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A MPI PARALLEL PRECONDITIONED

SPECTRAL ELEMENT METHOD FOR

THE HELMHOLTZ EQUATION∗
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Abstract Spectral element method is well known as high-order method, and has po-

tential better parallel feature as compared with low order methods. In this paper, a

parallel preconditioned conjugate gradient iterative method is proposed to solving the

spectral element approximation of the Helmholtz equation. The parallel algorithm is

shown to have good performance as compared to non parallel cases, especially when the

stiffness matrix is not memorized. A series of numerical experiments in one dimen-

sional case is carried out to demonstrate the efficiency of the proposed method.
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1 Introduction

The spectral element method (SEM) is essentially a discretization method for the approx-

imate solution of partial differential equations expressed in a weak form, based on high-order

Lagrangian interpolants used in conjunction with particular quadrature rules. It combines the

geometric flexibility of finite element techniques with rapid convergence rate of spectral schemes

[7]. Due to these advantages, the spectral element method is a viable alternative to currently

popular methods such as finite volumes and finite elements, if accurate solutions of regular prob-

lems are sought. Another benefit of the SEM is that it is convenient to be paralleled in the

implementation. In practical applications, moderate number of elements and high order polyno-

mial degree are used, consequently most computation is performed within, rather than between,

∗ This work was supported by Natural Science Foundation of Fujian under Grant A0310002 and the

Excellent Young Teachers Program (EYTP) of MOE of China.
† Corresponding author.

Received: Sep. 9, 2004.



A MPI Parallel Preconditioned Spectral Element Method for the Helmholtz Equation · 57 ·

elements. This feature makes the SEM great feasible to be implemented in parallel way.

Despite these nice features, the SEM has been thought to be more expensive in terms of

the computational complexity and condition number of the stiffness matrix, as compared to

the finite element methods with the same number of degree-of-freedom. There exists different

approaches currently adopted in the SEM. The traditional approach in the spectral element

community [7] has been to used a nodal tensorial expansion basis within structured subdomains

(i.e., quadrilaterals or hexahedral elements). These bases are typically constructed from Lagrange

polynomials through Gauss Lobatto Legendre quadrature points. In large-scale problems, long-

range interactions between the basis elements within each substructure result in quite dense

and expensive factorizations of the stiffness matrix, and the use of direct methods is hence

not economical because of the large memory requirements [5]. In the past decade, iterative

methods have been developed to solving the spectral element discretization problems of various

equations. However, it has also been proven that the condition number of the SE stiffness matrix

of the Laplacian operator is of order O(KNd+1) [2], where K is the element number, N is the

polynomial degree, d is the spatial dimension. Naive iterative methods are not really efficient

due to the fact that too many iterations are required to reach the convergence. For a long

time, many preconditioners have been proposed to overcome this difficulty. Orszag [12] and

Deville et al. [3] proposed the use of a finite difference and a finite element model, respectively,

as preconditioners for the spectral matrix. The triangulation for this finite element method

was based on the hexahedrals of the Gauss-Lobatto-Legendre (GLL) mesh of one element. A

theoretical justification of this preconditioning is provided by Parter and Rothman in [10,8].

Extension of these ideas to the SEM was proposed by Fischer [4], who used overlapping Schwarz

methods applied to the GLL finite element model. The generalization of the result of [8] to the

multi-element case was given by Huang and Xu in [6].

In this paper we follow the above mentioned ideas, but consider a different way to implement

iterative algorithm for the preconditioned spectral element method. Precisely, we will consider a

parallel preconditioned conjugate gradient method for the spectral element stiffness matrix using

the linear finite element method as the preconditioner. Our main aim is to carry out a series

of numerical experiences to show that use of the parallel algorithm can significantly reduce the

CPU time of solving the spectral element system of the Helmholtz equation.

2 Formulation of the problem

We consider the following one dimensional Helmholtz equation: Find a function u defined

in Ω = (a, b), such that { −(pu′)′ + λ2u = f, in Ω,
u(a) = u(b) = 0,

(1)

where λ is a real number, prime (’) denotes differentiation with respect to x, f(x), p(x) are

functions defined over Ω, which are assumed that there exists two positive constants τ0 and τ∞
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such that

τ∞ > p(x) > τ0, ∀x ∈ Ω. (2)

The variational formulation of the problem (1) is given by: Find u ∈ H1
0 (Ω) such that∫

Ω

p(x)u′(x)v′(x)dx + λ2

∫
Ω

u(x)v(x)dx =
∫

Ω

f(x)v(x)dx, ∀v ∈ H1
0 (Ω). (3)

The spectral element discretization consists in choosing a pair of integers h = (N, K) and

divide the interval Ω into subintervals

Ω =
K⋃

k=1

Ωk,

where the k-th interval is assumed to have the length lk. The Ωk, k = 1, · · · , K are generally

called spectral elements. The spectral element space for the approximate solution, denoted by

uh, is the subspace Xh of H1
0 (Ω), defined as the set of all piecewise polynomials of degree less or

equal than N :

Xh = H1
0 (Ω) ∩ PN,K(Ω),

where

PN,K(Ω) = {φ ∈ L2(Ω), φ|Ωk
∈ PN (Ωk), k = 1, · · · , K}.

The SEM discrete problem is: Find uh ∈ Xh such that∫
Ω

p(x)u′
h(x)v′h(x)dx + λ2

∫
Ω

uh(x)vh(x)dx =
∫

Ω

f(x)vh(x)dx, ∀vh ∈ Xh. (4)

Let ξ0, ξ1, · · · , ξN stand for the Gauss-Labatto-Legendre (GLL) points, given by the zeros

in Λ = [−1, 1] of the Legendre polynomial of degree N :

ξ0 = −1, ξN = 1, L′
N(ξi) = 0, ∀i ∈ {1, · · · , N − 1}.

The associated weights are denoted by ρi, i = 0, · · · , N .

Let Ωk = [ak−1, ak], then the global GLL points and associated weights are defined as

follows:

ξi,k = ak−1 + (ξi + 1)lk/2, ρi,k = ρilk/2, ∀i, 0 ≤ i ≤ N, ∀k, 1 ≤ k ≤ K.

Using the well-known Gauss-Lobatto quadrature to approximate the integrals in problem (4)

gives the following SEM discretization problem: Find uh ∈ Xh such that

K∑
k=1

N∑
i=0

p(ξi,k)u
′
h(ξi,k)v

′
h(ξi,k)ρi,k + λ2

K∑
k=1

N∑
i=0

uh(ξi,k)vh(ξi,k)ρi,k

=
K∑

k=1

N∑
i=0

f(ξi,k)vh(ξi,k)ρi,k, ∀vh ∈ Xh.

(5)
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To arrive at a matrix statement, we must choose a basis for the discrete space Xh. There ex-

ists several possibilities on the basis choice. The most natural one is the Lagrangian interpolants

based on the elemental GLL points [7].

A function wh ∈ Xh can be expressed as

wk
h(r) =

N∑
i=0

wk
i hi(r), x ∈ Ωk → r ∈ Λ (6)

with

hi ∈ PN (Λ), hi(ξj) = δij , ∀i, j ∈ {0, · · · , N} (7)

and wk
i = wh(ξi,k). The interfacial continuity and the boundary conditions of wh is imposed by

the requirements

wk
N = wk+1

0 , ∀k ∈ {1, · · · , K − 1}
and

w1
0 = wK

N = 0.

By expressing uh in this way and choosing each test function vh to be nonzero at only one

global collocation point, we obtain the following algebraic equations given in matrix form:

K∑
k=1

′
N∑

j=0

Sk
iju

k
j =

K∑
k=1

′
N∑

j=0

Bk
ijf(ξj,k), (8)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sk
ij = Lk

ij + λ2Bk
ij · · · · · · · · · · · · ∀i, j ∈ {0, · · · , N},

Lk
ij =

4
l2k

N∑
q=0

DqiDqjp(ξq,k)ρq,k · · · · · · · · · ∀i, j ∈ {0, · · · , N},

Bk
ij = ρi,kδij · · · · · · · · · · · · · · · ∀i, j ∈ {0, · · · , N}

with D = (Dij)(N+1)×(N+1) denoting the Legendre derivative matrix [1], Σ
′

denotes elemental

direct stiffness summation, in which the continuity and boundary conditions imposed on uh are

taken into account.

3 FE Preconditioning

Since the condition number of the spectral element matrix is generally large, preconditioning

will be necessary for an iterative method to be efficient. In this section, we recall the precondi-

tioner based on the linear finite element method using the GLL mesh. This kind of preconditioner

has been introduced by Deville [3], and then investigated by Parter [9] and Huang and Xu [6].

We refer to [6] for a detailed description of this preconditioner. Briefly, the finite element matrix,

denoted by P , has a similar structure as the spectral element matrix S:

S =

⎛
⎜⎝

S1

⊕
. . . ⊕

SK

⎞
⎟⎠ , P =

⎛
⎜⎝

P 1

⊕
. . . ⊕

PK

⎞
⎟⎠ ,
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where the symbol ⊕ is defined: if B, C are two matrices as follow:

B =
(

B̂ α
αT b

)
, C =

(
c βT

β Ĉ

)
,

then (
B ⊕

C

)
=

(
B̂ α
αT b + c βT

β Ĉ

)
.

The matrices S1, SK , P 1, PK are of order N ×N , Sk, P k, 2 ≤ k ≤ K − 1, are of order (N + 1)×
(N + 1). A difference between Sk and P k is that Sk are full matrices while P k are tridiagonal.

Huang and Xu [6] have proven that using the preconditioner P to the matrix S results in a

preconditioned system having the condition number independent of N and K.

4 Parallel preconditioned conjugate gradient method

4.1 MPI introduction

As a standard parallel environment, Message-Passing Interface (MPI) is employed in the

design of our numerical algorithm. This is for the following reasons: first, MPI is a standard

specification for message-passing libraries. Its portable implementation MPICH has been used

for a wide variety of parallel and distributed computing environments. Second, MPICH is freely

available. It supports a variety of operating systems including Windows, Linux, Unix, and a

variety of programming language including FORTRAN, C, C++. Third, the program based on

MPI can run on a computer having many CPU and can also run on a cluster of workstation

network.

4.2 Parallel algorithm

Now we describe in detail our PCG parallel algorithm for the SEM Helmholtz system. As

a powerful iterative method, PCG method has been one of the most widely applied iterative

methods in the literature, especially when facing symmetric positive systems. We refer to [11]

for a classical description of the PCG method. Generally speaking, in the PCG we need to solve

the preconditioner once and calculate the product of matrix-vector once in each step of iteration.

The formation of the spectral element stiffness matrix and the matrix-vector products cost most

in the overall calculation.

Suppose we have M(M > 1) processors in our architecture, we call the first processor as

master processor and other M − 1 processors as slave processor. A processor can be a CPU or a

workstation in the cluster. We assign the tasks for each processor in the following way: first we

divide the K elements into M groups: K1, · · · , KM , such that

M∑
n=1

Km = K, Km ≥ 0, m = 1, · · · , M.

Each group is assigned to a processor. The tasks Km for the m-th processor are numbered from
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km to km + Km − 1. Hence

km + Km = km+1, 1 ≤ m ≤ M − 1,

k1 = 1,

kM + KM = K + 1.

Let Em := {km, · · · , km + Km − 1}, 1 ≤ m ≤ M , then all products of the matrix Sk for k ∈ Em

and a vector are calculated by the m-th processor. If all processors have same performance, then

reasonable workload of each processor should be balanced. In this case we would require the

following balance condition:

|Ki − Kj | ≤ 1, 1 ≤, i, j ≤ M,

which can be realized by choosing

Km =
[

K

M

]
, if 1 ≤ m ≤ M − (K mod M),

Km =
[

K

M

]
+ 1, if M − (K mod M) < m ≤ M.

An example of natural choice for Km is given in Tab.1, where we have 17 elements (K = 17),

5 processors (M = 5). In this case each processor can be distributed 3 or 4 elements.

Table 1 Distribution of the tasks for K = 17 and M = 5.

m Em

1 1,2,3

2 4,5,6

3 7,8,9

4 10,11,12,13

5 14,15,16,17

The m-th processor calculates Skuk for each iterative solution uk for all k ∈ Em for m =

1, · · · , M . Once all Skuk are obtained, the master processor assembles the products coming from

the slave processors to carry out the elemental stiffness summation. Other related work such as

the global norm calculation, determination of convergence and so on, are also performed in the

master processor.

In summary, the overall algorithm for the preconditioned SEM of the Helmholtz equation

can be described as follows:

(1) The master processor computes the finite element preconditioner.

(2) Each processor computes corresponding Skuk, ∀k ∈ Em .
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(3) Each slave processor sends the elemental component of their own to the master processor.

The master processor assembles these components to form the full vector, and then carry out

the stiffness summation.

(4) The master processor solves the global preconditioner, and other necessary works re-

quired by the PCG method.

(5) The master processor computes the residual to determine whether the solution is ob-

tained with required accuracy. If non, it sends to each slave processor the corresponding compo-

nents of the full vector, go to (2).

The above process can also be represented in a schematic way, see Fig.1.

Figure 1 Schematic representation of the PCG algorithm.

Remark 1 Note that the data exchange between different processors is not significant as

compared to the evaluation of the matrix-vector products within each processor. Actually the

preconditioner is solved by a direct method by the master processor, the data exchange required

by our algorithm is optimal (this means that the communication is minimal). However, in the

case of two or three dimensional problems, the preconditioner have to be solved iteratively due to

the memory limit, the data exchange strategy described above can be improved by only sending

the interfacial data of the vector to the master processor. Doing so could furthermore reduce the

communications between the processors.

Remark 2 In the step (2), the spectral element matrix was constructed explicitly in order

to reduce the CPU time for the matrix-vector products. However in the 2- and 3-dimensional

cases, the storage of the spectral element matrix needs much more memory (O(KN4) in the 2D,

O(KN6) in the 3D), and will become quickly unrealistic when K or N gets large. As a result,

implicity evaluation of the matrix-vector products would be unavoidable. This change would

save memory, but cost more time.

5 Numerical experiments

In this section, we report the results of the numerical experiments. All the tests have been
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run on the SGI Origin3800 server in the State Key Laboratory of Scientific and Engineering

Computing (LSEC), Institute of Computational Mathematics & Scientific & Engineering Com-

putation, Chinese Academy of Sciences. The numerical configuration is chosen as follow:

Ω = (0, 2π),

p(x) = δ,

λ = 1,

f(x) = (δk2 + 1) sin(kx).

With this configuration, the exact solution of the problem (1) is known:

u(x) = sin(kx).

In all tests, we choose δ = 0.001, k = 100, and the unit of time is 10 milliseconds. The domain

is broken into equi-elements.

Test 1 Study of the convergence rate of the PCG, accuracy in function of K, as well as

the CPU time report in different steps.

Parameters: N = 3, M = 1, matrix memorized with preconditioning.

2 Convergence rate of the PCG, solution errors, and CPU time for N = 3, M = 1.

K 1000 2000 4000 8000 16000

Iteration numbers 5 6 6 5 5

Max error 4.78e-06 1.51e-07 4.75e-09 1.48e-10 5.72e-12

Total time 16 33 67 128 258

Create Preconditioner 11 23 45 90 180

Create Matrix S 1 2 4 8 16

PCG operation 3 7 14 23 48

From the table 1, we see that when N is fixed, CPU time increases linearly as K increases, as

being evident from the description of our algorithm. Also seen is the errors of the SEM solution

as a function of the element number. As expected, the errors behaves like O(hN+1) with h being

the element size. Independence of the iteration number of the PCG method on K shows the

efficiency of the FE preconditioner.

Test 2 Similar to test 1, but with K fixed.

Parameters: K = 500, M = 1, matrix memorized with preconditioning.
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Table 3 Convergence rate of the PCG, solution errors, and CPU time for K = 500, M = 1.

N 3 5 7 9 11

Iteration numbers 3 5 7 9 11

Max error 1.55e-4 1.85e-7 1.67e-10 1.78e-13 1.03e-13

Create S 1 2 3 5 9

PCG operation 2 3 5 9 14

In Table 3 we repeat the comparisons as in Table 2, but now with K fixed. Surprisely, when

N increases within a small range, the iteration number increases linearly with N . However when

N is large, the iteration number seems to become stable, as shown in Figure 2. The reason for

this behavior is not yet clear for us. From Table 3, the spectral convergence with increasing N is

clearly observed. This is in good agreement with the general theoretical results about the SEM.

The CPU time in different steps conforms once again with the description of the algorithm.

Figure 2 Iteration numbers as a function of the polynomial degree N .

Test 3 parallel computing: comparison of the CPU time when processor number increases.

Parameters: K = 500, N = 11, matrix memorized with preconditioning.

Table 4 CPU time for different processor numbers used.

M 1 2 4 8

Create matrix S 8 4 2 1

PCG operation 14 10 8 7

In Table 4, we list the CPU time when different processor numbers are used. When the

processor number M is increased, the time to form the spectral element matrix S decreases

linearly, but the time to solve the preconditioned system decreases more slowly, this is due to the

fact that solving the preconditioner is not paralleled and the time for communication increases as

M increases. Another reason is that the spectral element matrix S is formed in the pre-procedure,

the evaluation of the matrix-vector products is rapid as compared with the preconditioning and
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the communication.

Test 4 Same as in Test 3 except that the SE matrix S is not memorized.

Parameters: K = 500, N = 11, matrix not memorized with preconditioning.

Table 5 Same as in Table 4, but matrix not memorized.

M 1 2 4 8

Total time 89 51 25 16

We repeat the test 3 but now the matrix S is not memorized. In this case, the evaluation of

the matrix-vector products is much more expensive, hence the parallelization can be expected to

be more efficient. In Table 5, the total CPU time is listed when different numbers of processor

are used in the computation. We observe that when the processor number M is increased, the

total CPU time is reduced quickly (almost decreases linearly with M). This is one of the most

interesting cases of using parallel algorithm.

Conclusions

We have introduced and tested a parallel iterative algorithm to solve the problem arising

from the spectral elements method of the Helmholtz problem in one dimensional case. The

numerical tests have shown the interests by using the finite element preconditioner and parallel

coding. This parallel algorithm could be extended to the 2- and 3-dimensional cases. This is our

ongoing work.
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