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Abstract. The integral equation method for the simulation of the diffraction by opti-
cal gratings is an efficient numerical tool if profile gratings determined by simple cross-
section curves are considered. This method in its recent version is capable to tackle
profile curves with corners, gratings with thin coated layers, and diffraction scenarios
with unfavorably large ratio period over wavelength. We discuss special implemen-
tational issues including the efficient evaluation of the quasi-periodic Green kernels,
the quadrature algorithm, and the iterative solution of the arising systems of linear
equations. Finally, as an example we present the simulation of echelle gratings which
demonstrates the efficency of our approach.
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1 Introduction

For the numerical simulation of diffraction by optical gratings, several methods have been
proposed, among them differential and integral methods, methods based on Rayleigh or
eigenmode expansions, finite element or finite difference methods and methods of analytical
continuation (cf., e.g., the Rigorous Coupled Wave Analysis [19], the C-Method [6], and the
Finite Element Methods [2,3,8,27]). However, if the cross section of the grating geometry
can be described by a small number of interface curves, then the approximation of the
scattered electromagnetic field by an integral equation method is recommended. Integral
equation methods are robust, reliable, and efficient. Such methods for calculating field
components and efficiencies have been developed by e.g. Maystre, Pomp, Chen, Friedman,
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Prather et.al., Popov et.al., Yeung, Barouch, Goray, Sadov, and Kleemann (cf. [5, 12, 13,
18,20,22,23,29]).

Integral equation methods are well suited for the simulation of profile gratings with
profile curves of arbitrary shape (cf. [13]). The grating materials can be dielectric or
conducting, and profile gratings with coated layers can be treated as well (cf. [12, 20, 22]
and the treatment of large numbers of layers in [11]). If the integrals occurring in the
method are approximated by properly chosen quadrature rules, then coated layers with
extremely small thickness are admissible. Even corners in the profile curve do not cause
serious problems as long as the singular behavior of the electromagnetic field at the corner
points is taken into account by the right discretization of the integral equations. More
challenging is the treatment of gratings with large ratios period (grating constant) over
wavelength. Such examples usually require numerical algorithms with large numbers of
degrees of freedom, i.e., long computing times and huge storage capacities. Note, however,
that surprisingly good results have been reported for the unconventional Modified Integral
Method by Goray [10].

Integral equation methods can be considered as a special case of the so-called boundary
element methods applied to boundary value problems for the elliptic Helmholtz equation.
Consequently, the standard boundary element techniques can be utilized for the grating
problems as well. This includes the choice of the discretization scheme and the quadrature
rules and the adaption to corners and thin layers. Unfortunately, high ratios period over
wavelength result in large wavenumbers which makes the fast iterative solution of the
arising linear systems of equations or the implementation of fast methods like fast multipole
or wavelet algorithms difficult. Though to our knowledge no attempt has been made to
apply the fast boundary element techniques, we believe that they will be useful to design
faster integral equation methods for gratings. Finally, let us stress one particularity of
the grating problems in comparison to other boundary elements. The kernel functions are
quasi-periodic Green’s functions represented as infinite sums or integrals. Therefore, the
kernel evaluation consumes a lot of computing time, and a fast but accurate evaluation
algorithm is often the essential point in an efficient realization of the integral equation
method (cf. the contributions by Sadov [25] and Linton [15]).

The subject of the present paper is to describe the recent improvements in the im-
plementation of the integral equation package IESMP of the Carl Zeiss AG in Germany.
These improvements enables IESMP to treat gratings with large ratios period over wave-
length illuminated under large angles of incidence. Efficiencies of the reflected light in
high orders can be determined. In addition, edges (corners of the profile curve in the cross
section) and thin dielectric layers can be treated. For example, aluminum echelle gratings
with aluminum oxide layers can be simulated. Following Pomp [20], we describe the inte-
gral equations for coated gratings and the numerical method in Section 2. In particular,
section 2.4 contains some comments on the improved numerical scheme including a mesh
grading at the corners. In Section 3.1 we present a new efficient way for the evaluation
of the kernel functions inspired by Linton [15]. The new quadrature algorithm is given in
Section 3.2, and the iterative solution of the discretized integral equations is discussed in
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Figure 1: Cross-section of a coated grating.

Section 4. Finally, an example is presented in Section 5.

2 Integral equations and their numerical discretization

2.1 Diffraction problem for optical gratings

A one-dimensional grating is a structure on a planar surface which is periodic in one surface
direction and constant in the other. For example, this can mean lots of parallel grooves
on the surface of an optical device which, additionally, may be coated. The cross section
of a coated diffraction grating, which is periodic in x and homogeneous in z direction, is
depicted in Fig. 1. The substrate in domain G0 × R is coated with some optical material,
which fills the domain G1 × R. From the superstrate G2 × R the structure is illuminated
by an electromagnetic plane wave which is reflected and, possibly, transmitted in a finite
number of outgoing plane waves. We consider the case of classical TE and TM polarization,
where the direction of the wave vector of the incoming wave is in the (x, y)-plane. Then
the wave vectors of the diffracted waves are located in the same (x, y)-plane, and the TE
and TM diffraction problems can be described by transmission problems for the Helmholtz
equation in R

2 as follows.

We denote the period of the grating by d, the frequency of the incoming wave by ω
and the wavelength by λ = 2π/ω. Moreover, we denote the electric permittivity constant
of the material in Gj ×R, j = 0, 1, 2, by ǫj. We assume that the optical materials are non-
magnetic and denote the permeability of vacuum by µ. For notational convenience, we
scale the geometrical dimensions by a factor of 2π/d such that the structure becomes 2π-
periodic in x-direction. In the case of TE resp. TM polarization the electric resp. magnetic
part of the incoming wave is parallel to the z-axis and the underlying time-harmonic
Maxwell system can be reduced to the Helmholtz equation for the z-component u of the
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total electric resp. magnetic field

∆uj + k2
j uj = 0 , in Gj , j = 0, 1, 2 . (2.1)

Additionally, the uj satisfy transmission conditions on the interfaces γj = Gj−1 ∩ Gj ,
j = 1, 2,

uj−1|γj
= uj |γj

, ∂nuj−1|γj
= qj∂nuj|γj

, (2.2)

with the constants

qj =

{
1 , TE polarization,

k2
j−1/k

2
j , TM polarization.

Here and in the following the normal n to the interface γj is pointing into Gj and ∂n

denotes differentiation in the direction of n. Further, we assume that the coated layer
domain G1 is simply connected, i.e. the two profile curves γ1 and γ2 have a positive
distance.

The wave numbers kj in (2.1) are given by

kj =
d

λ
νj , νj := c

√
µǫj (2.3)

where c is the speed of light and where the complex-valued material parameter νj is the
optical index of the material in Gj . For dielectric materials there holds ν > 0, in particular
in vacuum ν = 1, whereas the case Im ν > 0 accounts for materials absorbing energy. In
the following we suppose

ν2 > 0 , Re νj > 0 , Im νj ≥ 0 , j = 0, 1 , (2.4)

which is satisfied by all relevant materials.
The incoming plane wave is a solution of equation (2.1) in G2 and therefore of the

form
ui(x, y) = p ei(αx−βy) , (α, β) := k2(sin θ, cos θ)

with the angle of incidence θ, |θ| < π/2, and with a given amplitude factor p > 0. By
physical considerations the functions uj are supposed to be α quasiperiodic, i.e.

uj(x + 2π, y) = uj(x, y) eiα2π .

Above and below the grating structure the outgoing wave condition is required

u2 − ui =
∑

n∈Z

A+
n eiαnx+iβ+

n y , y > max{y : (x, y) ∈ γ2} ,

u0 =
∑

n∈Z

A−
n eiαnx−iβ−

n y , y < min{y : (x, y) ∈ γ1} .
(2.5)

where A±
n ∈ C are the Rayleigh coefficients of u2 and u0, αn := α + n, and the complex

values β±
n = β±

n (α) are defined as

β+
n :=

√
k2
2 − α2

n , β−
n :=

√
k2
0 − α2

n (2.6)
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with Im β±
n ≥ 0. Since the β±

n are real for at most finitely many n, there is only a finite
number of propagating plane waves in the sums of (2.5).

Under the assumption that the two curves γj = Gj−1 ∩Gj , j = 1, 2, are Lipschitz, the
following existence and uniqueness results for the diffraction problem (2.1), (2.2), (2.5) are
valid (cf. [1, 2, 4, 9]):

- In both cases, TE and TM polarization, the diffraction problem has at least one
solution which is smooth outside the surface profiles and belongs to the Sobolev
space H2

loc for TE resp. H1
loc for TM polarization.

- In both cases, TE and TM polarization, the solution set is an at most finite dimen-
sional affine space.

- If Im νj > 0 for j = 2 or 3, then the solution of (2.1), (2.2), (2.5) is unique.

- The TE problem has a unique solution if the y components ny
j of the normal vectors

nj to the curves γj satisfy ny
j ≥ 0 and if the refractive indices νj satisfy ν1 ≤ ν2 ≤ ν3.

The integral equation approach of the present paper, which has been introduced in [20],
transforms the problem (2.1), (2.2), (2.5) into a system of two integral equations over the
profile curves (cf. the subsequent Equation (2.20)).

2.2 Integral formulation

The integral representations for α quasi–periodic solutions of the Helmholtz equation are
based on potentials including quasi–periodic fundamental solutions as kernel functions.
We suppose k 6= 0 and set αn := α + n, and βn :=

√
k2 − α2

n, n ∈ Z with Im βn ≥ 0. The
fundamental solution is given by

Ψk(x, y) :=
i

4

∑

n∈Z

H
(1)
0

(
k
√

(x − 2πn)2 + y2
)
e2πinα =

i

4π

∑

n∈Z

eiαnx+iβn|y|

βn
, (2.7)

where H
(1)
0 is the first Hankel function of order zero. If one of the denominators βn in (2.7)

is zero, then the corresponding term in the last series must be replaced by ieinx(C + |y|),
where C is an arbitrary constant. In the following we will always assume that βn 6= 0.
Then the series in (2.7) converges uniformly over compact subsets of the set {(x, y) :
|x| ≤ π}\{(0, 0)} and the difference Ψk(x, y)− log(x2 + y2)/2π is smooth. More precisely,
the difference is twice continuously differentiable for x2 + y2 > 0 and the second order
derivatives are bounded by constant times log(x2 +y2) for x and y tending to zero (cf. [7],
Section 3.5).

The profile curves γj , j = 1, 2, are supposed to be continuous, piecewise differentiable
and without cusps, i.e. the angle between adjacent tangents at corner points of γj is strictly
between 0◦ and 360◦. We denote the restriction of γj to the strip {(x, y) : 0 ≤ x ≤ 2π}
by Γj . By assumption Γ1 ∩ Γ2 = ∅. The single and double layer potentials over Γj are the
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contour integrals

VΓj ,kϕ(P ) := −
∫

Γj

Ψk(P − Q)ϕ(Q) dsQ , KΓj ,kϕ(P ) :=

∫

Γj

∂nQ
Ψk(P − Q)ϕ(Q)dsQ .

Like above ∂n is the differentiation in the direction of the normal to Γj pointing into Gj .
The additional index Q in ∂nQ

indicates the normal derivative with respect to the point
Q.

In accordance with the classical potential formulas for solutions of the Helmholtz equa-
tion satisfying the outgoing wave conditions, the quasi–periodic solutions u0 and u2 − ui

can be represented in the form

u0(P ) = −VΓ1,k0

(
∂nu0|Γ1

)
(P ) − KΓ1,k0

(
u0|Γ1

)
(P ) , P ∈ G0 , (2.8)

[
u2 − ui

]
(P ) = VΓ2,k2

(
∂n

[
u2 − ui

]
|Γ2

)
(P ) + KΓ2,k2

( [
u2 − ui

]
|Γ2

)
(P ) , P ∈ G2 . (2.9)

For the quasi–periodic solution u1 to the Helmholtz equations in G1, we choose the po-
tential representation

u1(P ) = VΓ1,k1
w1(P ) + VΓ2,k1

w2(P ) , P ∈ G1 , (2.10)

with yet unknown densities w1 and w2. Taking the limits as the point P tends to the curves
Γj, the well known jump relations for potentials provide us with two integral equations on
Γj.

Indeed, if we indicate the limits for P ∈ Gj−1 resp. P ∈ Gj tending to a boundary
point at Γj in normal direction by the upper index + resp. −, then

(
VΓj ,kϕ

)+
(P ) =

(
VΓj ,kϕ

)−
(P ) = Vjj,kϕ(P ) ,

where we denote

Vjm,kϕ(P ) := −
∫

Γm

Ψk(P − Q)ϕ(Q) dsQ , P ∈ Γj . (2.11)

The boundary limits of the double layer potential from the two sides of Γj take the values

(
KΓj ,kϕ

)+
(P ) = Kjj,kϕ(P )+

(
1 − δj(P )

)
ϕ(P ),

(
KΓj ,kϕ

)−
(P ) = Kjj,kϕ(P ) − δj(P )ϕ(P ),

where the function δj(P ) ∈ (0, 1) denotes the normalized interior angle of Gj at the
boundary point P ∈ Γj, i.e., δj(P ) is the interior angle of Gj measured in arc length
divided by 2π. Obviously, δj(P ) = 1/2 if P ∈ Γj is not a corner point. The integral
operator Kjm,k is defined by

Kjm,kϕ(P ) :=

∫

Γm

∂nQ
Ψk(P − Q)ϕ(Q) dsQ , P ∈ Γj .
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Finally, for P ∈ Γj not a corner, the normal derivative of the single layer potential has the
limits

(
∂nVΓj ,kϕ

)+
(P ) = −Ljj,kϕ(P ) +

1

2
ϕ(P ) ,

(
∂nVΓj ,kϕ

)−
(P ) = −Ljj,kϕ(P ) − 1

2
ϕ(P ) ,

where we use the notation

Ljm,kϕ(P ) :=

∫

Γm

∂nP
Ψkj

(P − Q)ϕ(Q) dsQ , P ∈ Γj .

Thus we obtain the relations

u0|Γ1
= −V11,k0

(
∂nu0|Γ1

)
−
(
K11,k0

− δ1

)(
u0|Γ1

)
, (2.12)

u1|Γ1
= V11,k1

w1 + V12,k1
w2 , (2.13)

∂nu1|Γ1
=
(
1/2 − L11,k1

)
w1 − L12,k1

w2 , (2.14)

u1|Γ2
= V21,k1

w1 + V22,k1
w2 , (2.15)

∂nu1|Γ2
= −L21,k1

w1 −
(
1/2 + L22,k1

)
w2 , (2.16)

[
u2 − ui

]
|Γ2

= V22,k2

(
∂n

[
u2 − ui

]
|Γ2

)
+
(
K22,k2

+ (1 − δ2)
)( [

u2 − ui
]
|Γ2

)
. (2.17)

Equation (2.12) can be written in the form

V11,k0

(
∂nu0|Γ1

)
+
(
K11,k0

+ (1 − δ1)
)(

u0|Γ1

)
= 0 .

Applying the transmission conditions u0 = u1 and ∂nu0 = q1∂nu1 over Γ1 and substituting
(2.13) and (2.14), we arrive at

q1V11,k0

(
(1/2 − L11,k1

)w1 − L12,k1
w2

)
+
(
K11,k0

+ (1 − δ1)
)(

V11,k1
w1 + V12,k1

w2

)
= 0 .

(2.18)

On the other hand, from (2.17) we derive the relation

V22,k2

(
∂nu2|Γ2

)
+
(
K22,k2

− δ2

)(
u2|Γ2

)
= V22,k2

(
∂nui|Γ2

)
+
(
K22,k2

− δ2

)(
ui|Γ2

)
= −ui ,

which together with the transmission conditions u1 = u2 and ∂nu1 = q2∂nu2 on Γ2 and
with the help of (2.15), (2.16) implies the equation

1

q2
V22,k2

(
− L21,k1

w1 − (1/2 + L22,k1
)w2

)
+
(
K22,k2

− δ2

)(
V21,k1

w1 + V22,k1
w2

)
= −ui .

(2.19)
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Hence, we obtain the system (2.18), (2.19) of integral equations for the unknown densities
wj which can be written as

(
A1,1 A1,2

A2,1 A2,2

)(
w1

w2

)
=

(
0
ui

)
(2.20)

with the operators

A1,1 := q1V11,k0

(
1/2 − L11,k1

)
+
(
K11,k0

+ (1 − δ1)
)
V11,k1

,

A1,2 := −q1V11,k0
L12,k1

+
(
K11,k0

+ (1 − δ1)
)
V12,k1

,

A2,1 :=
1

q2
V22,k2

L21,k1
−
(
K22,k2

− δ2

)
V21,k1

,

A2,2 :=
1

q2
V22,k2

(
1/2 + L22,k1

)
−
(
K22,k2

− δ2

)
V22,k1

.

(2.21)

Note that system (2.20) has first been obtained in [20] and is more efficient than other
integral formulations proposed, e.g., in [18, 22], where the computation of the inverse of
certain integral operators is required.

2.3 Periodic integral operators

For the implementation it is convenient to use a periodic setting of the integral equations.
We choose 2π-periodic parametrizations of the curves Γj, j = 1, 2,

γj(t) :=
(
Xj(t), Yj(t)

)
, Xj(t + 2π) = Xj(t) + 2π, Yj(t + 2π) = Yj(t) , (2.22)

and denote σj(t) :=
√

X ′
j(t)

2 + Y ′
j (t)

2. We introduce the periodic unknown functions

ϕj(t) := e−iαXj(t)wj

(
Xj(t), Yj(t)

)
,

and, for P = (Xj(t), Yj(t)) ∈ Γj and Q = (Xm(s), Ym(s)) ∈ Γm, we set

ên,k(t, s) := en,k

(
Xj(t) − Xm(s), Yj(t) − Ym(s)

)
,

where

en,k(x, y) := einx+iβn|y| , βn :=
√

k2 − (n + α)2 .
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Then we have to solve the system (2.20) with the integral operators Vjm,k, Kjm,k, and
Ljm,k, defining Aj,k in (2.21), replaced by their periodic counterparts

Ṽjm,k ϕ(t) :=
1

4πi

2π∫

0

∑

n∈Z

ên,k(t, s)

βn
σm(s)ϕ(s) ds ,

K̃jm,k ϕ(t) :=
1

4π

2π∫

0

∑

n∈Z

(
n + α

βn
Y ′

m(s) − X ′
m(s) sign

(
Yj(t) − Ym(s)

))
ên,k(t, s)ϕ(s) ds ,

L̃jm,k ϕ(t) := − 1

4π

2π∫

0

∑

n∈Z

(
n + α

βn
Y ′

j (t) − X ′
j(t) sign

(
Yj(t) − Ym(s)

))
ên,k(t, s)ϕ(s) ds .

2.4 Numerical scheme of discretization

As usual in boundary element methods, there exist several choices for the discretization
scheme. The trial space XN of finite dimension N , where the approximate solution ϕN ∈
XN to the exact solution ϕ = ϕj , j = 1, 2 is sought, can be the space of trigonometric
functions or a space of spline functions. If the unknown solution is known to be smooth,
than the trigonometric space exhibits higher order approximation rates. Unfortunately,
the basis functions spanning the trigonometric space have global supports. Applying the
integral operators to such basis functions results in global integrals. In contrast to this,
applying the integral operators to a local basis of spline functions results in local integrals
and leads to faster algorithms. In other words, spline methods are often faster.

Aside from the choice of trial functions, the discretization schemes differ also in the way
in which the continuous integral equation is converted into a finite dimensional equation.
Galerkin methods first restrict the integral operator to the trial space. Then, after applying
the operator to a general trial function, they project the resulting function to its best
approximation in the trial space. This way the integral operator is replaced by a finite
dimensional operator acting in the finite dimensional trial space. Let us denote by B one
of the integral operators Ṽjm,k, K̃jm,k, L̃jm,k. If PN is the orthogonal projection of L2 onto
the trial space XN , then the discretized operator [B]N of the Galerkin method is defined
as

[B]N := PNB|XN
: XN −→ XN .

The collocation method applies the integral operator to a general trial function ϕN but,
in contrast to Galerkin’s method, the result is computed on a finite set of so-called col-
location points {scol

k : k = 1, . . . , N}, only. Usually, these collocation points scol
k are the

points of a uniform grid. Again a finite dimensional operator results mapping the trial
space functions to the integral operator images restricted to the collocation points. The
discretized operator [B]N of the collocation is defined as

[B]N : XN ∋ ϕN 7→
(
B(ϕN )(scol

k )
)N
k=1

.
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Supposing that for each sequence of function values (f(scol
k ))Nk=1 there is exactly one func-

tion fN ∈ XN with fN (scol
k ) = f(scol

k ), we can identify the sequence (f(scol
k ))Nk=1 with

fN ∈ XN . This way [B]N maps XN into XN and the image of ϕN is the unique function
in XN satisfying (

[B]NϕN

)
(scol

k ) = B(ϕN )(scol
k ), k = 1, . . . , N .

In general, collocation methods are faster but the convergence rate for Galerkin methods
is higher. We note, however, that Galerkin’s method and collocation are so-called semi-
discrete schemes. The entries of the matrix equations corresponding to the discretized
operators still have entries containing analytic integrals. E.g. the collocation discretization
of B requires the computation of the integrals B(ϕN )(scol

k ). Hence, Galerkin’s method and
collocation must be combined with a quadrature algorithm for the computation of these
integrals (cf. Section 3.2).

The fastest and fully discrete numerical scheme, however, is the Nyström method
where again the integral equations are considered at a set of collocation points, only, and
where the integral in the integral operators is approximated by a quadrature rule with the
collocation points used as quadrature knots. The Nyström method works well for integral
operators with smooth kernel functions.

The first version of the package IESMP (cf. [13,20]) is based on a hybrid discretization
scheme. This so-called method of mechanical quadratures is very fast for smooth curves
and thick layers. In this case the integral operators except the single layer operators
Ṽjj,k have smooth kernels. The operators Ṽjj,k are split into the single layer operator
over the unit circle corresponding to the Laplace operator and a remainder. Since the
action of the single layer operator on the trigonometric trial space is known explicitly, the
single layer part is easily discretized by a trigonometric Galerkin scheme. The remainder
and all other operators are discretized by a fast Nyström approximation. Unfortunately,
the convergence properties deteriorate if corner singularities appear in the solutions of the
integral equations and if the Nyström quadrature rules over the uniform collocation points
are inaccurate due to thin layers.

To deal with corners in the profile curves, we have introduced meshes of collocation
points graded towards the corner points. The grading is defined simply by changing the
parametrization in the formulas of Section 2.3. For instance, if γj : R → C is a smooth
parametrization of curve γj such that |∂tγj(t)| > 0 for all points γj(t) except the corners
and if |∂tγj(t)| = |∂2

t γj(t)| = 0 holds at all the corner points, then the corresponding collo-
cation points {γj(2πk/N) : k = 1, . . . , N} are graded towards the corners. The improved
discretization scheme for corners is just the collocation method based on these colloca-
tion nodes and on spline functions subordinate to this mesh. The splines subordinate to
this mesh are piecewise polynomials equal to cubic polynomials between consecutive col-
location nodes. Of course, to compute the action of the integral operator on basis spline
functions, a clever quadrature rule is needed (cf. Section 3.2). In contrast to the Nyström
method, the quadrature rule must depend on the collocation point. Even thin layers can
be treated by the same spline collocation if the quadrature rules are adapted (cf. Section
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Table 1: Convergence of efficiencies simulating a simple echelle grating.

graded mesh uniform mesh
N

Effictr
0 Total Energy Effictr

0 Total Energy

8 79.5335 116.80585 70.1237 98.87362

16 91.1789 99.75135 84.1812 92.76585

32 90.4132 99.43106 88.6170 97.57554

64 90.3557 99.39309 89.7681 98.76689

128 90.3555 99.39521 90.1993 99.22791

256 90.3562 99.39616 90.3350 99.37354

512 90.3564 99.39640 90.3588 99.39901

1024 90.3565 99.39646 90.3580 99.39819

3.2).

As a simple example, we consider a triangular grating of period 1µm with an apex
angle of 120◦ and a side angle of 40◦. The grating consists of a substrate material with
refractive index equal to 1.5 and is coated by a layer of uniform thickness equal to 1 nm
with index ν = 1.2 + i 0.2. The echelle grating is illuminated in TM polarization by light
of the wavelength 633 nm under an incidence angle of 60◦. We have applied the collocation
method with N = 8, 16, 32, 64, 128, 256, 512, and 1 024 collocation points at each curve.
Hence, the dimension of the system of linear equations to be solved is 2N . By Effictr

0

we denote the transmitted zero order efficiency (angle of radiation 35.26◦) and by Total
Energy the total rate of transmitted and reflected energy. Table 1 exhibits the convergence
of the integral equation method. Moreover, an essential improvement of the convergence
for graded meshes can be observed.

3 Computation of integrals

3.1 Ewald’s method for the kernel computation

In the old IESMP program package a sophisticated summation method of 5-th order is
implemented to accelerate the computation of the integral kernels (cf. [13] and compare
[25]). Unfortunately, it has turned out that this approach is not efficient for the second
argument y with small modulus |y| (cf. (2.7)), which frequently occur in the quadrature
of integrals for graded meshes near corners or for thin layers, i.e., for thin domains G1. In
this case we use the following summation algorithm for the integral kernel which is based
on Ewald’s method (cf. [15] and [28]).

Consider the infinite series

Ψ(x, y) =
i

4π

∑

n∈Z

einx+iβn|y|

βn
(3.1)
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with βn :=
√

k2 − α2
n and αn := n + α. Note that Re βn, Imβn ≥ 0. Ewald’s method is

based on the relation

ieiβn|y|

βn
=

a2∫

0

exp
(
β2

nt−y2

4t

) dt√
πt

+
i

2βn

(
e−iyβn erfc

(
−iaβn+

y

2a

)
+eiyβn erfc

(
− iaβn − y

2a

))
,

which is valid for any a > 0 and βn 6= 0. Here

erfc(z) :=
2√
π

∞∫

z

e−t2 dt

is the complementary error function. Thus we have Ψ = Ψe + Ψw with the two sums

Ψe(x, y) =
1

4π

∑

n∈Z

einx

a2∫

0

eβ2
nt−y2/4t dt√

πt
, (3.2)

Ψw(x, y) =
i

8π

∑

n∈Z

einx

βn

(
e−iyβnerfc

(
− iaβn +

y

2a

)
+ eiyβnerfc

(
− iaβn − y

2a

))
. (3.3)

Since β2
n = k2 − α2

n, the first sum (3.2) takes the form

Ψe(x, y) =
1

4π

∑

n∈Z

einx

a2∫

0

e(k2−α2
n)t−y2/4t dt√

πt
=

1

4π

a2∫

0

ek2t−y2/4t
∑

n∈Z

e−α2
nteinx dt√

πt
.

Poisson’s summation formula gives

∑

n∈Z

e−(α+n)2teinx =

√
π

t
e−iαx−x2/4t

∑

m∈Z

e−π2m2/t eπmx/t e 2πimα ,

which leads to

Ψe(x, y) =
e−iαx

4π

∑

m∈Z

e2πimα

a2∫

0

ek2te−((x−2πm)2+y2)/4t dt

t
. (3.4)

Denoting r2
m := (x − 2πm)2 + y2 and using the series expansion of e k2t gives

a2∫

0

e k2te−r2
m/4t dt

t
=

∞∑

j=0

k2j

j!

a2∫

0

tj−1 e−r2
m/4t dt =

∞∑

j=0

(ak)2j

j!
Ej+1

( r2
m

4a2

)
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with the exponential integral function Ej of degree j

Ej(z) :=

∞∫

1

e−zt

t j
dt .

Thus we obtain the representation

Ψe(x, y) =
e−iαx

4π

∑

m∈Z

e2πimα
∞∑

j=0

(ak)2j

j!
Ej+1

( r2
m

4a2

)
. (3.5)

The function Ψw can be transformed to a computationally suitable form by using the
scaled complementary error function

w(z) := e−z2

erfc(−iz) = e−z2 2√
π

∞∫

−iz

e−t2 dt =
2√
π

∫ ∞

0
e−t2 e2izt dt , (3.6)

which has the properties

w(−z) = w(z) , w(−z) = 2e−z2 − w(z) , |w(z)| ≤ 1 for Im z ≥ 0 . (3.7)

Using

e∓iyβnerfc
(
− iaβn ± y

2a

)
= ea2k2

e−a2α2
n e−y2/4a2

w
(
aβn ± i

y

2a

)
,

we can write (3.3) in the form

Ψw(x, y) =
i e−y2/4a2

ea2k2

8π

∑

n∈Z

einx e−a2α2
n

βn

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

))
. (3.8)

From (3.7) it can be seen that |w(z)| = O(e (Im z)2−(Re z)2) if Im z < −|Re z|. To avoid
numerical overflow problems, which may occur if |y|/a is large, we use the relation

w
(
aβn − i

|y|
2a

)
= 2 ey2/4a2

e−a2(k2−α2
n)ei|y|βn − w

(
− aβn + i

|y|
2a

)
(3.9)

obtained from (3.7), which gives

i e−y2/4a2

ea2k2

8π

e−a2α2
n

βn

(
w
(
aβn − i

|y|
2a

)
+ w

(
− aβn + i

|y|
2a

))
=

i

4π

ei|y|βn

βn
.

Introducing the finite set P := {n ∈ Z : Im βn + Reβn < |y|/[2a2]}, the function Ψw is
decomposed into an exponentially converging series and two finite sums

Ψw(x, y) =
i e−y2/4a2

ea2k2

8π




∑

n∈Z\P

einx e−a2α2
n

βn

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

))

+
∑

n∈P

einx e−a2α2
n

βn

(
w
(
aβn + i

|y|
2a

)
− w

(
− aβn + i

|y|
2a

))}
+

i

4π

∑

n∈P

einxei|y|βn

βn
.

(3.10)
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Note that, in the case y = 0 which occurs frequently for binary gratings, we obtain the
exponentially converging series

Ψw(x, 0) =
i ea2k2

4π

∑

n∈Z

einx e−a2α2
n

βn
w
(
aβn

)
.

The representation Ψ = Ψe + Ψw is also used for the computation of the gradient of Ψ:

(∂x + iα)Ψ(x, y) = − 1

4π

∑

n∈Z

αneinx+iβn|y|

βn
, ∂yΨ(x, y) = − 1

4π

∑

n∈Z

sign(y)einx+iβn|y| ,

which is needed to compute the kernels of the operators K̃ and L̃. Since ∂zEj(z) =
−Ej−1(z) with E0(z) := e−z/z, the derivatives of Ψe are

(∂x + iα)Ψe(x, y) = −e−iαx

2π

∑

m∈Z

(x − 2πm) e2πimα

(
e−r2

m/4a2

r2
m

+

∞∑

j=1

(ak)2j

4a2j!
Ej

( r2
m

4a2

))
,

∂yΨ
e(x, y) = −y e−iαx

2π

∑

m∈Z

e2πimα

(
e−r2

m/4a2

r2
m

+
∞∑

j=1

(ak)2j

4a2j!
Ej

( r2
m

4a2

))
.

(3.11)

The derivatives of Ψw are given by

(∂x + iα)Ψw(x, y) = −e−y2/4a2

ea2k2

8π

{
∑

n∈Z\P

αneinx e−a2α2
n

βn

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

))

+
∑

n∈P

αneinx e−a2α2
n

βn

(
w
(
aβn + i

|y|
2a

)
− w

(
− aβn + i

|y|
2a

))}
− 1

4π

∑

n∈P

αneinxei|y|βn

βn
,

(3.12)

and

∂yΨ
w(x) =

e−y2/4a2

ea2k2

8π
sign(y)

{
∑

n∈Z\P

einx e−a2α2
n

(
w
(
aβn + i

|y|
2a

)
− w

(
aβn − i

|y|
2a

))

+
∑

n∈P

einx e−a2α2
n

(
w
(
aβn + i

|y|
2a

)
+ w

(
− aβn + i

|y|
2a

))}
− sign(y)

1

4π

∑

n∈P

einxei|y|βn ,

(3.13)

where we use the relation

∂y

(
e−y2/4a2

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

)))

=iβne−y2/4a2

(
w
(
aβn − i

y

2a

)
− w

(
aβn + i

y

2a

))
.
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The numerical calculation of the exponential integral Ej and its derivatives present no
problem using a standard routine for E1 and the known recurrence relations. The scaled
complementary error function w(z) is computed using two different algorithms depending
on the value of z, the algorithm 680 from ACM ( [21]) and the summation algorithm
of [17]. The value of the parameter a should be chosen small enough to ensure the rapid
convergence of the series for Ψe and its derivatives and large enough to ensure the rapid
convergence of the series representations for Ψw and its derivatives. After numerical tests
we found that the choice a|k| = 6 is a good compromise.

3.2 Quadrature algorithm

The concept for the quadrature rules is simple and well known (cf. [26]). Suppose we have
to evaluate one of the integrals Ṽjm,kϕ(t), K̃jm,kϕ(t), or L̃jm,kϕ(t), from Section 2.3 with
a spline basis function ϕ. We write this integral in the form

I :=

∫ 2π

0
k(t, s)ϕ(s)ds =

∫

{s∈[0,2π]: ϕ(s)6=0}
k(t, s)ϕ(s)ds.

Of course, the functions k and ϕ are periodic with period 2π. The function ϕ is a piece-
wise polynomial spline function subordinate to a mesh of collocation points {scol

n : n =
1, . . . , N}. The kernel function k is either weakly singular with singularity for s tending
to t or almost singular for s tending to t. Weakly singular means |k(t, s)| ≤ c log(t−s) and
almost singular means either |k(t, s)| ≤ cmin{|t − s|−1, ε−1} or |k(t, s)| ≤ cmin{log(|t −
s|−1), log(ε−1)}, where c is an appropriate positive constant and where ε is a fixed small
positive number. The weakly singular case occurs if the single layer integral I = Ṽjj,kϕ(t)
is computed over the curve Γj and if the collocation point corresponding to parameter
value t is located on the same curve Γj . The almost singular case appears if an integral
I is computed over a curve Γj and if the collocation point γm(t′) is located on a neighbor
curve Γm, but extremely close to the support {γj(s) ∈ [0, 2π] : ϕ(s) 6= 0} of ϕ. In this
case the almost singular point t is the parameter of the point γj(t) ∈ γj closest to the
collocation point γm(t′), and ε is the distance between γj(t

′) and γj(t). A second case
of an almost singular integrand appears if the curve of integration Γj has corners, if I is

the double layer integral K̃jj,kϕ(t) or the adjoint double layer integral L̃jj,kϕ(t), if the
collocation point γj(t) ∈ Γj is located in a vicinity of a corner point, and if the support of
ϕ contains points of Γj from the other side of the corner. In this case ε is the distance of
γj(t) to the corner point.

To compute the integral I by quadrature, we introduce a quadrature mesh which is
geometrically graded towards t, i.e., a mesh {sgeo

m : n = 1, . . . ,M} such that

{
sgeo
m : m = 1, . . . ,M

}
:=

{
t
}

∪
{

s = t ± ql : l = 1, . . . , L, s ∈ [0, 2π]
}

∪
{

s = t ± ql ± 2π : l = 1, . . . , L, s ∈ [0, 2π]
}

,
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with an exponent q ≤ 1 (q = 0.2 or q = 0.3) and a suitable refinement number L. In
the almost singular case, L must be chosen such that qL ≤ ε. For the weakly singular
case, L must be determined by numerical tests and depends on the desired accuracy.
The geometrically graded mesh {scol

n : n = 1, . . . , N} is a good quadrature mesh for
the quadrature points of the piecewise polynomial ϕ and {sgeo

m : n = 1, . . . ,M} a good
choice to treat the singularity inherent in the kernel function k. Consequently, we form
the quadrature mesh by joining the two.

{
squa
n : n = 1, . . . , Ñ

}
:=
{
sgeo
m : m = 1, . . . ,M

}
∪
{

scol
n : n = 1, . . . , N

}
.

Now the quadrature rule for the computation of I is the composite rule

I =

Ñ∑

n=1

∫ squa
n+1

squa
n

k(t, s)ϕ(s)ds ∼
Ñ∑

n=1

ln∑

l=1

k
(
t, squa

n + τ ln
l △sn

)
ϕ
(
squa
n + τ ln

l △sn

)
wln

l △sn,

△sn := [squa
n+1 − squa

n ],

where
∫ 1
0 f(s)ds ∼∑ln

l=1 f(τ ln
l )wln

l is the Gauss-Legendre rule of order ln. The orders ln are
chosen between a minimal value lmin = 2 or 3 and a maximal value lmax = c1+2 log N with
a suitable constant c1. Most of the the intervals [squa

n , squa
n+1] are far from the singularity

point t of function k, and we can choose ln = lmin. On the other hand, for the intervals
[squa

n , squa
n+1] ⊆ [scol

n′ , scol
n′+1] with t ∈ [scol

n′ , scol
n′+1], we choose the maximal ln = lmax. On

intervals [squa
n , squa

n+1] ⊆ [scol
n′′ , scol

n′′+1] with [scol
n′′ , scol

n′′+1] adjacent or close to [scol
n′ , scol

n′+1], we

reduce ln linearly with the distance to [scol
n′ , scol

n′+1], i.e., we set ln := max{lmin, lmax−2|n′′−
n′|}.

4 Preconditioning of the system of linear equations

For a very accurate determination of the grating efficiencies or for problems with large ra-
tios period over wavelength, a fine discretization is needed. Hence, large systems of linear
equations must be solved. Moreover, in contrast to the sparse matrices of the finite element
methods, the matrices in the systems of linear equations of boundary element methods
are densely populated. Special techniques for sparse systems do not apply. Consequently,
the use of direct solvers requires huge amounts of computing time. Alternatively, iterative
solvers like, e.g., the GMRES method [24] converge slowly for ill-conditioned matrix equa-
tions or even diverge. Unfortunately, the boundary element matrices are ill-conditioned.
The large condition numbers are attributed, on the one hand, to the non-zero orders of
the integral operators (order of pseudodifferential operators acting in the scale of Sobolev
spaces) and, on the other hand, to the high wave numbers, i.e., to the oscillatory behavior
of the kernel functions and solutions. Especially, the high wave numbers cause serious
troubles.

Clearly, to accelerate the convergence of the iterative solvers for the discretization of
(2.20), a good preconditioner is needed. We denote the discretized functions, i.e., the
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vector of coefficients with respect to a trial space basis, by adding the lower index N to
the symbols of the original functions. Recall that N is the number of collocation points
at the curves Γj. Similarly, we denote the discretized operators, i.e., the matrices of the
finite dimensional operators with respect to a trial space basis, by adding the lower index
N to the operator symbols. In other words, the matrix equation corresponding to (2.20)
is

(
A1,1,N A1,2,N

A2,1,N A2,2,N

)(
w1,N

w2,N

)
=

(
0

ui
N

)
. (4.1)

Instead of (4.1) we solve the preconditioned equation

(
B1,1,N B1,2,N

B2,1,N B2,2,N

)(
A1,1,N A1,2,N

A2,1,N A2,2,N

)(
w1,N

w2,N

)
=

(
B1,1,N B1,2,N

B2,1,N B2,2,N

)(
0

ui
N

)
(4.2)

iteratively, e.g., by GMRES. Clearly, (4.2) is equivalent to (4.1) if the preconditioner
(Bi,j,N)2i,j=1 is invertible. In order to guarantee a faster convergence of GMRES for (4.2),
the entries Bi,j,N must be chosen such that the product matrix on the left-hand side of
(4.2) is better conditioned than the matrix of (4.1). Sometimes an ILU type inverse of
the matrix in (4.1) is a good choice for a preconditioner. However, we have used the
following preconditioner. We denote the matrix of the discrete Fourier transform FFT in
the N -dimensional Euclidean space by FN . For any N × N matrix M = (mk,l)

N
k,l=1 and

any integer d ≥ 0, we define [M ]d by setting to zero all the entries except those of the d
diagonals around the main diagonal and of the d diagonals in the left lower resp. right
upper corner.

[M ]d :=
(
mk,l,d

)N

k,l=1
, mk,l,d :=

{
mk,l if |k − l| ≤ d or |k − l ± N | ≤ d ,
0 else.

Then our preconditioner is defined by

(
B1,1,N B1,2,N

B2,1,N B2,2,N

)
:=

(
F−1

N 0

0 F−1
N

)(
[FNA1,1,NF−1

N ]d [FNA1,2,NF−1
N ]d

[FNA2,1,NF−1
N ]d [FNA2,2,NF−1

N ]d

)−1(
FN 0
0 FN

)
,

i.e., we take the Fourier transform of the matrices Ai,j,N , we truncate upto d diagonals
around the main diagonal and close to the matrix corners, and finally we choose the inverse
of the truncated block matrix as a preconditioner for the Fourier transformed equation
(4.1). To compute the preconditioner, we can use the Fast Fourier Transform algorithm
for FN and F−1

N and fast direct solvers for matrices with only a few number of non-zero
diagonals adjacent to the main diagonal.

In Table 2 we present the number of preconditioned GMRES iterations for the example
introduced at the end of Section 2.4. The GMRES iteration is interrupted if the residual
error is less than 10−14. Table 2 shows that the iteration count remains almost bounded.
For TE polarization, the corresponding It is even smaller. However, for a difficult problem
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Table 2: Number of preconditioned GMRES iterations in case of a simple echelle grating.

graded mesh uniform mesh
N

Number of Iterations Number of Iterations

64 44 29

128 48 30

256 50 29

512 52 29

1024 54 31

2048 53

4096 55

with large ratio period over wavelength, more iterations are needed. Nevertheless, precon-
ditioned GMRES is still much faster than Gaussian elimination. For instance, the echelle
grating with a grating frequency of 83 periods per mm and illuminated with a wavelength
equal to 180 nm (cf. [22]) requires 292 iterations to reduce the residual error of a 2 · 4 096
dimensional system to 10−8. Note that this example is computed over uniform meshes of
collocation points. All the degrees of freedom are needed to resolve the oscillations of the
solution. Mesh refinement at corners reduces the error only for more than 4 096 collocation
points per curve.

5 Example

A useful and demanding application is the simulation of coated echelle gratings employed
in a Littrow reflection configuration which has been investigated in detail e.g. in [14].

Echelle gratings are blazed gratings possessing an asymmetrical triangular groove shape
with an apex angle of 90◦. They are coarse, but precisely manufactured gratings used only
at high spectral orders (50 to 2500) and high angles of diffraction between 63◦ and 80◦. The
small, steep facets of the triangular profile are used as working facets. In reflection they act
as micro-mirrors so that when incident light is close to the direction normal to the facets,
almost all of it is reflected into a direction almost opposite to that of the incidence. Under
a suitable choice of grating period and wavelength this is also the direction of a diffraction
order, and blazing occurs in that order. This grating configuration is called Littrow
mount, and the corresponding angle of incidence is the Littrow angle θL characterized by
the condition

sin θL =
pλ

2d

with wavelength λ, grating period d, and diffraction order p. The configuration is schemat-
ically depicted in Fig. 2.

A salient feature of echelles is a high angular dispersion and, possibly, a high resolution.
The dispersion of echelle gratings can be as high as that of gratings with fine pitch, but,



1002 A. Rathsfeld, G. Schmidt and B. H. Kleemann / Commun. Comput. Phys., 1 (2006), pp. 984-1009

b

TM

Lα θ

Figure 2: Echelle grating in Littrow mount: blaze angle αb ≥ 60◦, apex angle equal to 90◦.

C l Cb

Figure 3: Coated echelle grating: different thickness of coating over the two facets of the profile.

because of the low ratio λ/d, polarization effects play a minor role. Hence, these gratings
are the main tools for applications with demanding spectral resolution (cf. e.g. [16]).
Echelles are also employed as external resonator cavity diffraction gratings in high power
laser applications. Because of the high angular dispersion, they are the main components
for narrowing the desired laser line. Due to the high power density, the gratings are prone
to damage and the extension of lifetime is an important issue. One way to improve lifetime
is to minimize energy absorption in the grating while preserving a maximal efficiency in the
working order. To realize this, aluminium echelles coated with dielectric protective layers of
different thickness over the two facets (cf. Fig. 3) have been proposed and optimized in [14].
Of course, the optimization has been based on a rigorous electromagnetic simulation. By
Cb we denote the coating thickness on the blaze facet and by Cl that on the long facet
which is the anti-blaze facet. Both thicknesses are measured perpendicular to the facet
planes.

While in both cases, TE and TM polarization, the thickness Cb can be optimal with
respect to a maximal efficiency and with respect to minimal absorption at the same time,
this is not the case for the optimization of Cl. This can be seen in Figs. 4 and 5 for TE
and TM polarization, respectively. In other words, it is only possible to optimize the pair
of coating thicknesses of the layer with respect to one of the two objectives.

A further important observation is that a wrong choice of coating thickness on the anti-
blaze facet can significantly reduce efficiency and increase absorption due to a resonance
anomaly. The grazing incidence to the metallic anti-blaze facet together with a specific
thickness of the dielectric coating couples guided waves into the coated grating. The
coating thickness for which the resonance anomaly occurs can be deduced by e.g. rigorous
calculations (see Fig. 4 for a coating thickness of 37 nm on the anti-blaze facet and Fig. 5 for
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Figure 4: TE efficiency (TE coated) in the −122nd diffraction order and TE absorption (aTE coated) depending
on Cl: MgF2 coated aluminium echelle grating, Cb = 60 nm. For comparison: TE efficiency (TE uc) and TE
absorption (aTE uc) for uncoated grating.
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Figure 5: TM efficiency (TM coated) in the −122nd diffraction order and TM absorption (aTM coated) de-
pending on Cl: MgF2 coated aluminium echelle grating, Cb= 60 nm. For comparison: TM efficiency (TM uc)
and TM absorption (aTM uc) for uncoated grating.

a coating thickness of 73 nm on the anti-blaze facet). Now the coating can be adjusted to
avoid these critical values. Moreover, coatings thinner than the resonance values by only a
few nanometers maximize the efficiency. If the coating deposition process is technologically
highly developed, the efficiency can be improved by up to 20 basis points compared to a
simple coating. So, the protective layer improves the properties of the bare echelle.
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For the numerical evaluation, we compare the spline collocation method (SC) described
in the present publication with the method of the first version of the package IESMP
(cf. [13, 20]) which is based on the hybrid discretization scheme (H) described in Section
2.4.

The blaze angle αb, which is also the Littrow angle θL, is 78.7◦. Hence, the incidence
is normal to the small, steep echelle facets so that they can act as micro-mirrors. Our
calculations are performed for the excimer laser wavelength λ = 193.35 nm and grating
period d = 12.0285µm corresponding to 83.136 lines/mm. In this case, the working order
is the −122nd diffraction order, which is diffracted backward to the direction of incidence.
Due to a ratio of d/λ = 62 and the fact that profile edges and small coating thicknesses
have to be treated, the example is quite demanding. Aluminium is used as the reflecting
material of the grating [16] due to the high reflectivity for the given wavelength. Indeed,
it has a complex refractive index of ν = 0.113 + i2.208 for the above given wavelength.
Since aluminium creates a natural protection layer of Al2O3, the fast-fired aluminium
layer is immediately coated by an MgF2 layer to prevent oxidization (cf. [16]). Often
the laser source is linearly polarized, so that either TE polarization or TM polarization
is considered here. As done in [14] for the first time, we also consider an independent
choice of the coating thickness Cb on the blaze facet and of the thickness Cl on the long
facet of the echelle grating. The refractive index of the dielectric coating material MgF2

is ν = 1.44.

Fixing the coating thickness Cb to 60 nm, we let Cl vary between 3 nm and 90 nm
to study the resonance effects. The results presented in Figs. 4 and 5 are calculated
with method (SC) using N = 2048 discretization points without mesh refinement at
the edges because of the large ratio d/λ. A comparison of the same method with only
N = 1024 discretization points in Fig. 6 shows deviations smaller than 1-2% which is
sufficient for practical requirements. Similar calculations with the older method (H) using
N = 1024 result in deviations smaller than 1% for the efficiency and smaller than 5% for
the absorption as long as the coating thickness Cl is larger than 5 nm. For e.g. Cl = 3
nm, the deviation of the TM efficiency is 12% and the absorption could not be determined
because the sum of efficiencies is larger than 1. Nevertheless, the results of method (H)
with N = 2048 discretization points differ from those of method (SC) with N = 2048
by less than 3% for Cl = 3 nm and less than 1% for larger thicknesses. Hence, in this
application with a relatively large value Cb, method (SC) can be used with N = 1024
discretization points and satisfies the practical requirements. Also method (H) can be
used with N = 1024 discretization points resulting in an accuracy sufficient for practical
use. Only for thicknesses smaller than Cl = 6 nm, N = 2048 discretization points are
needed.

Now, using the new method (SC), the effects of the natural protection layer of Al2O3

with the refractive index ν = 1.78 + i0.001 on top of the above grating type can be inves-
tigated. The coating thicknesses Cl as well as Cb are chosen from the set 3, 6, 10, 15, 20, 25
so that calculations for 36 combinations are to be performed. A typical result with equal
thicknesses on both facets using N = 2048 discretization points is given in Fig. 7. A
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Figure 6: Relative error of polarization dependent efficiency and absorption: Cb = 60 nm, small Cl, MgF2 coated
aluminium echelle grating. The error is deviation of approximate efficiencies with N = 1024 and N = 2048
discretization points of the (SC) method.
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Figure 7: Polarization dependent efficiency in the −122nd diffraction order and absorption (a TE, a TM): Cb

= Cl, Al2O3 coated aluminium echelle grating, natural protection layer.

comparison with results of the same method (SC) using only N = 1024 discretization
points in Fig. 8 shows deviations smaller than 5% which would be sufficient for practical
use. Similar results hold for all other combinations of coating thicknesses independently
on whether the values of Cb or Cl are small or large. A comparison using N = 1024
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Figure 8: Relative error of the polarization dependent efficiency and absorption (a TE, a TM): Cb = Cl,
Al2O3 coated aluminium echelle grating, natural protection layer. The error is between N = 1024 and N = 2048
discretization points of the (SC) method.
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Figure 9: Relative error of the polarization dependent efficiency and absorption (a TE, a TM): Cb = Cl.
Al2O3 coated aluminium echelle grating. The error is between N = 1024 and N = 2048 discretization points
of the (H) method.

discretization points for the older method (H) and N = 2048 discretization points of the
(SC) method results in relatively large deviations. For the example with equal thicknesses
on both facets, the deviation plots of these calculations can be found in Fig. 9, the relative
errors are up to 20% if the coating thicknesses are 15 nm and they grow significantly if
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the thicknesses shrink. In particular, if one of the coating thicknesses is 10 nm or less,
then the efficiency error grows from 15% to 60% and the accuracy of the approximate
absorption values is not acceptable. In general, the simulation for a small thickness on the
blaze facet is more challenging than a small thickness of the same size on the anti-blaze
facet.

Hence, for this second application, method (SC) can be used with N = 1024 discretiza-
tion points in all practical cases and yields an accuracy sufficient for practical requirements.
In contrast to this, method (H) cannot be used with N = 1024 discretization points since
most of the approximate values are inaccurate and not acceptable. Even with N = 2048
method (H) can be used safely only under the restrictions Cb ≥ 15 nm and Cl > 25 nm.
Otherwise one has to check whether, for the actual pair of thicknesses, the approximation
is acceptable or not.

Now let us compare the computation times of the considered methods (SC) and (H)
based on the same kernel function evaluations and on GMRES iterations upto an accuracy
of 10−10. The solution of the problem with coating thickness Cl = 60 nm by the method
(SC) with N = 1024 on an AMD Opteron, 2.6 GHz, required about 692 seconds with the
major part of 651 seconds for the computation of the kernel functions. This relatively
huge amount is caused by the high wave number and the presence of thin layers in our
problem. Since the computations of the kernel functions can be performed in parallel, a
considerable speed up of the program is possible. The preconditioned GMRES needs 140
and 117 iterations for solving the linear systems in TE and TM polarization, respectively,
which took 18 seconds. Setting the computation time for method (SC) with N = 1024
to 100%, method (SC) with N = 2048 is accomplished in 340% of the time, while (H)
with N = 1024 and N = 2048 requires 40% and 170% of the time, respectively. We
recommend the following rule for switching between (SC) and (H) and for choosing N the
number of discretization points. If possible, use method (H) with N = 1024. This is the
fastest choice, and often the results are sufficiently accurate from the practical point of
view. If this is not the case, then switch to (SC) but retain N . This costs a factor 2.5
in computation time, only. In the case that the results are still not sufficiently accurate,
switch back to method (H), but now double the number N . Finally, in the rare case of
inaccurate results for method (H) and doubled N , method (SC) with doubled N is to be
chosen. In any case, for small Cb and Cl, method (SC) is to be used right from the start.

Our next remark concerns the iteration scheme GMRES. With the preconditioning
described in Section 4, we are now in the position to solve the equations arising from
coated gratings iteratively. This was, for a long time, not possible because of the ill-
conditioned matrices. The implementation of the preconditioned GMRES reduces the
solution time of the 1024 × 1024 linear system to 1/6 of the time needed with Gaussian
elimination. For N > 1024, this reduction is even more pronounced.

Already the old IESMP ( [20], [13]) has been applied to design, development, and
quality control in the grating production at Carl Zeiss Jena since 1985. The new IESMP
is more flexible, more accurate and more stable. If the numerical error due to corner
singularities is dominating, then the new IESMP is even faster than the old one. Again,
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the application of the method will be design, research, development, and quality control.
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