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Abstract. An adaptive moving mesh method is developed for the numerical solution
of two-dimensional phase change problems modelled by the phase-field equations. The
numerical algorithm is relatively simple and is shown to be more efficient than fixed grid
methods. The phase-field equations are discretised by a Galerkin finite element method.
An adaptivity criterion is used that ensures that the mesh spacing at the phase front
scales with the diffuse interface thickness.
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1 Introduction

There has been much recent interest in the modelling of solidification processes. The
main challenge is to incorporate events on the smallest microstructural scales to the larger
macroscopic scales. Classical Stefan models do not take account of important physical
properties such as undercooling and surface tension. These effects are normally incorpo-
rated within modified Stefan models (see Section 2 below). The numerical simulation of
the modified model requires the estimation of the curvature of the interface between the
solid and liquid phases. This is often a difficult task, especially in three dimensions or
when phase fronts merge.

Modified Stefan problems have become more amenable to numerical solution by the
introduction of phase-field models. Front-tracking is avoided by introducing an auxiliary
continuous order parameter p that interpolates between the solid and liquid phases, at-
taining two different constant values in each phase (e.g, p = ±1), with a rapid transition
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region at the solidification front. The level set p = 0 is identified with the front and p is
assumed to evolve in such a way that it minimises a free energy functional consistent with
thermodynamics.

Most numerical methods used to solve the phase-field equations have utilised stationary
uniform meshes [9,20,29,31]. However, it is well known that it is important that the diffuse
interface is well resolved if the correct dynamics are to be reproduced. As the phase
interface moves in time it is clear that an efficient numerical method must use some form
of mesh adaptivity. Within a finite element context this is usually achieved using the h-
method of adaptation, where the mesh is locally refined or coarsened by adding or deleting
points. This strategy has been used successfully in [6, 25, 26]. A less popular approach
is to use the so-called r-adaptive method where mesh points are moved throughout the
domain while the connectivity of the mesh is kept fixed. The main reason for the lack of
popularity of this approach is the difficulty involved in controlling the geometric quality of
the mesh elements. However, the development of a robust r-adaptive method is attractive
in that it intuitively should be able to accurately resolve and follow important solution
features. The coding involved in an r-adaptive method is also simpler than an h-method,
which requires a considerably more complicated data structure.

In this paper we will concentrate on an r-adaptive method where movement of the
mesh is based on a variational formulation used by Huang and Russell [18], Cao et al. [10],
and Huang [17]. The basic idea is to move the mesh so that it attempts to minimise
a weighted quadratic functional where the weights are based on some local adaptivity
criterion. Such an approach has been successfully used to solve a regularised formulation
of two-dimensional classical Stefan problems [4] and convective heat transfer problems
involving a change of phase [28]. Moving mesh methods have also been used to solve the
phase-field equations in one dimension [22, 23] and in two dimensions [27]. In particular,
in [22] we have been able to suggest an appropriate adaptivity criterion based on an
asymptotic expansion of the interface region of a planar travelling wave solution. The
resulting mesh has been shown to automatically scale with the diffuse interface thickness.

The main aim of this paper is to investigate the use of a moving mesh approach to
solve the two-dimensional phase-field equations. The layout of this paper is as follows:
in the next section we present the sharp and diffuse interface models for heat conduction
with a change of phase. In Section 3 we discuss how the moving mesh is generated along
with specific adaptivity criteria for the phase-field equations. In Section 4 we describe
a semi-implicit moving finite element discretisation of the phase-field model. Finally, we
apply the moving mesh method to a number of test cases in Section 5.

2 Sharp and diffuse interface models

Let Ω ∈ IR2 be a bounded domain with a Lipschitz continuous boundary ∂Ω. For each
t ∈ IR+ we will assume we have a decomposition of Ω into subdomains Ω+(t) and Ω−(t)
so that Ω = Ω+(t) ∪ Ω−(t) ∪ Γ(t), where the interface Γ(t) = ∂Ω+(t) ∪ ∂Ω−(t) is smooth.
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Let Tf > 0 and set Q := Ω × (0, Tf ). We are interested in the class of sharp interface
problems that takes the form [13]

ρcTt = k∇2T, x ∈ Ω+(t) ∪ Ω−(t), (2.1)

ρlv = k[∇T · n]−+, x ∈ Γ(t), (2.2)

T − Tm = − σ

[s]m
κ− ασ

[s]m
v, x ∈ Γ(t). (2.3)

Here Tm is the equilibrium melting temperature, l is the latent heat per unit mass, k is
the thermal conductivity, σ is the surface tension, ρ is the density, c is the specific heat,
[s]m is the entropy difference per unit volume ([s]m = 4 in the normalisation used here), v
is the normal velocity of the interface, κ is the sum of the principal curvatures, [∇T.n]−+
is the jump in the normal component of the temperature (from solid to liquid), and α is
a kinetic undercooling coefficient.

If we define a dimensionless temperature θ = c(T − Tm)/l, a diffusion parameter
D = k/ρc, and a capillary length d0 = σc/(l[s]m) then we can write (2.1)-(2.3) in the form

θt = D∇2θ, x ∈ Ω+(t) ∪ Ω−(t), (2.4)

v = D[∇θ · n]−+, x ∈ Γ(t), (2.5)

θ = −d0κ− αd0v, x ∈ Γ(t). (2.6)

The classical Stefan problem incorporates heat transfer by diffusion (2.4) and the latent
heat due to fusion (2.5). In addition, the interfacial temperature is equal to the equilibrium
melting temperature, i.e. θ = 0 replaces (2.6) which is equivalent to setting d0 = 0. The
classical Stefan model neglects the effects of surface tension and surface kinetics but these
are modelled by finite values of σ and α. However, (2.6) then becomes a difficult condition
to impose numerically due to the presence of the curvature term.

Using a scaling introduced in [7] we consider the phase-field model

θt + 1
2pt = D∇2θ, (2.7)

αε2pt = ε2∇2p+ 1
2

(

p− p3
)

+ ε
3d0
θ, (2.8)

where ε is a measure of the diffuse interface thickness. In [8] Caginalp showed that if
ε → 0 while all other parameters are held fixed, then the asymptotic solutions of (2.7),
(2.8) are, to leading order, solutions of the modified Stefan problem (2.1)-(2.3).

The boundary conditions for the phase-field equations are the same as the sharp in-
terface model for θ, with compatible conditions for p. For example, if Dirichlet conditions
are imposed on θ = θ∂±, where ± denotes the liquid and solid boundaries respectively,
then the corresponding values of p are the roots of

f(p, θ) =
1

2
(p± − p3

±) +
ε

3d0
θ∂± = 0. (2.9)
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Other phase-field models have been proposed that allow a simpler implementation of
boundary conditions for p that do not depend on the temperature on the boundary, (see
for example Wang et al. [30]).

In this paper we will concentrate on the phase-field model (2.7)-(2.8). The adaptive
moving mesh algorithm can easily be modified and applied to the solution of other phase-
field models such as the model proposed by Karma and Rappel [20], which approximates
the sharp interface model to O(ε2), rather than the O(ε) rate of approximation of the
Caginalp model.

3 Adaptive mesh generation

3.1 Variational formulation

To generate an adaptive mesh it is useful to regard the physical domain Ωp as the image
of a computational (logical) domain Ωc under the invertible maps

x = x(ξ, η), y = y(ξ, η) and ξ = ξ(x, y), η = η(x, y), (3.1)

where x = (x, y) and ξ = (ξ, η) are the physical and computational coordinates, re-
spectively. A mesh covering Ωp is obtained by applying the mapping given in (3.1) to a
partitioning of Ωc.

A popular way to choose the coordinate transformation for steady problems is to
require that it minimises a functional of the form

F (ξ, η) =
1

2

∫

Ωp

(∇ξTG−1∇ξ + ∇ηTG−1∇η)dxdy, (3.2)

where ∇ = (∂/∂x, ∂/∂y) and G(x, y) is a 2× 2 symmetric positive definite (SPD) matrix,
often referred to as a monitor matrix. The idea in adaptive mesh generation is to choose G
to concentrate mesh points in Ωp where the solution of the PDE is difficult to solve. One
example of a monitor matrix is G = M/

√

det(M), where M is a SPD matrix. This gives
rise to a method based on Harmonic mappings [14]. Alternatively, if G = λI, where λ > 0
is a scalar adaptivity function, then we arrive at a method based on the minimisation of
Winslow’s functional [32]. An analysis of the effect of G on the clustering and orientation
of the mesh is presented in Cao et al [11].

For time dependent problems Huang and Russell [18, 19] propose that the coordinate
transformation from the physical domain to the computational domain should satisfy the
modified gradient flow equation

∂ξ

∂t
=
Q

τ
∇ · (G−1∇ξ), (3.3)

where τ > 0 is a temporal relaxation parameter which determines the rate at which the
computational mesh attempts to minimise the functional, and Q is a differential operator
with a positive spectrum which is chosen to make the mesh generation more robust.
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In practice, we are interested in the inverse map x(ξ) which defines the mesh in physical
space. By changing the independent and dependent variables the gradient flow equations
can be written as the following moving mesh PDEs (MMPDEs)

∂x

∂t
=
Q

τ





∑

ij

aij
∂2x

∂ξi∂ξj
+

∑

i

bi
∂x

∂ξi



 , (3.4)

where

aij = ai ·G−1aj , bi = −
∑

j

ai∂G
−1

∂ξj
aj, (3.5)

and the contravariant base vectors ai = ∇ξi, i = 1, 2.
The aim of introducing the function Q is to make the resulting MMPDEs easier to

integrate forward in time. Huang [17] suggests setting

Q =
1

√

∑

i(a
2
ii + b2i )

.

This choice of Q is designed so that the coefficients of the spatial derivatives in (3.4),
especially the second-order derivatives, change evenly over the domain. For this reason
Huang refers to this scaling as “spatial balancing”. Although it is difficult to theoretically
understand the precise effect of Q, our experience is that this choice of Q results in a
more robust algorithm than simply setting Q = 1. Furthermore, the resulting MMPDE
is invariant under the scaling transformations x → δx and G → δG for all δ > 0. These
properties indicate the robustness of the MMPDEs to changes in the size of the physical
domain and to scalings of the monitor matrix.

3.2 Discretisation and boundary conditions

The temporal discretisation of (3.4) is achieved using a semi-implicit method where

τ(xn+1 − xn) = ∆tQn(an
11x

n+1
ξξ + 2an

12x
n+1
ξη + an

22x
n+1
ηη + bn1xn+1

ξ + bn2xn+1
η ). (3.6)

Freezing the coefficients aij, bi, and Q has two very important effects. The first is that
it linearises the equations that define the mesh xn+1. Moreover, the system of PDEs
represented by (3.6) for xn+1(ξ, η) and yn+1(ξ, η) decouples into two scalar equations
which have the same spatial derivatives. For simplicity, the spatial discretisation of (3.6)
is performed using second-order central finite differences on a N ×N uniform partition of
Ωc = (0, 1) × (0, 1). Since the spatial derivatives are identical the same coefficient matrix
needs to be inverted to find the x and y coordinates. We therefore first solve for the x
coordinates using an ILU-preconditioned BICGstab method until the maximum norm of
the difference in iterates is less than ε/N . The same preconditioner is then used to solve
for the y coordinates. In general, we have found that convergence of the iterative solver
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is achieved in around 3 − 4 iterations per time step. Additional details about the spatial
discretisation of the MMPDEs and the performance of the ILU-preconditioned BICGstab
routine can be found in [3].

Dirichlet boundary conditions for the above system are obtained by solving a one-
dimensional MMPDE. If ∂p ∈ ∂Ωp and ∂c ∈ ∂Ωc denote the physical and computational
boundary segments with arc-lengths l and lc respectively, then the mesh on ∂p is the
solution of

τ
∂s

∂t
=

1
√

(M2 + (Mζ)2
∂

∂ζ

(

M
∂s

∂ζ

)

, ζ ∈ (0, lc), (3.7)

with s(0) = 0 and s(lc) = l. Here M is the one-dimensional projection of the two-
dimensional monitor function along the boundary. That is, if t is a unit tangent vector
along the boundary then M(s, t) = tTGt.

3.3 Choice of G

The choice of an appropriate monitor matrix is crucial to the success of the moving mesh
method. Ideally, for the phase-field equations we would like the mesh to be clustered
within the interface region to correctly capture the effects of surface tension, while at the
same time providing sufficient resolution away from the interface to accurately model the
diffusion of heat. For robustness we would also like to choose a monitor matrix which
leads to a mesh that uniformly resolves the interface independently of its thickness.

Let r(x) denote a signed normal distance from the point x to the interface Γ (i.e r(x)
is the distance to the interface if it is in the liquid region and minus the distance if the
point is in the solid region). Based on a local asymptotic expansion it can be shown that
close to the interface [8]

p(x) ≈ tanh

(

r(x)

2ε

)

. (3.8)

Therefore, one idea would be to choose a monitor function that is tailored towards this
profile. For the one-dimensional phase-field equations Mackenzie and Robertson [22] pro-
posed an algorithm based on equidistribution of the monitor function

M(x) = 1 +
1

γβ
sech

(

r(x)

2ε

)

≈ 1 +
1

γβ
|px|

1
2 , x ∈ (xL, xR), (3.9)

where

β =
1

xR − xL

∫ xR

xL

sech
( r

2ε

)

dx, γ > 0. (3.10)

If the mesh has N grid points then with this choice of monitor function a constant pro-
portion of the mesh points are placed in the interfacial region, namely N/(1+ γ), and this
proportion is independent of ε. For example, if γ = 1 then half of the mesh points are
placed within the interface region while the other half are uniformly distributed through-
out the rest of the domain. Furthermore, it has been shown by Beckett et al [2] that the
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error in the piecewise linear interpolant of (3.8) converges at the optimal rate of O(N−2),
and that this rate is independent of ε. It should be noted that equidistribution of the
popular solution arc-length monitor function M =

√

1 + (px)2 leads to a mesh on which
the linear interpolant of (3.8) converges suboptimally at O(N−1) when ε≪ N−1.

The simplest way of extending this idea for two-dimensional problems is to follow the
Winslow approach and choose a monitor matrix of the form

G(x) =

(

1 +
1

γβ
sech

(

r(x)

2ε

))

I. (3.11)

The calculation of r is achieved using the same approach used by Beckett et al [4]. At
time t = tn a piecewise linear approximation of the phase field is obtained from a finite
element discretisation which is described in the next section. A piecewise linear represen-
tation of a phase interface is then obtained from the ordered list of points {xc

i}Nc

i=1 such
that P (xc

i ) = 0. These points are obtained from a plotting routine used to display the
numerical results. This routine can also detect if more than one phase front is present and
hence changes in the topology of the phase interface can easily be dealt with. A smooth
representation of an interface In is then obtained by an arc-length parameterised spline
passing through the points {xc

i}Nc

i=1. This curve is then partitioned by a set of points
{xs

i}Ns

i=1 which are uniformly distributed along In with xs
1 = xc

1 and xs
Ns

= xc
Nc

. Finally,
we set r(x) = ±min1≤i≤Ns |xs

i − x|, where ± denotes points within the liquid and solid
regions, respectively. In all the calculations performed in Section 5 we have set Ns = 100.

4 A moving finite element discretisation

We will assume that [0, Tf ] is partitioned by uniform time intervals ∆t = Tf/Nt such that

0 = t0 < t1 < · · · < tNt−1 < tNt = Tf .

Using the procedure described in the previous section we will assume that at time t = tn+1

we have a regular triangular mesh Sn+1 that has the same connectivity as the mesh Sn at
the previous time step. Therefore, each element of Sn+1 corresponds to a unique element
of Sn.

We consider approximations of the form

P (x, y, t) =
∑

j

Pj(t)φj(x(t), y(t)), Θ(x, y, t) =
∑

j

Θj(t)φj(x(t), y(t)),

where φj(x(t), y(t)) is the usual piecewise linear basis function associated with the node
xj = (xj(t), yj(t))

T . As the mesh will be moving the temporal derivatives take the form

Pt =
∑

j

{Ṗjφj − Pj(ẋj · ∇φj)}, and Θt =
∑

j

{Θ̇jφj − Θj(ẋj · ∇φj)}, (4.1)
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where · denotes differentiation in time along the trajectory of a mesh point. Let J denote
the set of indices of the mesh points and J0 the subset of J excluding those corresponding
to Dirichlet boundary conditions. Our finite element approximation satisfies the weak
formulation of the phase-field equations such that ∀i ∈ J0 we have

(Θt + 1
2Pt, φi) − (D∇2Θ, φi) = 0, (4.2)

(

αε2Pt, φi

)

−
(

ε2∇2P, φi

)

−
(

1
2

(

P − P 3
)

, φi

)

−
(

ε
3do

Θ, φi

)

= 0, (4.3)

where (·, ·) denotes the L2 inner product over Ω. If we define the vectors of unknowns

Θ = (Θ1,Θ2, . . . ,Θ(N+1)2)
T , P = (P1, P2, . . . , P(N+1)2)

T ,

then using (4.1) and integration by parts we can write equations (4.2) and (4.3) as the
block system

[

M 1
2M

0 αε2M

] [

Θ̇

Ṗ

]

+

[

B +DK 1
2B

0 αε2B + ε2K

] [

Θ

P

]

+

[

0

f(Θ,P )

]

= 0, (4.4)

where
Mij = (φj , φi), Bij = −(ẋj · ∇φj, φi), and Kij = (∇φj ,∇φi)

are the usual mass matrix, a convection-like matrix due to the mesh movement, and the
stiffness matrix. Using a product approximation of the nonlinear terms in the phase
equation we have

f(Θ,P ) = M [− ε
3d0

Θ − 1
2(P − P 3)]. (4.5)

To perform the temporal integration of (4.4) we treat all diffusion and source terms
implicitly and explicitly treat the convective-like terms arising from the mesh movement.
Thus we get the system
[

Mn+1 + ∆tDKn+1 1
2M

n+1

0 ε2(αMn+1 + ∆tKn+1)

] [

Θn+1

P n+1

]

+

[

S 1
2S

0 αε2S

] [

Θn

P n

]

+

[

0

∆tfn+1

]

= 0,

where S = ∆tBn−Mn+1. To solve this nonlinear system we consider the Newton iteration
[

J11 J12

J21 J22

] [

Θ(n+1,s+1)

P (n+1,s+1)

]

=

[

b1

b2

]

, (4.6)

where J11 = Mn+1 + ∆tDKn+1, J12 = 1
2M

n+1, J21 = ∆tfΘ, J22 = ε2(αMn+1 +

∆tKn+1) + ∆tfP , and b1 and b2 are vectors which are independent of Θ(n+1,s+1) and

P (n+1,s+1). Each Newton iteration therefore involves the solution of a (2× 2) block linear
system. From the first block of equations (4.6) we find that

P (n+1,s+1) = J−1
12 (b1 − J11Θ

(n+1,s+1)). (4.7)
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Substituting (4.7) into the second block of equations we have

(J21 − J22J
−1
12 J11)Θ

(n+1,s+1) = (b2 − J22J
−1
12 b1). (4.8)

To efficiently solve this linear system we replace the mass matrix by a diagonal matrix
by mass lumping so that J12 is diagonal and hence is easily inverted. The linear system
(4.8) is solved iteratively using an ILU-preconditioned BICGstab routine to a tolerance of
10−15. Thereafter, we find P (n+1,s+1) directly from (4.7) which is simply a matrix vector
multiplication. For efficiency only one Newton iteration is performed as the computed
results were found to be almost identical to those obtained by solving the nonlinear system
to convergence. Note that if we had used a fully implicit treatment of the mesh convection
term then the matrix J12 would have been modified by the introduction of the non-
symmetric matrix B. The inverse J−1

12 would then be full and we would not have an efficient
sequential solution procedure. A similar semi-implicit method was used successfully in the
moving mesh methods appearing in [21] and [4].

If we assume that at time t = tn we have an approximation of the physical solution
Pn and Θn, and a mesh xn, then we integrate forward in time using the algorithm below.

1. Compute the monitor matrix Gn(x) = G(xn, tn) using Pn and xn.

2. Integrate the discretised MMPDE to get the mesh xn+1.

3. Integrate the physical PDEs using the meshes xn and xn+1 to generate M , K, and
B.

4. Goto the next time step.

In theory this algorithm could be modified to return to step 1 after Pn+1 has been
obtained in step 3 and the coefficients aij, bi in (3.5) have been evaluated at tn+1 and
xn+1. A new estimate of the mesh xn+1 could then be found by resolving the MMPDEs.
This process could be repeated a fixed number of times or until some measure of grid
convergence is reached. A similar approach was investigated in [2] and [3] where it was
found that larger time steps could be used without affecting accuracy and that the gain in
efficiency outweighed the additional cost of performing the additional steps. As an initial
step to solving the phase-field equations in two dimensions, in this work we have used a
fixed time step and the one pass algorithm above to obtain the results of the next section.
Higher order temporal integration and adaptive time-stepping will be considered within a
multi-pass formulation in future work.

5 Numerical results

5.1 Planar solidification

A popular test case is to reproduce the travelling wave solution of the growth of a solid
planar interface within an undercooled melt [5, 9, 16, 20]. The sharp interface equations
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(2.4)-(2.6) are solved with boundary conditions

θ(∞, y) = θcool, θ(−∞, y) = θcool + 1, y ∈ (−∞,∞).

It is easy to show that there exists a travelling wave solution which takes the form

θ(x, y, t) =

{

θcool + e−v∗(x−v∗t)/D, x > v∗t,
θcool + 1, x ≤ v∗t,

(5.1)

where the velocity

v∗ = − 1

αd0
(θcool + 1) . (5.2)

We consider the case where α = 1, d0 = 0.05 and θcool = 1.05 which leads to a travelling
wave with unit velocity.

We solve the problem in the two-dimensional geometry Ω = [−0.25, 0.25]2 using a
moving mesh with N = 50, ∆t = 10−3, and τ = 0.1. For the phase-field model we let
ε = 0.00625. Fig. 1 shows the computed profiles of θ and p along the bottom boundary
y = −0.25 at the times t = 0.02, 0.04, 0.06, 0.08 and t = 0.1. The solid lines represent
the numerical results and the dashed lines the travelling wave profile of the phase-field
equations translated to the right at the speed v(ε) which was obtained using the one-
dimensional adaptive moving mesh method described in [22]. We can see that we have
excellent agreement. Note also that the choice of the parameter γ = 1 leads as predicted
to a mesh that approximately places half of the mesh points within the interface region.
Fig. 2 shows the computed interface positions which again agree well with the reference
solution. Note also that no grid anisotropy has been introduced. The L2 error in the
temperature at t = 0.1 along the bottom boundary was found to be 6.45 × 10−4 which
compares favourably with the one-dimensional calculations presented in [22]. Finally, in
Fig. 3 we can see the meshes used and the corresponding front predictions.

5.2 Critical radius of equilibrium

The second problem we consider involves the stability of a solid sphere in equilibrium with
its undercooled liquid melt. Let us consider a domain Ω which has no heat flux into it and
within this domain the initial temperature is equal to a constant, θcool. Let us introduce
an initial ball of solid of radius, Ro, centred at the origin, lying inside the undercooled
liquid. It is well known that there exists a steady state solution of (2.4)–(2.6) where the
solid ball is in equilibrium with its melt [12]. This occurs when the radius of the solid ball,
Rc, is given by

Rc = − do

θcool
.

This equilibrium is unstable in that if Ro < Rc then the solid sphere will melt and the
radius will decrease to zero. On the other hand if Ro > Rc then the solid will expand into
the undercooled melt and the radius will increase.
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Figure 1: Temperature (left) and phase variable (right) profiles for two-dimensional planar solidification with
ε=0.00625 and do = 0.05.

Figure 2: Exact and approximate front positions for two-dimensional planar solidification with ε=0.00625 and
do = 0.05.

If we take our initial temperature to be θcool = −2 and do = 0.5 then Rc = 1/4. The
phase-field calculations are performed with ε = 1/(160

√
2). The initial phase profile is

given by

p(x, 0) = pbc tanh

(

r(x)

2ε

)

,

where

pbc =

{

minp{p : f(p, θcool) = 0}, closest to − 1, r(x) < 0,
maxp{p : f(p, θcool) = 0}, closest to 1, r(x) ≥ 0,

and f(p, θ) is given by (2.9). We consider two cases where the initial radius isRo = 0.24 and
Ro = 0.26 with N = 50, ∆t = 10−3, τ = 0.1 in the domain [0, 0.5]2. The mesh is adapted
with γ = 1. Fig. 4 shows the grids and front positions at times t = 0.02, 0.08, 0.14, and
t = 0.16 whenRo = 0.24. As expected the interface moves inwards and the radius decreases
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t = 0 t = 0.02 t = 0.04

t = 0.06 t = 0.08 t = 0.1

Figure 3: Grid and interface predictions for Problem 1 with ε=0.00625 and do = 0.05.
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until at t = 0.1950 the interface vanishes. The results obtained when Ro = 0.26 were also
as expected, with the ball solidifying outwards. Figs. 5(b) and (c) shows the interface
position at time intervals of 2 × 10−2 for Ro = 0.24 and Ro = 0.26, respectively. The
radial positions for both interfaces are given in Fig. 5(a). The radii have been calculated
by inverse linear interpolation of the zero level set of the phase order parameter along
the boundary x = 0. Although we have only used a 50 × 50 mesh, these results compare
favourably to those obtained in [15] where a uniform 128×128 mesh was used with a time
step ∆t = 10−5.

Fig. 6 shows the solidification of two solid spheres which are surrounded by undercooled
liquid. The initial radii of both spheres is 0.26 and the centres are located at (0.75, 1.25)
and (1.25, 0.75). We can see that the spheres increase in size until they touch, at which
point they merge into one. At the point of contact there is a region of very high negative
curvature which diminishes rapidly due the interface conditions that are implicit in the
phase-field equations. Note that the adaptive mesh does an excellent job of following the
evolution of both the interfaces even when there is a change in topology as they merge.

5.3 Scaled viscous Cahn-Hilliard problem

The viscous Cahn-Hilliard equation [1,24] arises from the phase-field model by eliminating
θt from (2.7). This equation was derived to include certain viscous effects neglected in the
original Cahn-Hilliard model for spinodal decomposition - a process by which isothermal
phase separation occurs in a binary alloy after the temperature has been reduced beneath
its critical value. In this setting θ represents a generalised chemical potential and p is a
concentration variable.

Let us consider a circular domain Ω of radius R and that homogeneous Neumann data
for θ is imposed on the fixed boundary r = R. Initially we have two circular interfaces
with RI = 0.15 and RO = 0.30. If we assume radial symmetry then the sharp interface
problem is equivalent to solving Laplace’s equation

1

r
(rθr (r, t))r = 0,

which has solution

θ(r, t) =







B(t) 0 < r < RI(t),
A+(t) ln r +B+(t) RI(t) < r < RO(t),
B−(t) r > RO(t).

Using condition (2.6) we have that

B(t) = θ(RI(t), t) = − do

RI(t)
− doα

dRI(t)

dt
,

and

B−(t) = θ(RO(t), t) =
do

RO(t)
+ doα

dRO(t)

dt
.
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t = 0.02 t = 0.08

t = 0.14 t = 0.16

Figure 4: Grid and interface predictions for Problem 2 with ε = 1/(160
√

2), do = 0.5 and Ro = 0.24.
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(a)

(b) (c)

Figure 5: (a) Radius, (b) front positions for Ro = 0.24, (c) front positions for Ro = 0.26 for ε = 1/(160
√

2)
and do = 0.5.

In addition, from the jump condition (2.5) we have

RI
dRI(t)

dt
= RO

dRO(t)

dt
= −A+(t), (5.3)

and to ensure conservation of mass we require

R2
O(t) = R2

I(t) + δ, (5.4)
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t = 0.005 t = 0.15

t = 0.016 t = 0.2

Figure 6: Two seeds of solid are surrounded by an undercooled melt. The intersection of the interfaces poses
no difficulty for the adaptive moving mesh computation of the phase-field equations.
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where δ is a constant determined by the initial values of the radii. Using the above
information we find that

dRI(t)

dt
=

−do

(

1
RO(t) + 1

RI (t)

)

−do

(

1 + RI (t)
RO(t)

)

+RI(t) ln
(

RO(t)
RI(t)

) . (5.5)

We solve (5.5) using an adaptive Runge-Kutta method. Fig. 9 (b) shows RI(t) and RO(t)
as dashed lines when RI(0) = 0.15, RO(0) = 0.3, α = 1, and do = 0.5. We can see that
both balls decrease in size with the inner ball shrinking faster that the outer ball. The
time at which the inner interface RI(t) vanishes is approximately t ≈ 0.01287.

We now consider solving the phase-field equations with ε = 1/(320
√

2) using an adap-
tive mesh with N = 50, ∆t = 6.5× 10−5, τ = 0.1, γ = 1 on the domain [0, 0.5]2. This test
case has also been considered in [15]. Fig. 7 shows the grids and front positions at times
t = 0.0013, 0.0039, 0.0078, and t = 0.0117. We can see that the mesh has no difficulty
adapting to the two interfaces. As with the sharp interface problem, both balls move in-
wards and the radius of the inner ball decreases until at t = 0.01287 the interface vanishes.
The temperature and phase variable profiles along the bottom boundary at these times
are shown in Fig. 8(a) and (b), respectively. It can been in Fig. 8(b) that a significant
number of points lie in both interfacial regions. Fig. 9(a) shows the interface positions at
time intervals 1.3×10−3 where we can see that the inner ball shrinks faster than the outer
ball. Finally, the radial positions for both interfaces are given in Fig. 9(b). These results
are similar to those obtained in [15] and also approximate well the solution of the sharp
interface problem which is shown as dashed lines in Fig. 9(b).

5.4 Faceted crystal growth

Faceted crystal growth, where corners in the interface can develop, provides a difficult
test for the phase-field approach. From smooth initial data corners and facets will prop-
agate along planar fronts dictated by the material anisotropy and the domain geometry.
Anisotropy in the phase-field equations can involve both σ(ψ) and α(ψ), where ψ is the
angle between the interface and the x-axis given by

cos(ψ) =
∇p
|∇p| · nx.

For this example, we consider the anisotropy

α−1(ψ) = α−1
0 [1 + δα cos(M(ψ − ψα))], (5.6)

where M is an integer, δα > 0 is the magnitude of the anisotropy, and ψα is the preferred
angle for growth. Fig. 10 shows the growth of two circular solid seeds of unit radii centred
at (0.75, 1.25) and (1.25, 0.75). The parameters chosen for (5.6) are M = 4, α0 = 0.065,
δα = 0.818, and ψα = π/4. We can see clearly the effect of the anisotropy as the initial
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t = 0.0013 t = 0.0039

t = 0.0078 t = 0.0117

Figure 7: Grid and interface predictions for viscous Cahn-Hilliard problem with ε = 1/(160
√

2), do = 0.5,
RI = 0.15 and RO = 0.3.
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Figure 8: (a) Potential (–sharp interface, * phase-field) and (b) concentration profiles at t = 0.0013, 0.0039,
0.0078, 0.0117 for viscous Cahn-Hilliard simulation.
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Figure 9: (a) Front positions, and (b) radii for viscous Cahn-Hilliard problem with ε = 1/(320
√

2), do = 0.5,
RI = 0.15 and RO = 0.3; −− sharp interface, — phase-field.

circles quickly develop slightly rounded corners. As the simulation proceeds the “rounded
squares” merge and the interface develops regions of very high negative curvature. Once
again we can see that the adaptive moving mesh does an excellent job of tracking the
interfaces and has no difficulty in dealing with the change in topology.

6 Conclusions

We have developed an adaptive moving mesh method that has been successfully applied
to solve the two-dimensional phase-field equations. The algorithm is relatively simple and
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t = 0 t = 0.025 t = 0.045

t = 0.055 t = 0.1 t = 0.25

Figure 10: Grid and interface predictions for faceted crystal growth ε = 5 × 10−3, do = 0.01, α0 = 0.1
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has been shown to handle easily changes in topology of evolving interfaces.

Future work will concentrate on combining the present method with an h-refinement
strategy for problems that develop topologically complex solidification fronts that appear,
for example, in the growth of dendrites.

References

[1] F. Bai, C. M. Elliott, A. Gardiner, A. Spence and A. M. Stuart, The viscous Cahn-Hilliard
equation. Part I: Computations, Nonlinearity, 8 (1995), 131–160.

[2] G. Beckett, J. A. Mackenzie, A. Ramage and D. M. Sloan, On the numerical solution of
one-dimensional PDEs using adaptive methods based on equidistribution, J. Comput. Phys.,
167 (2001), 372–392.

[3] G. Beckett, J. A. Mackenzie, A. Ramage and D. M. Sloan, Computational solution of two-
dimensional unsteady PDEs using moving mesh methods, J. Comput. Phys., 182 (2002),
478–495.

[4] G. Beckett, J. A. Mackenzie and M. L. Robertson, A moving mesh finite element method for
the solution of two-dimensional Stefan problems, J. Comput. Phys., 168 (2001), 500–518.

[5] R. J. Braun, G. B. McFaddenn and S. R. Coriell, Morphological instability in phase-field
models of solidification, Phys. Rev. E, 49 (1994), 4336–4352.

[6] R. J. Braun and B. T. Murray, Adaptive phase-field computations of dendritic growth, J.
Cryst. Growth, 174 (1997), 41–53.

[7] G. Caginalp, Mathematical models of phase boundaries, in: J. Ball (Ed.), Material Instabili-
ties in Continuum Mechanics and Related Mathematical Probelms, Oxford University Press,
USA, 1988, pp. 35–52.

[8] G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equa-
tions, Phys. Rev. A., 39 (1989), 5887–5896.

[9] G. Caginalp and E. A. Socolovsky, Phase field computations of single-needle crystals, crystal
growth, and motion by mean curvature, SIAM J. Sci. Comput., 15 (1994), 106–126.

[10] W. Cao, W. Huang and R. D. Russell, An r-adaptive finite element method based upon
moving mesh PDEs, J. Comput. Phys., 149 (1999), 221–244.

[11] W. Cao, W. Huang and R. D. Russell, A study of monitor functions for two-dimensional
adaptive mesh generation, SIAM J. Sci. Comput., 20 (1999), 1978–1994.

[12] B. Chalmers, Principles of Solidification, Krieger, New York, 1977.
[13] P. I. Crumpton and G. Shaw, A vertex-centred finite volume method with shock detection,

Int. J. Numer. Meth. Fl., 18 (1994), 605–625.
[14] A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J.

Comput. Phys., 95 (1991), 450–476.
[15] C. M. Elliott and A. R. Gardiner, Phase field equations, in: D. Stewart, H. Gardner and

D. Singleton (Eds.), Computational Techniques and Applications, CTAC93, World Scientific,
Singapore, 1993.

[16] K. Glasner, Nonlinear preconditioning for diffuse interfaces, J. Comput. Phys., 174 (2001),
695–711.

[17] W. Huang, Practical aspects of formulation and solution of moving mesh partial differential
equations, J. Comput. Phys., 171 (2001), 753–775.

[18] W. Huang and R. D. Russell, A high dimensional moving mesh strategy, Appl. Numer. Math.,
26 (1997), 63–76.



826 G. Beckett, J. A. Mackenzie and M. L. Robertson / Commun. Comput. Phys., 1 (2006), pp. 805-826

[19] W. Huang and R. D. Russell, Moving mesh strategy based on a gradient flow equation for
two-dimensional problems, SIAM J. Sci. Comput., 20(3) (1999), 998–1015.

[20] A. Karma and W-J. Rappel, Quantitative phase-field modeling of dendritic growth in two
and three dimensions, Phys. Rev. E, 57 (1998), 4323–4349.

[21] J. A. Mackenzie and M. L. Robertson, The numerical solution of one-dimensional phase change
problems using an adaptive moving mesh method, J. Comput. Phys., 161 (2000), 537–557.

[22] J. A. Mackenzie and M. L. Robertson, A moving mesh method for the solution of one-
dimensional phase-field equations, J. Comput. Phys., 181(2) (2002), 526–544.

[23] J. F. McCarthy, One-dimensional phase field models with adaptive grids, Trans. ASME, 120
(1998), 956–964.

[24] A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in: J. Ball (Ed.), Material Instabil-
ities in Continuum Mechanics and Related Mathematical Probelms, Oxford University Press,
USA, 1988, pp. 329–342.

[25] N. Provatas, N. Goldenfeld and J. Dantzig, Efficient computation of dendritic microstructures
using adaptive mesh refinement, Phys. Rev. Lett., 80(15) (1998), 3308–3311.

[26] N. Provatas, N. Goldenfeld and J. Dantzig, Adaptive mesh refinement computation of so-
lidification microstructures using dynamic data structures, J. Comput. Phys., 148 (1999),
265–290.

[27] Z. Tan, T. Tang and Z. Zhang, A simple moving mesh method for one- and two-dimensional
phase-field equations, J. Comput. Appl. Math., 190 (2006), 252–269.

[28] R. T. Tenchev, J. A. Mackenzie, T. J. Scanlon and M. T. Stickland, Finite element moving
mesh analysis of phase change problems with natural convection, Int. J. Heat Fluid Fl., 26
(2005), 597–612.

[29] S-L. Wang and R. F. Sekerka, Algorithms for phase field computation of the dendritic oper-
ation state at large supercoolings, J. Comput. Phys., 127 (1996), 110–117.

[30] S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun and G.B.
McFadden, Thermodynamically-consistent phase field-models for solidification, Physica D, 69
(1993), 189–200.

[31] A. A. Wheeler, B. T. Murray and R. J. Schaefer, Computation of dendrites using a phase
field model, Physica D, 66 (1993), 243–262.

[32] A. Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform mesh, J.
Comput. Phys., 2 (1967), 149–172.


