ·n∆t,tn); see Fig. 3(b) for such a case. In summary, OBC4 can be treated
as an essential outflow boundary condition, but with the velocity and temperature on the
outflow boundary updated at each time step.
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(a) (b)

Figure 3: Locations of the characteristic feet (•) stemming from the outflow boundary nodes (◦). (a): Only
need 1D interpolation; (b): Need 2D interpolation.

3 Uzawa algorithm and matrix factorization

We first express uN in terms of the Lagrangian interpolants associated with the Gauss-
Lobatto points, pN in terms of the Lagrangian interpolants associated with the Gauss
points. Then we choose each test function vN and qN to be nonzero at only one global
collocation point. Using the Gauss-Lobatto and Gauss quadrature formulas respectively
to the velocity and pressure term in (2.7), we arrive at the following matrix statement:







Hui−Gi p= Bsi , i=1,2,

−Diui =0 ,
HTT = BsT ,

(3.1)

where the underlined letters denote vectors of the nodal values, G := (G1,G2)T is the
discrete gradient matrix, D :=(D1,D2) the discrete divergence matrix, B the mass matrix,
H and HT the Helmholtz matrices defined respectively by

H =αB+
1

Re
A, HT =αB+

1

Re Pr
A, (3.2)

with A the discrete Laplacian matrix.
The classical Uzawa algorithm consists of decoupling the original (ui,p) saddle prob-

lem in (3.1) into two positive definite symmetric systems [21, 22]:

(DiH
−1Gi)p=−DiH

−1Bsi , (3.3)

Hui =Gi p+Bsi , i=1,2. (3.4)
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The advantage of this procedure is that the pressure and velocity are completely decou-
pled in the solution process. The apparent disadvantage is that the system in the discrete
pressure involves the inverse H−1, which usually necessitates an inner iterative solver.
Indeed, our numerical experiments have shown that it is computationally expensive to
reach the convergence of the outer conjugate gradient iteration [19].

To overcome this difficulty, we use a matrix factorization technique [6, 8, 19, 33, 40] to
recast the first two equations of (3.1):





H 0 −Hα−1B−1G1

0 H −Hα−1B−1G2

−D1 −D2 0









u1

u2

δp



=





Bs1+G1pn

Bs2+G2pn

0



+





r1

r2

0



, (3.5)

where pn is the pressure calculated at the previous time step n. Consequently, p−pn is
indeed the pressure increment between the current time step n+1 and time step n, which
will be denoted by δp hereafter. The residual ri takes the form:

ri =(I−Hα−1B−1)Giδp, i=1,2.

Neglecting ri in (3.5) and rewriting the resulting system in compact form give:
{

Hui−(Hα−1B−1Gi)(p−pn)= Bsi+Gi p
n,

−Diui =0 .
(3.6)

Formally, this method is of second-order accuracy in time, which can be observed by
rewriting the residual in the form:

ri =(I−Hα−1B−1)Giδp=−
α−1

Re
AB−1Giδp=O(∆t2),

where we have taken into account the fact that α−1 =O(∆t) and δp=O(∆t). Since there

is a factor of ∆t−1 in front of the velocity in (3.5), the local truncation error incurred by
neglecting r is O(∆t3). Note that the residual r decreases as Re increases. As a result, the
error due to the matrix factorization becomes smaller for problems with high Reynolds
number.

It is readily seen that the system (3.6) is equivalent to

α−1(DB−1G)δp=−DH−1(Bs+Gpn),

H(u−α−1B−1Gδp)= Bs+Gpn.

As compared to (3.3), the above system on δp involves only the inverse of a diagonal

matrix, B−1, which is much cheaper than the computation of H−1.

Remark 3.1. With OBC2 and OBC4 via the characteristics method, the boundary condi-
tions are purely of essential-type, i.e. ΓN =∅. By contrast, OBC3 results in a problem with
mixed essential-natural boundary conditions. It is known [4] that in the former cases the
resulting linear system shows better algebraic properties as compared to the latter case.
This point is confirmed by our numerical experiments.
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4 Numerical results

In this section, we will first check the accuracy of the advection OBCs for a selected so-
lution satisfying the exact advection condition. Then the behavior of different OBCs is
investigated in detail in terms of the reflection characters near the outflow boundary.
For ease of comparison, the numerical experiments are first carried out for a Poiseuille-
Bénard flow for which there exists numerous known results. Finally, the flow past an
obstacle is simulated to demonstrate the applicability of the advection OBCs in more
general geometries.

4.1 Accuracy of the characteristics method

In this subsection we focus on an analytical solution to demonstrate that the interpolation
procedure used in the implementation of the advection OBCs is stable and preserves the
spectral accuracy. To this end, we consider the Navier-Stokes equations (2.1) in Ω := Λ2

with ν=0.01, and choose the following solution:







u1(x,y,t)=sin(t−x)sin(y),
u2(x,y,t)=−cos(t−x)cos(y),
p(x,y,t)=(cos(2(t−x))−cos(2y))/4.

We set the outflow boundary Γo := {(1,y);y ∈ Λ}. It can be checked that the advection
condition (2.8) is rigorously satisfied on Γo for this solution. In the accuracy test, the
computational domain is partitioned into 2×2 square elements. We successively study
the spatial and temporal errors.

In the left of Fig. 4, we plot the velocity and pressure errors in the L2 norm obtained
with the advection OBCs. We have taken the time step small enough, say ∆t = 10−5, in
order to make sure that the errors stemming from the temporal resolution is negligible.
For comparison, errors from the exact essential OBCs are also plotted. It is observed
that there is no significant difference between the two OBCs, and the errors show expo-
nential decay for both OBCs as the polynomial degree is increased. This demonstrates
that the interpolation procedure used preserves the so called spectral accuracy. It should
be mentioned that the spectral accuracy holds only when the exact solution satisfies the
advection condition, which is generally not the case in practical situations.

The right of Fig. 4 shows the errors of the velocity and pressure as functions of the time
step ∆t, where the temporal convergence rate can be observed. The polynomial degree
N is now chosen big enough such that the error is dominated by the time discretization.
As expected, the error is of second order for the velocity and more than 3/2-order for
the pressure [15]. We point out that if the “open boundary condition (OBC3)” is used,
the second-order projection method [13, 14] can only yield 3/2-order accuracy for the
velocity and first-order accuracy for the pressure in the L2 norm. This is an advantage
of the advection OBCs against the “open boundary condition” if a projection method is
applied for the time discretization.
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Figure 4: Errors of the velocity and pressure as a function of the polynomial degree (left) and the time step
(right).

4.2 Poiseuille-Bénard channel flow

Mesh influence. In order to clearly distinguish different error sources, we first study the
influence of the mesh on main physical quantities. To this end we consider OBC1 (peri-
odic OBCs) to minimize the reflection of the OBCs. We take Re=10,Ri=150, and Pr=2/3,
for which it is known (see Evans and Paolucci [7]) that the benchmark value of the insta-
bility wavelength is λ =1.44. The domain length is accordingly taken to be L = kλ, with
k a positive constant. In what follows we fix k = 4, i.e. L = 5.76, so that 4 convective
vortices are expected to appear in the computational domain. In Fig. 5, a typical spec-
tral element mesh, denoted by M48N6, is shown, where there are 48 elements and 7×7
Gauss-Lobatto points in each element (corresponding to polynomial degree N = 6). For
reason of clarification, the pressure nodes, i.e., the Gauss points are not shown. The total
node number is 1825 for the velocity and temperature, and 1200 for the pressure. The re-
sult from mesh M48N6 is compared to the cases of mesh M48N8, where the polynomial
degree is increased to N =8 while keeping the element number unchanged, and M96N6,
where the element number is doubled by splitting each element into two equal elements
while keeping the polynomial degree unchanged.

In Fig. 6, we present the evolution of the horizontal velocity and temperature at a
selected point (2.88,0.5) as a function of time. It is observed that the starting times of
the thermodynamic instability are different for the three meshes: For the mesh M96N6
the thermodynamic instability and the vortices are created in an earlier time, in contrast
to M48N8, where the instability is less sensitive to the perturbation. The difference in
the starting time for different meshes may be incurred by the fact that the spatial reso-
lution of the fluctuation scales is important in the formation of the vortex. Regardless of
this difference, the asymptotic flow structures from the three meshes are very close. This
point can be observed in Fig. 7, in which the isolines of the vorticity at t= t∗ are plotted,
where t∗ is the time when the temperature attains its minimum at point (2.88,0.5) (the
minimum is 0.299) during the fifth time period. There is no visible deviation between the
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Figure 5: Spectral element mesh M48N6; only Gauss-Lobatto nodes are shown, total node number is 1825.
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Figure 6: Horizontal velocity (top) and temperature (bottom) at the point (2.88,0.5) as a function of time for
meshes M48N6(⋄), M48N8(+) and M96N6(�).
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Figure 7: Comparison of the iso-vorticity for different meshes.
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Figure 8: Profiles of the horizontal velocity, vertical velocity, pressure, and temperature along axis y=0.5 at
t= t∗ obtained respectively by the meshes M48N6(⋄), M48N8(+), and M96N6(�).
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Table 1: Comparison of the flow characteristic quantities between different meshes and Reference values for
Re=10,Ri =150,Pr=2/3.

τ λ u1,max u1,min u2,max u2,min ωmax ωmin ϕmax ϕmin

M48N6 1.301 1.440 4.3603 -2.6779 4.9364 -5.0273 28.694 -28.648 1.671 -0.662
M48N8 1.298 1.440 4.3691 -2.6826 4.9558 -5.0214 28.818 -28.736 1.675 -0.674
M96N6 1.300 1.440 4.3572 -2.6806 5.0136 -5.0145 28.821 -28.828 1.669 -0.669

[7] 1.332 1.447 4.3958 -2.7329 5.0319 -5.0587

results from the three meshes. More precise comparison is made by plotting the profiles
on some selected lines. In Fig. 8 we present the distribution of the velocity, pressure and
temperature along the axis y=0.5 at t=t∗. Except of the minor disagreement observed on
the vertical velocity (the relative error is less than 3%), the curves for the remaining fields
coincide with each other perfectly. Table 1 lists the flow characteristic parameters, where
τ is the periodicity length of the flow structure, λ the wavelength, umax and umin are the
maximum and minimum of the velocity, respectively, ω and ϕ the vorticity and stream-
function respectively. For reason of comparison, the results from [7] are also included in
Table 1. We see from this table that the discrepancy of the flow characteristic parameters
among different meshes are less than 1%, while the discrepancy with the reference values
in [7] is less than 3%. Assuming this error level acceptable, and since the starting time
for the instability has no essential influence on the OBCs, we will use mesh M48N6 in all
calculations that follow.

OBCs influence. Now we investigate the behaviors of the OBCs by simulating the
Poiseuille-Bénard flow with the same parameters as above. Figs. 9 and 10 show respec-
tively the isolines of the streamfunction and vorticity at t= t∗ computed by using various
OBCs, where the reference results “Refs” have been obtained from the calculation in a
domain of double length (i.e. L =11.52) by using OBC4. It is believed that the influence
of the OBCs is limited to a region near the outflow boundary, so that the “Refs” results
can be thought to be exact. By comparing the flow structures in the neighborhood of the
outflow boundary in Figs. 9 and 10, it is seen that only OBC1 (the periodic boundary
condition) and OBC4 (the advection condition) give results close to “Refs”. On the other
hand, the impact of all OBCs in the region far away from the outflow boundary is very
small. This is verified in Fig. 11, where the history of the vertical velocity and temper-
ature at (2.88,0.5) as a function of time is plotted. Keeping in mind that t∗ was defined
as the instant that the temperature attains its minimum at the interior point (2.88,0.5),
we see from these figures that, except for the OBC1, there is only slight discrepancy in t∗

between the considered OBCs. Moreover, the wave shapes are also in good agreement
with each other.

A close comparison is made by looking at some pointwise values. In Fig. 12 we
present the profiles of the velocity, pressure and temperature along axis y=0.5. Ignor-
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Figure 9: Comparison of the flow structures obtained with various OBCs and with the reference: streamlines.

ing the essential difference in the inflow boundary for the periodic condition, OBC1 and
OBC4 are in a much better agreement with Refs than OBC2 and OBC3, especially in the
outflow zone. Note that in the pressure figure, the pressure is defined up to a constant.
Fig. 13 describes the distribution of the same variables on the outflow boundary: line
x=5.76. A similar observation can be made: OBC1 and OBC4 lead to much better results
as compared to OBC2 and OBC3.

Finally, we list the computed flow characteristic parameters in Table 2; also listed are
the results from [7, 26] for comparison. Apart from few exceptions (for example u2,min by
OBC2), better results are produced again by using OBC1 and OBC4.
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Figure 10: Comparison of the flow structures obtained with various OBCs and with the reference: iso-vorticity.

4.3 3D Flow past a circular cylinder

Flow past a circular cylinder is characterized by the complex wake dynamics, and has
been extensively studied by many authors (see, e.g. [42] and references therein), mostly
by experimental and analytical approaches. It has also been the subject of many com-
putational investigations, mainly restricted to the 2D case although a few 3D numerical
simulations may still be found (see, e.g., [18, 24, 31, 37]).

The aim of our computation is to study the effect of the advection outflow boundary
condition in the domain shown in Fig. 2. A cylinder of unit diameter is located in a hexa-
hedral box with the upstream and downstream boundaries located at 3 and 16 diameters,
respectively, from the cylinder center. The upper and the lower walls (perpendicular to
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Figure 11: Evolution of the vertical velocity (top) and temperature (bottom) at point (2.88,0.5) as a function
of time. The results of OBC2, OBC3 and OBC4 are almost the same.

the y-axis) are located at 3 diameters each from the cylinder. The length of the cylinder
is 4 times its diameter. The origin of the axes lies at the center of the cylinder. While the
span of the cylinder is aligned with the z-axis, the flow direction is along the x-axis. In the
z-direction the periodic condition is assumed, and on all other walls, expect of the OBCs
wall, uniform flow velocity is prescribed. A no-slip condition on the velocity is specified
on the cylinder wall. At the downstream OBCs boundary, the advection condition for the
velocity is applied, which necessitates to solve a 3D transport equation (2.8) by the char-
acteristic method proposed in Section 2.4. The boundary velocity is linearly accelerated
from rest until reaching its final speed at t=1.

The computation is performed for the flow at Re=300. It is known that for Re larger



C. Xu and Y. Lin / Commun. Comput. Phys., 2 (2007), pp. 477-500 495

Table 2: Comparison of the flow characteristic parameters obtained with different OBCs and with Reference
values for Re=10, Ri=150, Pr=2/3. (∗ This parameter is a prefixed value).

[7] [26] OBC1 OBC2 OBC3 OBC4 “Refs”

τ 1.3319 1.296 1.301 1.291 1.299 1.297 1.297

λ 1.4465 1.425 1.440∗ 1.440 1.443 1.439 1.439

u1,max 4.3958 4.072 4.3603 4.5288 5.3192 4.4129 4.3855

u1,min -2.7329 -2.616 -2.6779 -2.8285 -2.8940 -2.8286 -2.8283

u2,max 5.0319 4.814 4.9364 4.9232 4.9485 4.9489 4.9662

u2,min -5.0587 -4.909 -5.0273 -5.0587 -5.0374 -5.0977 -5.0189

ωmax 28.694 45.386 35.434 28.779 28.867

ωmin -28.648 -29.717 -28.782 -28.860 -28.758

ϕmax 1.6712 1.6941 1.6893 1.6886 1.6885

ϕmin -0.6624 -0.6622 -0.8393 -0.6680 -0.6729
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Figure 12: Plot of profiles of the horizontal velocity (a), vertical velocity (b), pressure (c) and temperature (d)
along axis y=0.5.
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Figure 13: Same as in Fig.12, but at the outlet.

than 180 the wake flow undergoes three-dimensional transitional instabilities. As Re≈
260, the so-called Mode B of vortex shedding occurs [38]. Therefore, the flow with Re =
300 is a good example to test the applicability of the advection OBCs.

The spectral element mesh in the xy-plane is shown in Fig. 2. The mesh has 288
elements, each with 6th-order Legendre-Gauss-Lobatto tensor-product basis functions
(for the velocity). The Fourier method in the z-direction uses 30 complex Fourier modes,
which results in representative 60 xy-planes.

Fig. 14 shows the isosurfaces for the streamwise component of velocity at t=60. The
spatial development of the vortex shedding can be observed clearly in the figure. More
importantly, the vortex in the region close to the outflow boundary maintains a fair shed-
ding pattern, which implies that the advection boundary condition realizes the correct
downstream flow feature. This point is furthermore confirmed in Fig. 15, where we plot
the isolines of the streamwise component of velocity at t=30 and t=60 at two xy-sections:
{(x,y,z);z=0} and {(x,y,z);z=0.67}. No obvious reflection from the outflow boundary
can be observed in the downstream field of these figures.

Note that a full description of the cylinder flow should include the computation of the
Strouhal number, the transition from Mode A to Mode B, as well as the vortex disloca-
tions, etc. On the other side, it is found [24] that the flow evolution is sensitive to, besides
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Figure 14: Isosurfaces of the streamwise component of velocity of the 3D cylinder flow at Re=300.

at {(x,y,z);z=0}, t=30 at {(x,y,z);z=0}, t=60

at {(x,y,z);z=0.67}, t=30 at {(x,y,z);z=0.67}, t=60

Figure 15: Isolines of the streamwise component of velocity at two xy-sections.

the Reynolds number, various other parameters such as surface roughness, end-effects,
aspect ratio, and so on. This makes the numerical comparison difficult. A detailed in-
vestigation of the effect of the advection outflow boundary condition on the 3D cylinder
flow is beyond the scope of this paper and will be left to a future work.

5 Concluding remarks

A new advection outflow boundary condition has been introduced for spectral element
simulations of incompressible flows. This outflow boundary condition takes a simpler
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form than most of the other artificial outflow boundary conditions. An implementation
technique is detailed in the framework of the spectral element method. As compared
to the classical “open boundary condition” (OBC3), the numerical experiments for the
Poiseuille-Bénard channel flow and 3D cylinder flow have shown advantages of the ad-
vection condition. All our tests suggest that the advection OBC is a low-reflective outflow
boundary condition for spectral element simulations for incompressible flows.

One more advantage of using this new outflow boundary condition comes from the
fact that the boundary condition of essential-type results in a linear system possessing
better properties (smaller condition number) as compared to the natural-type boundary
condition [39]. Since, as we have seen in Section 2.4, the advection OBC is treated as
an essential outflow boundary condition combined with the characteristic method, the
convergence of the iterative method for the resulting algebraic system is faster than that
with the “open boundary condition”.

Finally, to our knowledge, this is the first spectral element computation of the Poiseuille-
Bénard channel flow. Since the spectral method is of high accuracy, we believe that the
results obtained from this computation can serve as a benchmark for further investiga-
tions.
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