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Abstract. This paper is concerned with the adaptive grid method for computations
of the Euler equations in fluid dynamics. The new feature of the present moving mesh
algorithm is the use of a dimensional-splitting type monitor function, which is to increase
grid concentration in regions containing shock waves and contact discontinuities or their
interactions. Several two–dimensional flow problems are computed to demonstrate the
effectiveness of the present adaptive grid algorithm.
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1 Introduction

In fluid dynamics, the physical solutions usually develop dynamically singular or nearly
singular solutions in fairly localized regions, such as shock waves, detonation waves, con-
tact discontinuities, and boundary layers, etc. To resolve these large solution variations,
the numerical simulations may require extremely fine meshes on a small portion of the
physical domain. It becomes very expensive for computations of multi–dimensional prob-
lems if a uniform mesh is used. It is therefore very necessary to develop an effective,
robust, multi-dimensional adaptive grid methods. Successful implementation of the adap-
tive strategy can increase the accuracy of the numerical approximations and also decrease
the computational costs.

Moving mesh methods are a class of adaptive grid methods, which have important
applications in fluid dynamics. They include the variational grid methods or adaptive
grid generation methods, the traditional Lagrange methods, and their variations such as
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arbitrary Lagrangian–Eulerian methods, the free–Lagrange methods, and the unified co-
ordinate system methods. In the past several decades, there has been important progress
in moving mesh methods for partial differential equations, including the variational ap-
proach of Winslow [33], Brackbill et al. [3, 4], Dvinsky [9], and Li et al. [16, 17]; moving
finite element methods of Miller et al. [21], and Davis and Flaherty [8]; and moving mesh
PDEs of Cao et al. [6], Li and Petzold [18], and Ceniceros and Hou [7]. We refer the
readers to a recent paper [31] for a detailed review. Some recent work on the Lagrange
methods can be found in [2, 12,13,22] and references therein.

The monitor function is one of the most important issues in the adaptive moving mesh
algorithms. The appropriate choice of the monitor will generate grids with good quality
in terms of smoothness, skewness, and aspect ratio. Cao et al. [5] gave a general strategy
of choosing the monitor function. Some general forms of the monitor function can also
be found in [19]. The conventional monitor functions usually depend on the magnitude of
the gradient of the solutions, for example,

√
1 + α|ρ|2 + β|∇ρ|2. However, the gradient-

monitor is not always successful in increasing grid concentration in regions containing
shock waves and contact discontinuities or their interactions. Our numerical results will
demonstrate this phenomenon. To overcome this drawback, a dimensional–splitting type
monitor function will be considered. The moving mesh equations used in this paper is
multi–dimensional and more robust than the multidimensional equidistributed methods,
see [19].

In this paper, we are interested in developing moving mesh methods based on a varia-
tional approach for the hyperbolic conservation laws including the Euler equations of gas
dynamics. Harten and Hyman [11] began the earliest study of the self-adaptive moving
mesh methods to improve resolution of shock and contact discontinuity. They applied the
Godunov method on a non-uniform mesh where the grids move along the characteristic
direction. After their work, many other moving mesh methods in this direction have been
proposed in the literature based on combining the variational grid methods with high
resolution shock capturing methods. They include those of Azarenok et al. [1], Fazio and
LeVeque [10], Liu et al. [20], Saleri and Steinberg [23], Stockie et al. [26], and Zegeling [35].
However, it is noticed that many existing moving mesh methods for hyperbolic problems
are designed for one space dimension. In 1D, it is generally possible to compute on a very
fine grid and so the need for moving mesh methods may not be clear. Multidimensional
moving mesh methods are often difficult to be used in fluid dynamics problems since the
grid will typically suffer large distortions and possible tangling. It is therefore useful to
design a simple and robust moving mesh algorithm for computational problems in fluid
dynamics.

Recently, an adaptive moving mesh method for multidimensional hyperbolic conser-
vation laws was proposed by Tang and Tang [28]. The moving mesh algorithm includes
two parts: PDE evolution and mesh redistribution. The PDE evolution may be any ap-
propriate high resolution finite volume scheme. The mesh redistribution is an iterative
procedure. In each time iteration, grid points are first redistributed by a variational prin-
ciple, and then the numerical solutions are updated on the resulting new meshes by a
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conservative–interpolation formula.

This paper is to continue the study of [28]. The new feature of the present method
is to use a dimensional-splitting type monitor function to increase grid concentration in
regions containing shock waves and contact discontinuities or their interactions. This mon-
itor is defined based on an observation of our mesh generation equations. We will also
give numerical comparisons and computations of several two–dimensional flow problems
to demonstrate the effectiveness of the present moving mesh algorithm in improving reso-
lution of the discontinuities and in increasing grid concentration in the regions containing
the discontinuities.

The paper is organized as follows. In Section 2, we present our moving mesh algorithm.
Section 2.1 gives the mesh–redistribution strategy based on a variational principle using
a new monitor function. Although the new monitor is based on dimensional splitting in
the logic space, our moving mesh methods are different from the existing multidimen-
sional equidistribution schemes mentioned in [19]. Section 2.2 reviews the derivation of
a conservative–interpolation formula for solution–updating on new meshes. The PDEs
evolution is described in Section 2.3. The detailed solution procedure is outlined in Sec-
tion 2.4. Section 2.5 gives a simple implementation of the boundary mesh motion in the
physical domain, which will be used in our computations. Numerical experiments and
comparisons are carried out in Section 3, where several 2D examples are considered. We
conclude this work in Section 4.

2 An adaptive moving mesh method

Consider multi–dimensional hyperbolic conservation laws

∂U

∂t
+

d∑

i=1

∂Fi(U)

∂xi
= H(~x,U), 0 < t ≤ T, (2.1)

subject to the initial data U(~x, 0) = U0(~x), where T is a finite number, d denotes the num-
ber of spatial dimensions, ~x = (x1, · · · , xd), U and Fi(U) denote a conservative variable
and flux in xi–direction, respectively, and H(~x,U) is a source term. A typical example of
the above equation (2.1) are the Euler equations (3.1).

For convenience, we will restrict our attention to d = 2 throughout this paper. Given
a partition {Aj+ 1

2
,k+ 1

2

} of the physical domain Ωp, where Aj+ 1

2
,k+ 1

2

is a quadrangle with

four vertices ~xj+p,k+q, p, q ∈ {0, 1}, as shown in Fig. 1.

The initial data is approximated by a cell average:

U0
j+ 1

2
,k+ 1

2

=
1

|Aj+ 1

2
,k+ 1

2

|

∫

A
j+ 1

2
,k+ 1

2

U0(~x) d~x, (2.2)

where |Aj+ 1

2
,k+ 1

2

| denotes the area of the control volume Aj+ 1

2
,k+ 1

2

.
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Figure 1: A 2D finite control volume Aj+ 1

2
,k+ 1

2

.

Our adaptive moving mesh methods will contain the following steps: Mesh–redistribution
based on variational methods (Section 2.1); conservative solution–updating on new meshes
(Section 2.2); and evolution of the governing equations (Section 2.3). The complete solu-
tion procedure will be briefly outlined in Section 2.4.

2.1 Mesh–redistribution

The calculus of variations has been proved to provide an excellent opportunity to create
new techniques for generation of grids or mesh–redistribution by utilizing the idea of
optimization of grid characteristics modeled through appropriate functionals. The grid
characteristics include grid smoothness, cell skewness, cell volume, and departure from
orthogonality of conformality. We refer the readers to [3,4,9,19,33] and references therein
for details.

In our calculus of variations, the functional is defined by the integral

E[~x] =

∫

Ωc

G(~ξ, ~x, ~xξl
, ~xξlξm) d~ξ, (2.3)

where ~ξ = (ξ1, · · · , ξd) is the logical (or computational) coordinates, Ωc is a logical domain,
~xξl

and ~xξlξm are first– and second–order partial derivatives of ~x with respect to ξl. An

optimal transformation ~x = ~x(~ξ) for the functional (2.3) is the solution of the following
system of the Euler–Lagrange equations

Gxi
− ∂

∂ξl
G ∂xi

∂ξl

+
∂2

∂ξl∂ξm
G ∂2xi

∂ξl∂ξm

= 0, i = 1, · · · , d, (2.4)
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defined in the interior of the domain Ωc, where subscripts xi,
∂xi

∂ξl
, and ∂2xi

∂ξl∂ξm
are the

corresponding partial derivatives of G. Usually, G can be taken as

G =

d∑

i=1

(∇̃xi)
TGi∇̃xi, (2.5)

where ∇̃ = (∂ξ1 , · · · , ∂ξd
)T , and Gi are given symmetric positive definite matrices, called

monitor functions. In general, the monitor functions depend on the underlying solution
to be adapted. It is very important to choose a suitable monitor function for a moving
mesh algorithm in order to increase the concentration of grid points in a desired localized
region, or improve the quality of the adaptive meshes. If G is of the form (2.5), then (2.4)
becomes

∇̃ · (Gi∇̃xi) = 0, i = 1, · · · , d. (2.6)

Solving the Euler–Lagrange equations (2.6) on Ωc will give directly a coordinate transfor-
mation ~x = ~x(~ξ) from the logical domain Ωc to the physical domain Ωp. Solving the mesh
equation (2.6) is not difficult, since it is defined in the logical domain which in most cases
is chosen as a unit square.

In this paper, Gi will be taken as

G = diag{w1, · · · , wd}, (2.7)

and (2.6) is further reduced to

∂

∂ξ1

(
w1
∂xi

∂ξ1

)
+ · · · + ∂

∂ξd

(
wd
∂xi

∂ξd

)
= 0, i = 1, · · · , d. (2.8)

The control function wl is traditionally defined by

wl ≡ w =

(
1 + α|ψ|2 + β

d∑

i=1

∣∣∣∣
∂ψ

∂ξi

∣∣∣∣
2
) γ

2

, 1 ≤ l ≤ d, (2.9)

where α, β and γ are user-defined positive constants, and ψ denotes one of the dependent
variables, e.g., ψ = ψ(ρ, u, p).

The monitor function (2.9) means that the function wl depends on variations of the
gradient of the underlying solution ψ in all coordinate directions. However, we may find
from (2.8) that wl only plays a role to control the movement of a grid point in the ξl–
direction in the logical space. Therefore, if there is no variation of the gradient for the
underlying solution in the ξl–direction, then it is expected that the grid points should keep
almost unchanged in that direction.

Based on this observation, another control function wl can be defined by

wl =

(
1 + αl|ψ|2 + βl

∣∣∣∣
∂ψ

∂ξl

∣∣∣∣
2
) γl

2

, l = 1, · · · , d, (2.10)
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where αl, βl and γl are some positive constants. For convenience, we will use G and Ĝ to
denote the monitor function (2.7) with (2.9) and (2.10), respectively. The monitor function
Ĝ will affect mainly the grid node redistribution in the direction of the logical coordinate
lines. Although the monitor Ĝ is given based on an idea of dimensional splitting type
methods, our moving mesh equations are still different from the existing multidimensional
equidistribution. The latter is to just simply generate the adaptive meshes by tensor-type
extension of the one–dimensional equidistribution algorithm.

Before ending this subsection, we give a finite difference or volume discretization of the
mesh equation (2.8). In the remainder of this work, we will concentrate on two-dimensional
computations. Divide the logical domain Ωc = {(ξ1, ξ2) = (ξ, η)|0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}
into the square mesh cells:

{
(ξj , ηk)

∣∣∣ ξj = j∆ξ, ηk = k∆η; 0 ≤ j ≤ Nx + 1, 0 ≤ k ≤ Ny + 1
}
,

where ∆ξ = 1/(Nx + 1) and ∆η = 1/(Ny + 1). Correspondingly, the numerical approxi-
mations to ~x = ~x(ξ, η) are denoted by ~xj,k = ~x(ξj , ηk). The Euler-Lagrange equation (2.6)
is discretized by a second–order central difference scheme as

∆j
−

(
(w1)j+ 1

2
,k∆

j
+(xi)j,k

)

(∆ξ)2
+

∆k
−

(
(w2)j,k+ 1

2

∆k
+(xi)j,k

)

(∆η)2
= 0, (2.11)

where ∆ν
+ and ∆ν

− denote forward and backward difference operators respectively in ξ–
direction when ν = j, and η–direction when ν = k, and

(w1)j+ 1

2
,k =

1

2

(
(w1)j+ 1

2
,k+ 1

2

+ (w1)j+ 1

2
,k− 1

2

)
,

(w2)j,k+ 1

2

=
1

2

(
(w2)j+ 1

2
,k+ 1

2

+ (w2)j− 1

2
,k+ 1

2

)
.

The discrete system (2.11) with Dirichlet boundary condition can be solved by some
explicit iteration methods, e.g., Gauss–Seidel (G-S) iteration, with a fixed number of
iterations.

In [28], the monitor function G given in (2.7) with (2.9) is used. The results showed
that a unsatisfactory resolution was obtained for contact discontinuities. This is the main
motivation for suggesting the new monitor (2.7) with (2.10). Moreover, the G-S iteration
method will be applied in our computations. It is found that G-S iteration is much more
robust than the Jacobi iteration, even though the latter has a good symmetry.

2.2 Conservative solution interpolation

Let ~xj,k and ~̃xj,k be the coordinates of the old and new grid points, respectively, in the

sense that the grid point ~xj,k will move to position ~̃xj,k after one G-S iteration for the

mesh equations. Use Aj+ 1

2
,k+ 1

2

and Ãj+ 1

2
,k+ 1

2

to denote the quadrangles (finite control



662 H. Z. Tang / Commun. Comput. Phys., 1 (2006), pp. 656-676

volumes) with four vertices (~xj+p,k+q), and (~̃xj+p,k+q), p, q ∈ {0, 1}, respectively. They
are of similar setup to the one shown in Fig.1.

Using a perturbation method, we can derive a conservative interpolation scheme to
update cell average values Ũj+ 1

2
,k+ 1

2

on the control volume Ãj+ 1

2
,k+ 1

2

. Assuming (x̃, ỹ) =

(x− cx(x, y), y − cy(x, y)) with small magnitudes of speed (cx, cy), we have

∫ eA
j+ 1

2
,k+ 1

2

U(x̃, ỹ) dx̃dỹ =

∫

A
j+ 1

2
,k+ 1

2

U(x− cx, y − cy) det

(
∂(x̃, ỹ)

∂(x, y)

)
dxdy (2.12)

≈
∫

A
j+ 1

2
,k+ 1

2

(U(x, y) − cxUx − cyUy)(1 − cxx − cyy) dxdy

≈
∫

A
j+ 1

2
,k+ 1

2

[
U(x, y) − (cxU)x − (cyU)y

]
dxdy

≈
∫

A
j+ 1

2
,k+ 1

2

U(x, y) dxdy −
[
(c2~nU)j+1,k+ 1

2

+ (c4~nU)j,k+ 1

2

]
−
[
(c3~nU)j+ 1

2
,k+1 + (c1~nU)j+ 1

2
,k

]
,

where the higher order terms have been neglected, cl~n := cxnl
x + cynl

y with the normal

outward vector ~nl = (nl
x, n

l
y) defined as follows:

c1~n =
1

2
(cxj,k + cxj+1,k)(yj+1,k − yj,k) −

1

2
(cyj,k + cyj+1,k)(xj+1,k − xj,k),

c2~n =
1

2
(cxj+1,k + cxj+1,k+1)(yj+1,k+1 − yj+1,k) −

1

2
(cyj+1,k + cyj+1,k+1)(xj+1,k+1 − xj+1,k),

c3~n =
1

2
(cxj+1,k+1 + cxj,k+1)(yj,k+1 − yj+1,k+1) −

1

2
(cyj+1,k+1 + cyj,k+1)(xj,k+1 − xj+1,k+1),

c4~n =
1

2
(cxj,k+1 + cxj,k)(yj,k − yj,k+1) −

1

2
(cyj,k+1 + cyj,k)(xj,k − xj,k+1),

and (c~nU)j+p,k+ 1

2

and (c~nU)j+ 1

2
,k+q, p, q = 0 or 1, denote the values of c~nU on the corre-

sponding surface of the control volume Aj+ 1

2
,k+ 1

2

. They will be approximated by using an

upwind scheme. For example, the term (c~nU)j+1,k+ 1

2

may be approximated by

(c~nU)j+1,k+ 1

2

=
c2~n
2

(Uj+ 3

2
,k+ 1

2

+ Uj+ 1

2
,k+ 1

2

) − |c2~n|
2

(Uj+ 3

2
,k+ 1

2

− Uj+ 1

2
,k+ 1

2

). (2.13)

The above approximation is only first-order accurate in space. In order to avoid large
numerical dissipation, we will use the reconstruction technique proposed in [32], which
will be described in Section 2.3.

From (2.12), a conservative-interpolation formula is obtained:

|Ãj+ 1

2
,k+ 1

2

|Ũj+ 1

2
,k+ 1

2

= |Aj+ 1

2
,k+ 1

2

|Uj+ 1

2
,k+ 1

2

−
[
(c2~nU)j+1,k+ 1

2

+ (c4~nU)j,k+ 1

2

]
−
[
(c3~nU)j+ 1

2
,k+1 + (c1~nU)j+ 1

2
,k

]
,

(2.14)
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where |Ã| and |A| denote the areas of the control volumes Ã and A, respectively. It can
be verified that the above interpolation scheme satisfies the following mass–conservation
property: ∑

j,k

|Ãj+ 1

2
,k+ 1

2

|Ũj+ 1

2
,k+ 1

2

=
∑

j,k

|Aj+ 1

2
,k+ 1

2

|Uj+ 1

2
,k+ 1

2

. (2.15)

It is also possible to derive a conservative-interpolation from a geometric point of view.
For the one-dimensional case, we have

∫ exj+1exj

U(x) dx =

∫ xj+1

xj

U(x) dx+

(∫ xjexj

U(x) dx−
∫ xj+1exj+1

U(x) dx

)
,

i.e.

(x̃j+1 − x̃j)Ũj+ 1

2

= (xj+1 − xj)Uj+ 1

2

+

(∫ xjexj

U(x) dx−
∫ xj+1exj+1

U(x) dx

)
.

According to the locations of the new points x̃j and x̃j+1, we can give a suitable approx-
imation for the last two integrals, which leads to the conservative-interpolation formula
as proposed in [28]. However, it will become very complicated to construct multidimen-
sional conservative-interpolation using this geometrical approach, although we believe that
multidimensional conservative-interpolation obtained by using the geometrical approach
is more accurate and more suitable than (2.14) in solving the complex problems.

2.3 PDE evolution

Assume that a partition ~xj,k = (xj,k, yj,k) of the physical domain Ωp is given, and the
initial data U0

j+ 1

2
,k+ 1

2

is defined by (2.2). Integrating (2.1) over the finite control volume

Aj+ 1

2
,k+ 1

2

gives

∂

∂t

∫∫

A
j+ 1

2
,k+ 1

2

U dxdy +

4∑

l=1

F~nl(U)|(x,y)∈si
=

∫∫

A
j+ 1

2
,k+ 1

2

H dxdy, (2.16)

where si, i = 1, 2, 3, 4, are four sides of Aj+ 1

2
,k+ 1

2

, F~nl = ~F · ~nl, and ~nl = (nl
x, n

l
y) are the

normal outward vectors, defined as

~n1 = (yj+1,k − yj,k, xj,k − xj+1,k), ~n2 = (yj+1,k+1 − yj+1,k, xj+1,k − xj+1,k+1),

~n3 = (yj,k+1 − yj+1,k+1, xj+1,k+1 − xj,k+1), ~n4 = (yj,k − yj,k+1, xj,k+1 − xj,k).

By assuming F~nl = F+
~nl + F−

~nl , we obtain a first-order finite volume scheme for (2.1):

Un+1
j+ 1

2
,k+ 1

2

=Un
j+ 1

2
,k+ 1

2

− ∆t

|Aj+ 1

2
,k+ 1

2

|
( 4∑

l=1

F+
~nl(U

n
j+ 1

2
,k+ 1

2

) + F−

~n1(U
n
j+ 1

2
,k− 1

2

)

+ F−

~n2(U
n
j+ 3

2
,k+ 1

2

) + F−

~n3(U
n
j+ 1

2
,k+ 3

2

) + F−

~n4(U
n
j− 1

2
,k+ 1

2

)
)

+ ∆tHn
j+ 1

2
,k+ 1

2

. (2.17)
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The spatial accuracy of the scheme (2.17) can be improved by using the reconstruction
technique. Following [32], we use the piecewise linear function

U
n
j+ 1

2
,k+ 1

2
(x, y) = Un

j+ 1

2
,k+ 1

2

+ ~Sn
j+ 1

2
,k+ 1

2

· (~x− ~xj+ 1

2
,k+ 1

2

), (x, y) ∈ Aj+ 1

2
,k+ 1

2

, (2.18)

to replace the piecewise constant function Un
j+ 1

2
,k+ 1

2

at each time level tn, where ~Sn
j+ 1

2
,k+ 1

2

is an approximation of the gradient ∇U . This gives a second-order scheme:

Un+1
j+ 1

2
,k+ 1

2

=Un
j+ 1

2
,k+ 1

2

− ∆t

|Aj+ 1

2
,k+ 1

2

|
( 4∑

l=1

F+
~nl(U

n
j+ 1

2
,k+ 1

2
(~xcl)) + F−

~n1(U
n
j+ 1

2
,k− 1

2
(~xc1))

+ F−

~n2(U
n
j+ 3

2
,k+ 1

2
(~xc2)) + F−

~n3(U
n
j+ 1

2
,k+ 3

2
(~xc3)) + F−

~n4(U
n
j− 1

2
,k+ 1

2
(~xc4))

)

+ ∆tHn
j+ 1

2
,k+ 1

2

=: Un
j+ 1

2
,k+ 1

2

+ ∆tLj+ 1

2
,k+ 1

2

(Un), (2.19)

where ~xcl denotes the coordinates of the midpoint of the lth edge of the control element
Aj+ 1

2
,k+ 1

2

.

In our computations, the van Leer’s slope limiter is used to suppress the appearance of
numerical oscillations. Moreover, the second-order TVD Runge-Kutta time discretization
[25]

U∗

j+ 1

2
,k+ 1

2

=Un
j+ 1

2
,k+ 1

2

+ ∆tLj+ 1

2
,k+ 1

2

(Un), (2.20)

Un+1
j+ 1

2
,k+ 1

2

=
1

2

(
Un

j+ 1

2
,k+ 1

2

+ U∗

j+ 1

2
,k+ 1

2

+ ∆tLj+ 1

2
,k+ 1

2

(U∗)
)
, (2.21)

is used to replace the forward Euler time discretization (2.19).

Remark 2.1. In practice, we may simplify the problem in question by applying the initial
reconstruction technique along each normal direction of the finite control volume.

2.4 Solution procedure

The solution procedure of our adaptive mesh strategy for two-dimensional hyperbolic
problems can be summarized as follows:

Step i Give an initial partition ~x
[0]
j,k =

(
x

[0]
j,k, y

[0]
j,k

)
:= (xj,k, yj,k) of the physical domain Ωp

and a uniform (fixed) partition of the logical domain Ωc, and compute grid values

U
[0]

j+ 1

2
,k+ 1

2

by cell average over control volume A
[0]

j+ 1

2
,k+ 1

2

based on the initial data

U(~x, 0).

Step ii For ν = 0, 1, 2, . . . ,M , with M a fixed number, do the following:

(a). Move grid points ~x
[ν]
j,k to ~x

[ν+1]
j,k by solving (2.11) with one Gauss–Seidel iteration.

(b). Compute {U [ν+1]

j+ 1

2
,k+ 1

2

} over the new control volume A
[ν+1]

j+ 1

2
,k+ 1

2

using the conservative-

interpolation (2.14).
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Step iii Evolve the underlying PDEs by using 2D high-resolution finite volume methods

given in Section 2.3 on the mesh ~x
[M+1]
j,k to obtain the numerical approximations

Un+1
j+ 1

2
,k+ 1

2

at the time level tn+1.

Step iv If tn+1 < T , then let U
[0]

j+ 1

2
,k+ 1

2

:= Un+1
j+ 1

2
,k+ 1

2

and ~x
[0]
j,k := ~x

[M+1]
j,k , and go to Step ii.

2.5 Boundary redistribution

In practical flow situations, the discontinuities may initially exist in boundaries or move
to boundaries at later times. As a consequence, movement of boundary points should be
made possible in order to improve the quality of the adaptive solutions near the boundary.
A simple redistribution strategy is proposed as follows. For convenience, our attention is
restricted to the case where the physical domain Ωp is rectangular. Assume a new set of

grid points ~̃xj,k is obtained in Ωp by solving the moving mesh equation (2.11). Then the
speeds of the internal grid points ~xj,k are given by

(cx, cy)j,k := (x[ν] − x[ν+1], y[ν] − y[ν+1])j,k, for 1 ≤ j ≤ Nx, 1 ≤ k ≤ Ny.

We assume that the points on the boundaries are moving with the same speed as the
tangential components of the speed for the internal points adjacent to those boundary
points, namely

(cx, cy)0,k = (0, cy1,k), (cx, cy)Nx+1,k = (0, cyNx,k) 1 ≤ k ≤ Ny,

(cx, cy)j,0 = (cxj,1, 0), (cx, cy)j,Ny+1 = (cxj,Ny
, 0), 1 ≤ j ≤ Nx.

Thus, the new boundary points ~̃x0,k, ~̃xNx+1,k, ~̃xj,0 and ~̃xj,Ny+1 are defined by

(x̃, ỹ)j,k = (x, y)j,k − (cx, cy)j,k, j = 0 or Nx + 1, 1 ≤ k ≤ Ny,
(x̃, ỹ)j,k = (x, y)j,k − (cx, cy)j,k, 1 ≤ j ≤ Nx, k = 0 or Ny + 1.

Numerical experiments show that the above procedure to move the boundary points is
useful in improving the solution resolution.

If the physical domain Ωp is not a rectangular, then we introduce an intermediate or

parameter space D with Cartesian coordinates ~ζ = (ζ1, ζ2) where D is taken as the unit
square. At t = 0, we construct an initial map ~x = ~x(~ζ) : D → Ωp by calculus of variations
or using an algebraic grid generation method, if there does not exist any map between Ωp

and D with an explicit algebraic expression. For t > 0, we first move the grid points in D
according to the previous algorithm, i.e. to solve the following moving mesh equations

∆j
−

(
(w1)j+ 1

2
,k∆

j
+(ζi)j,k

)

(∆ξ)2
+

∆k
−

(
(w2)j,k+ 1

2

∆k
+(ζi)j,k

)

(∆η)2
= 0, i = 1, 2. (2.22)
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Next we update the underlying solutions by using the conservative-interpolation formula
given in Section 2.2, and the Cartesian coordinates ~x in Ωp by a non-conservative high res-
olution interpolation used in [30], i.e, using a high resolution scheme to solve the following
discrete equation:

~x(~̃ζ) = ~x(~ζ) + (~̃ζ − ~ζ) · ∇~ζ
~x. (2.23)

Here ~x is considered as the functions of ~ζ, and ~xj,k is the nodal discretization. In order

to give a map ~x = ~x(~ζ), using a non-conservation interpolation (2.23) instead of the mesh
generation procedure may save the computational cost.

The idea of introducing an intermediate space has also been widely used in numerical
grid generations, see e.g., [19,27] for details.

3 Numerical experiments

In this section, we solve the Euler equations governing two–dimensional inviscid compress-
ible fluid flows,

∂

∂t




ρ
ρu
ρv
E


+

∂

∂x




ρu
ρu2 + p
ρuv

u(E + p)


+

∂

∂y




ρv
ρvu

ρv2 + p
v(E + p)


 = 0, (3.1)

where ρ is the density, (u, v) is the velocity vector, E is the total energy, p is the pressure.
Assume that the pressure is related to the total energy by E = p

γ−1 + 1
2ρ(u

2 + v2) with
γ = 1.4. The physical fluxes are approximated by the kinetic flux–vector splitting method.
For example, the flux (F1)j,k+ 1

2

in x-direction can be approximated by

(F1)j,k+ 1

2

= (F1)
+
j− 1

2
,k+ 1

2

+ (F1)
−

j+ 1

2
,k+ 1

2

,

(F1)
± =

(
ρ[ũ1]±, ρ[ũ

2]±, ρ[ũ]±[ṽ1],
1

2

(
[ũ3]± + [ũ]±[ξ2]

))T

,

where

[ṽ1] = v, [ξ2] =
K

2λ
,

[ũ0]± =
1

2
erfc(∓

√
λu), [ũ1]± = u[ũ0]± ± e−λu2

√
πλ

,

[ũn+2]± = u[ũn+1]± +
n+ 1

2λ
[ũn]±, n ≥ 0.

Here λ = ρ/2p, K = −2+2/(γ−1) and erfc(x) denotes the complementary error function.
In the following, we will apply the moving mesh algorithm described in Section 2.4

to our numerical experiments, and compare the monitor function Ĝ defined in (2.7) with
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(2.10) to the monitor function G with (2.9). Unless otherwise specified, the number of G-S
iteration for the mesh equations is taken as 5; αl = α = 0. Throughout the computations,
the CFL number used is 0.24. The computations are run on PC Pentium–III with 800
MHz.

Example 3.1. 2D Riemann problem I: shock waves [15,24].

The initial data are chosen as

W (x, y, 0) =





(1.1, 0.0, 0.0, 1.1) if x > 0.5, y > 0.5,
(0.5065, 0.8939, 0.0, 0.35) if x < 0.5, y > 0.5,
(1.1, 0.8939, 0.8939, 1.1) if x < 0.5, y < 0.5,
(0.5065, 0.0, 0.8939, 0.35) if x > 0.5, y < 0.5,

which corresponds to the case of left forward shock, right backward shock, upper backward
shock, and lower forward shock, W = (ρ, u, v, p)T . We refer the readers to [15, 24] for
details.

Fig. 2 shows the adaptive meshes with 50×50 grid points at t = 0.25 obtained by using
two monitor functions (2.9) and (2.10) with βl = β = 8 and γl = γ = 1, respectively. It is
observed that using the monitor function Ĝ can increase grid concentration in shock curves
and in particular near two shock interaction points (0.92, 0.3) and (0.3, 0.92). Figs. 3 and
4 show the adaptive meshes and fluid density at t = 0.25 with 50×50 grid points, obtained
by G and Ĝ with βl = β = 8 and γl = γ = 3

2 , respectively. A sharper shock resolution and

a better grid concentration are obtained by using Ĝ. The results in Fig. 4 have almost
the same resolution as the ones given in [28] with the monitor function G and 100 × 100
grid points.

Example 3.2. 2D Riemann problem II: contact discontinuities [15,24].

The initial data are chosen as

W (x, y, 0) =





(1, 0.75, −0.5, 1) if x > 0.5, y > 0.5,
(2, 0.75, 0.5, 1) if x < 0.5, y > 0.5,
(1, −0.75, 0.5, 1) if x < 0.5, y < 0.5,
(3, −0.75, −0.5, 1) if x > 0.5, y < 0.5,

which corresponds to the case of left forward contact, right backward contact, upper
backward contact, and lower forward contact. The purpose of computing this problem is to
test the ability of our adaptive moving mesh algorithm in resolving contact discontinuities.
Fig. 5 shows the adaptive meshes with 50×50 grid points at t = 0.3 obtained by using the
two different monitor functions G and Ĝ with βl = β = 8 and γl = γ = 1. It is seen from
these results that the monitor Ĝ produces better mesh quality in terms of smoothness,
skewness, and aspect ratio. The adaptive meshes and contour of the density in Fig. 6 are
obtained by using 100×100 grid points and the monitor Ĝ. They have a better resolution
than the ones given in [28] where the monitor G is used. It also shows that the monitor
Ĝ is successful in increasing grid concentration near contact discontinuity.
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Figure 2: Example 3.1. The adaptive mesh at t = 0.25. Left: G with β = 8 and γ = 1; Right: bG with βl = 8
and γl = 1.

Figure 3: Example 3.1. The adaptive solutions at t = 0.25 with 50 × 50 grid points, obtained by using the
monitor G with β = 8 and γ = 3

2
. Left: adaptive mesh; Right: the density (30 equally spaced contour lines).

Figure 4: Same as Fig. 3, except for the monitor function bG.
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Figure 5: Example 3.2. Adaptive meshes at t = 0.3 with 50 × 50 grid points. Left: G with β = 8 and γ = 1;

Right: bG with βl = 8 and γl = 1.

Figure 6: Example 3.2. The adaptive solutions at t = 0.3 with 100 × 100 grid points, obtained by using the

monitor bG with βl = 8 and γl = 1. Left: Adaptive mesh; Right: The density (30 equally spaced contour lines).

Example 3.3. 2D spherical Riemann problem as given in [14].

This example is a spherical Riemann problem between two parallel walls. The main
feature of the solution is the complex interactions among the waves and between waves
and two walls. The problem is cylindrically symmetric within our considered time interval
[0,0.7]. Hence we may solve 2D axisymmetric Euler equations, and use x to correspond to
the radial coordinate. Moreover, a source term H = − 1

x
[ρu, ρu2, ρuv, u(E + p)]T is added

at the right hand side of the Euler equations (3.1).

Initially the air is at rest with the density ρ = 1, and the pressure p = 1 everywhere
except in a sphere centered at (0, 0.4) with radius 0.2. Inside the sphere, the pressure
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is p = 5. The initial jump in pressure results in a strong outward moving shock wave
and contact discontinuity and an inward rarefaction wave. This inward moving wave
causes further a local “implosion”, and create a second outward moving shock wave. The
computational domain is taken as [0, 1.4] × [0, 1], and the two walls are located at y = 0
and y = 1. The symmetric boundary condition is used at x = 0, and free outflow is
specified at x = 1.4. The reflection conditions are used at the two walls.

Figs. 7–9 show the adaptive meshes and the pressure distributions at t = 0.7 by using
G and Ĝ with βl = β = 10 and γl = γ = 1, respectively. A 125 × 100 mesh is used for
Figs. 7 and 8 and a 250 × 200 mesh for Fig. 9. The flow at t = 0.7 consists of several
shocks and strong contact/tangential discontinuities surrounding the low density near the
center of the domain. From these figures, it is observed that some main wave structures
are computed with sharper resolutions. Our results in Fig. 9 can be compared with one
given in [14] which is obtained using a 600 × 400 mesh (Fig. 6d there). It is seen from
Figs. 7 and 8 that the adaptation effect is more satisfactory with the use of the monitor
Ĝ. The mesh is smoother in the region [1.2, 1.4] × [0, 1]. With a fine mesh of 250 × 200
grid points, the problem is well resolved, as seen in Fig. 9.

Example 3.4. The double-Mach reflection problem [34].
This problem was studied extensively by Woodward and Colella [34] and later by

many others. We use exactly the same setup as in [34], i.e. the same initial and boundary
conditions and the same solution domain Ωp = [0, 4]× [0, 1]. Initially a right-moving shock
with Mach 10 is positioned at the point (x, y) = (1

6 , 0), making a 60o angle with the x-axis.
More precisely, the initial data are

U(x, y, 0) =

{
UL, for y ≥ h(x, 0),
UR, otherwise,

where U = [ρ, ρu, ρv,E]T , the left state UL, the right state UR, and the shock location are

UL = (8, 57.1597, −33.0012, 563.544)T ,
UR = (1.4, 0.0 0.0, 2.5)T ,

h(x, t) =
√

3(x− 1/6) − 20t.

Figs. 10 and 11 show the adaptive meshes and contours of the density at t = 0.2 with
160 × 80 grid points within a cut domain [0, 3.1] × [0, 1]. From these figures, the same
phenomenon as in the previous examples is observed, although it is less obvious. Within
the local regions near points (2.7,0.41) and (2.6, 0.0), respectively, the grid concentration
obtained by Ĝ is better than the one given by G. Highly deformed cells have been produced
by G in some local regions. Moreover, the local orthogonality of the meshes in Fig. 10 is
better than one Fig. 11.

Example 3.5. Supersonic flows around a double ellipse configuration.
We consider a steady problem on supersonic flows around a double ellipse configuration,

which is to show numerical implementation of the present adaptive moving grid algorithm
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Figure 7: Example 3.3. The adaptive solutions at t = 0.7 with 125 × 100 grid points, obtained by using the
monitor G with β = 10 and γ = 1. Left: adaptive mesh; Right: the pressure (40 equally spaced contour lines).

Figure 8: Same as Fig. 7, except for the monitor bG.

Figure 9: Same as Fig. 8 except for 250 × 200 grid points.
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Figure 10: Example 3.4. The adaptive solutions at t = 0.2 with 160 × 80 grid points, obtained by using the
monitor G with β = 0.6 and γ = 1. Top: adaptive mesh; Bottom: the density (30 equally spaced contour
lines).

Figure 11: Same as Fig.10 except using the monitor bG.
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(a) (b) (c) (d)

Figure 12: Example 3.5. (a): The initial mesh, (b): the adaptive mesh, with 201 × 41 grid points. Also shown
is the distribution of the pressures with 22 equally spaced contour lines obtained using the fixed mesh (c) and
the adaptive mesh (d).

for solving the problems in a complex domain. The double ellipse configuration is defined
by ( x

0.06

)2
+
( y

0.015

)2
= 1,

( x

0.035

)2
+
( y

0.025

)2
= 1,

for x ≤ 0, and y = −0.015 (or 0.025) in the lower (or upper) plane when 0 ≤ x ≤ 0.016.
The problem is initialized by a free-stream with a Mach number 3 and the angle of

attack 20◦. A reflection boundary condition is imposed at the surface of the double ellipse
configuration, i.e. k = 1, an inflow boundary condition is applied at the far boundary
condition, i.e. k = Ny, and an outflow boundary condition is applied at x = 0.016 (j = 1

and Nx). In this example, the monitor function Ĝ is used with βl = 0.4 and αl = γl = 1.
Since the physical domain is non-convex, we need to introduce an intermediate space D like
one described in Section 2.5. The computational meshes in Ωp and the pressure contours
are shown in Figs. 12. The comparison of the results shows a significant improvement of
the shock resolution.

4 Concluding remarks

In this paper, we have further studied the adaptive moving mesh method proposed in [28]
for computations of the Euler equations in fluid dynamics. Our adaptive mesh algorithm
includes two parts: PDE evolution and mesh redistribution. The first part is an appro-
priate high resolution finite volume scheme, and the second part is an iterative procedure
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including redistribution of grid points and a conservative solution–interpolation. Because
the two parts are decoupled, the present algorithm may be extended to three-dimensional
Euler flow calculations following Tang and Tang [29].

The monitor function is one of the most important elements in the moving mesh
algorithms. The appropriate choice of the monitor will produce grids with good quality
in terms of smoothness, skewness, and aspect ratio. The conventional monitor functions
usually depend on the magnitude of the gradient of the solutions, which may not be always
effective to increase the grid concentration in the local regions containing shock waves and
contact discontinuities or their interactions. To improve the performance of the adaptive
method, a directional monitor function has been proposed in this work. Although the
monitor function is defined based on the dimension-splitting idea, it is different from the
existing multidimensional-equidistribution approaches. The latter is just a direct tensor-
product extension of the 1D equidistribution scheme.

We have also presented some numerical computations for several test problems and
numerical comparisons. The results show that the new monitor function is more effective
than the monitor used in [28], which improves the resolution of the discontinuities, by clus-
tering more grid points within the regions containing shocks and contact discontinuities.
However, the choices of the different parameters in the monitor functions depend strongly
on the computed problem, when we expect to present a “satisfactory” or “optimal” re-
sult. It is very important to further improve the present algorithm in order to reduce this
dependence. A possible and good direction is to use the monitor function given in the
recent paper of Zegeling, de Boer, and Tang [36].
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