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Abstract. In this paper, we describe how to construct a real anti-symmetric (2p — 1)-band
matrix with prescribed eigenvalues in its p leading principal submatrices. This is done in two
steps. First, an anti-symmetric matrix B is constructed with the specified spectral data but
not necessary a band matrix. Then B is transformed by Householder transformations to a
(2p — 1)-band matrix with the prescribed eigenvalues. An algorithm is presented. Numerical
results are presented to demonstrate that the proposed method is effective.

Key words: anti-symmetric; eigenvalues; inverse problem.

AMS subject classifications: 65F10, 15A09

1 Introduction

This work deals with inverse eigenvalue problems for real banded anti-symmetric matrices. The
solution of inverse eigenvalue problems is currently attracting a great interest due to their im-
portance in many applications. In particular, real banded matrices play an important role in
areas as applied mechanics [1,2], structure design [3], circuit theory and inverse Sturm-Liouville
problem [4].

Let pn € N,0 <p<nand {A§k)}?:1(k =n—p+1,---,n) be a set of real numbers with

)\;k):7>‘§gk—)j+17 j=1- kkk=n—-p+1,--,n (1)
k k— k .
A <A <A =1 k- Lk =n—p 2,0 (2)

The problem is to determine a real anti-symmetric n x n matrix A with eigenvalues {A§k)i}§?=1
(i? = —1) in the leading k x k principal submatrix of A(k =n —p+1,---,n) and as = 0 for
|s —t| > p. In this paper a matrix A is called real anti-symmetric if A € R"*" AT = —A. A
similar problem with symmetric matrices has been studied in many papers, (see [5-10]). For
anti-symmetric matrices, the case p = 2 has been studied by He Chengcai [11], but the complex
numbers were used there, so that the computation is rather complicated .
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In Section 2 the eigen-properties of real anti-symmetric matrices were studied. In Section 3
an anti-symmetric matrix B is constructed where B has the specified spectral data, but it is not
necessary a banded matrix. In Section 4 B is transformed to a (2p — 1)-band matrix with the
prescribed spectra. In Section 5, an algorithm is presented with numerical examples which show
that the method is effective.

2 Some properties of real anti-symmetric matrices

In order to prove our main results, let us first investigate the eigen- properties of real anti-
symmetric matrices. Some of them are well known so the proof is omitted.

Let A be a real anti-symmetric n x n matrix, i.e. A € R™*™ AT = —A. Then —iA €
Ccn*n (—iA)H = AT = —iA, hence —iA is Hermitian and its eigenvalues are real. Let {)\§-k)}§=1
be the eigenvalues of the k x k leading principal submatrix of —iA(k =1,--- ,n) satisfying

AT <A <A, (3)
According to Cauchy interlacing theorem, we have

AP <A <0 =1 k- k=2, 0, (4)

Noting that A = i(—iA), we assert that {)\§-k)i}§=1 be the eigenvalues of kx k leading submatrix of

A and (4) hold. Furthermore, because {)\§-k)i}?:1 are roots of a polynomial with real coefficients,
$0

A= AP =1 k=1, 0, (5)

k—j+17
Lemma 2.1. The eigenvalues of real anti-symmetric nxXn matriz A are either zeroes or conjugate

imaginaries. Let {)\g-k)i}le be the eigenvalues of the k x k leading submatrices of A satisfying
(3), then (4) and (5) hold.

Lemma 2.2. [12, 2.5.14] A € R™*"™ is anti-symmetric if and only if there exist an orthogonal
matrix U € R™*™ such that

- 0 _
0
0 b
— 7T ATT 61 0
T=U"AU = 0 B (6)
B2 0
0o b5
L _ﬁ'r' O |
and £011,--- ,£06,1 are all non-real eigenvalues of A. In this paper, T is referred to as the

normal canonical form of A if B1 < By < --- < B, in (6).

Remark 2.1. The orthogonal matrix U can be chosen as follow: the first n — 2r columns are
the orthonormal eigenvectors corresponding to zero eigenvalues of A, the remaining columns are
the orthonormal imagine part and real part of the eigenvectors corresponding to eigenvalues
B1t, - - -, Bri respectively. The orthonormalization is needed when there are multiple eigenvalues.
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3 Construction of real anti-symmetric matrices from spec-
tral data

One of the main results, Theorem 3.1, will be given in this section, whose proof depends on

several lemmas.

Theorem 3.1. Let {)\g-k) ?Zl(kz =n—p+1,---,n,0<p<n) be a set of real numbers satisfying

(1), (2), then there exists a real anti-symmetric n X n matrix B with eigenvalues {A§k)i}?:1 in
the k x k leading principal submatriz of Blk =n—p+1,--- ,n).

3.1 Some lemmas
To prove theorem 3.1, we need following three lemmas.
Lemma 3.1. Let
p1 < ay < pg < - pp < ag <0, (7)
then there exist by,--- ,bx € R such that

0 a b
o 0 0 bd
a
—a2 (f (%
Topy1 = . : (8)
0 o b
—Aar dc dc
b 0 —b 0 -+ —=by 0 O
has eigenvalues £, - - - , pugi, 0.
Proof Let
k 3
1103 - ad)
j=1
h=|%——| , i=1,-- K (9)
[](a? —a)
t#l
It follows from (7) that b; € R. Direct calculation gives
k k
P(A) = det(AI — Topyr) = A [ [N +ad) + D03 [N +ad)| = ra(N),
j=1 J=1 t#j
where
k k
=[] +a) + > e J[0* +ad).
j=1 J=1 t#j
k
Let g(A H (A* + 113) , then both ¢()) and g()) are monic polynomials of degree 2k , while
by (9),

E?r

q(+ari) = 0+ b} H( —aj)
t£l j:l

fal = g(£ai), l=1,-- k.
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So g(A) = g(A\) and therefore p(\) = AH?ZI(AQ + p3) which means that Thiy1 has eigenvalues
i/j/lia T ,jZ,U/k’L', 0. |

Remark 3.1. For the purpose of the later use in constructing of a real anti-symmetric banded
matrix numerically, we need to find an orthogonal matrix U so that U TTQkJ,_lU is the normal
canonical form of T5;1. Note that the eigenvector corresponding to eigenvalue 1;7 can be taken

as T
—bipjt b —br it b
Ej:( Wt A0 L. R SkOk 1) = v; + wji,

27 27 27 27
//L‘jial M_]ia’l M_]ia’k M_]iak

where v;, w; € R**T! are defined by

T T

b b —b b

v = 0%7...70,%’1 ,w, = 1“]2’0’...’07%%00 . (10
1 Hj — g 1 w3 — aj,

The eigenvector corresponding to the zero eigenvalue can be taken as

b be \"
5() = (0 7a_1 70’01_:’1) . (11)

By (9), it can be verified that &y, w1, v1, - , wk, vg are orthogonal vectors. They can be taken
as the columns of the matrix U after being normalized.

Lemma 3.2. Let
< ap < po < o< agp—1 < pr <O0. (12)
Then there exist by, by, -+ ,br € R such that
[0 0 a ZZ;O ]
s d 0 a 191
—ay O ]

Ty = ) ) (13)
' 0 ar_1 bp1
—Ak—1 0 0
L —bo —b1 0 —=by O -+ —br_ 0 0 |
has eigenvalues £y, - , Fpugi.

Proof Let

k k—1
bo = H 2% H aj s (14)
j=1 j=1

. 3
bl: —H( -—al H _al ’ l:17ak_1 (15)
j=1 t#1
Then by, b1, -+ ,br € R because of (12). It is easy to verified that
k—1 k—1
p(A) = det(\I — Top) = (V> +83) [TV +a3) + X2 07 [[(\ +af).
=1 J=1 t#j
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k
Noticing that g(A H )\2 + /1] is a polynomial of degree not greater than 2k — 2, while
j=1

by (14) and (15),

k k—1 k
=1L =L =11
= - W
g(£a;i) *OfaleH —a}) H ' —aj) l=1,--- k-1
t#l j=1
k
So g(A) = 0 and therefore p(A H (A 4 /1] ) which implies that T has eigenvalues +puq4, - - - |

j=1
:E[Lki. |

Lemma 3.3. Let {aj};:ll, {mjtj—1 be two sets of real numbers with

a; = —Qn—j, j=1,---,n—1 (16)
Hj = —Hn—j+1, j=1-,n (17)
1 <ar <pz <o <apo1 < . (18)
Let
— 0 -
0
0 %1
Tho1 = —n 0 a (19)
—a9 &
0 a,
L —a, 0 J

be the normal canonical form of a real anti-symmetric (n — 1) x (n — 1) matriz with eigenvalues
{aji}iz) . Then there exists c € R"~" such that matriz

n-[ B §] .

has eigenvalues {j;i}7_; .

Proof Lemma 3.1 and Lemma 3.2 guarantee the existence of ¢ € R"~! when the strict inequal-
ities hold in (18) and n is odd or even respectively. If there are some equalities in (18), we may
take some a;s and ;s out so that the remainder of (18) satisfies strict inequalities and (16)-(17)
still hold. For example, if

pr <ar =pg == ps <as <o <y,
then because of (17), (18), we have

Nl<a1:N2:"':,Ufs<asS"'San75<ﬂn75+1:"':,Ufnflzanfl<Nn~
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In this case, we may take a; = po = -+ = ps and p—s41 =+ -+ = fhn—1 = Gp—1 Out, remaining
M1 < as § "'Sanfs < Un.

For another example, if

pr<ap=pe = =0as < flgy1 <0 < fhy,
then (18) must be
pr<ar=p2 = =05 < flot1 < Sy < Opos = "= lUp_1 = Ap_-1 < fin.
In this case, we may take a; = po = -+ = ps and p—s41 =+ -+ = fhn—1 = Gp—1 Out, remaining

1 < s < fst1 S Spipes < Apegs < fin.
Repeat the above process till the remainder satisfies strict inequalities, denote by
<o <flg< < <0< —0r << —fIg<—0a1 <—f11, (21)

where, without loss of generality, suppose n is odd. According to Lemma 3.1, there exist
by, -+ ,b. € R such that

C 0 b
—ai 0 AO
0, ¢ ]
—ds
Top1 = . : (22)
0 d b
) . —a. 0 0
L —-b 0 —-bp O --- —=b. 0 0

has eigenvalues i, - - - , £, 0.
Now, denote the numbers that have been taken out from (18) by +as, -, £as,0,---,0. It is
obvious that there exists a permutation matrix P such that

o
8!

PTT, P = R

o
o

r
|
Q>
3
o
L
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On the other hand, from (22) we see that

ay
0
0
—a,
0 —b,

0 1

oS PO ee see see wee see aae

>

o o
o of

has eigenvalues 0, --,0, +a1i, -, *@si, =14, -, £f,1,0, which are actually {u;i}}_; by the

ro
0
0 a
-a; O
T, =
L 0
definition of @y, - -, G, i1, , fir-
Now let

R R T
C:P|:O,"'aoablaoa"'abrao} ’

then ¢ € R* ! and

r=[T# §1=[§ 1]

PTT, P PTc
—rp 0

Therefore, T, has eigenvalues {y;i}"_; as T, =

3.2 The proof of Theorem 3.1

Let
[0

Bn—p+l) _

0

n— 1
_)\g p+1)

)\("1—104-1)

ol1_[P O
1]~ 10 1
0
—p+1
—)\Sf,fﬂ)

(n—p+1)
)\7'nfp+1

0

(25)

(26)

be the normal canonical form of a real anti-symmetric (n —p + 1) x (n — p + 1) matrix having

eigenvalues {A;n_p+1)i}?;f+1 with A" 7PTD <\ <<y

sequence of matrices B(—P+1) ...

n—p+1

(n=p+1) \We shall construct a

,B(") = B by embedding a last row and column to preceding
matrix, step by step. We now describe how to construct B+ from B("™). Suppose that B(™)
be real anti-symmetric matrix with its leading k x k principal submatrix having eigenvalues
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{)\gk)}?zl where )\(lk) < )\(Qk) <. < )\,(f),(k =n—p+1,---,m). By Lemma 2.2, there exists an
unitary matrix U,, such that

- 0 S

0o am

UmB(m) U£ —7lm) — 7)\5771) 0 ) (27)

0 )\(m)

Tm

—Am g

where T("™) is normal canonical form of B(™). By Lemma 3.3, there exists ¢(”) € R™ so that

S(m+1) T cm)
Smt1) _ [ Ty & (28)
with eigenvalues {)\gmﬂ)i};’zl. Let
Unir=| G 7] (29)
Then
(m+1) _ 70 mmt+ls= [ vrrmu,, UTm
B = U,,.B Umt1 = jé(m)TUm m()
B(m) Uglc(m)
oy, T (30)

is a real anti-symmetric (m+1) X (m+ 1) matrix with eigenvalues {Ag-k)i}?:l in the leading k x k
submatrix of B (k =n —p+1,--- ,m,m 4 1). This process form =n —p+1,--- ,n—1
gives us a matrix B which satisfies all conditions in Theorem 3.1. This completes the proof of
Theorem 3.1.

4 Construction of banded anti-symmetric matrices from
spectral data

Theorem 4.1. Let {)\g-k) le(kz =n—p+1,---,n.0 <p<n) be a set of real numbers satisfying

(1), (2), then there exists a real anti-symmetric n X n matriz A with eigenvalues {)\g-k)i}?zl in
the leading k x k submatriz of Alk=n—p+1,--- ,n) and ase =0 for |s —t| > p.

Proof By Theorem 3.1, there exists a real anti-symmetric n x n matrix B with eigenvalues
{)\g-k)i}le in the leading k x k submatrix of B(k=n—p+1,---,n). But B is not necessary a
banded matrix. In order to transform B into (2p—1)-diagonal form we begin to zero the elements
outside the band in the nth column(row) and continue with the (n—1)th, (n—2)th, -+, (p+1)th
column(row), using Householder transformations. Working backward in this way, we do not
destroy anti-symmetry and the eigenvalues of the p leading submatrices. We construct similar
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matrices B = Ao, A1, -+, An—p = A, where the last j columns and rows of A; are of (2p — 1)-
diagonal form. To be specific, for j =0,1,--- ,n—p—1, let

a1,n—j

ap—j = :

Un—j—p+1,n—j

be the upper part of the (n — j)th column of A;. Let Fj € R"~I7P*! be Householder matrix
such that

Hjlin—j =ren—j_pi1,
where 7 € R and e,,_;_p+1 € R" 7P+ the (n — j — p + 1)th unit vector. Now let

_ | Hj 0
H, = [ Do ] (31)

Then the (n — j)th column and row of
Ajp1 = HjA;HY (32)

are of (2p — 1)-diagonal form. This transformation reserves the (2p — 1)-diagonal form of the last
j columns and rows of A;. It reserves the eigenvalues of the p greatest leading submatrices of A;
either. As consequence, the matrix A = A,,_, has (2p — 1)-diagonal form and same eigenvalues
in the p greatest leading submatrices as those in B.

5 Numerical methods and examples

The process of the proof of Theorems 3.1 and 4.1 provide us with an algorithm to construct the
required matrix as follows:

Algorithm 1 This algorithm construct a real anti-symmetric matrix from given spectrum data.
Step 1 Compute B""~P+1) by (26).
Set Un=p+l) =, ;.
Step 2 Form=n—p—+2,---,n do Step 3-5.

Step 3 Compute (™ by (9), (25) when m is odd, or by (14),(15),(25) when m is even.
Step 4 Compute B(™) by (30).
Step 5 If m < n, compute U™*1 by (10), (11).
Step 6 For j =0,1,--- ,n—p—1 do Step 7-8.
Step 7 Compute A;+1 by (31), (32).
Step 8 Set Ay = B.
Step 9 Output A = A,,_,.
Using the above algorithm for the construction of real anti-symmetric matrix from given
spectrum data, we give some examples here to illustrate that the results obtained in this paper

are correct. Numerical experiments have been performed implementing a MATLAB routine on
an PC.
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Example 1 (p = 2,n =7) Given {)\547)}]7-:1:{77, —5,-3,0,3,5,7} and {Ag»ﬁ)}?:l = {-6,—4,
—2,2,4,6}. The computed real anti-symmetric tri-diagonal matrix is given below:

0.000000  3.285052
—3.285052 0.000000 —2.389232
2.389232  0.000000  —3.772709
3.772709 0.000000 —3.204164
3.204164 0.000000 —3.872983
3.872983 0.000000 —5.196152
5.196152 0.000000
Example 2 (p=2,n = 7) Given {A\\"}_;={-5,-5,-2,0,2,5,5} and {\\V1¢_, = {~5,-3,
—1,1,3,5}. This time (1), (2) hold with equality. The desired matrix is computed as follows:
0.000000 —5.000000
5.000000  0.000000  0.000000
0.000000  0.000000 —1.314257
1.314257  0.000000 —1.749915
1.749915 0.000000  —2.282658
2.282658 0.000000  —4.358899
4.358899 0.000000

Example 3 (p = 3,n = 8) Given {\{V}¥_ ={~7.5,-5.5, 3.5, ~1.5,1.5,3.5,5.5, 7.5}, {\\"}7
={~7,-5,-3,0,3,5,7} and {A\"}¢

j=1=

j=1

{—6,—4,—-2,2,4,6}. Because A is anti-symmetric penta-

diagonal, we only list two upper sub-diagonal entries in Table 1. The eigenvalues of tree greatest
leading principal submatrices of A are computed and list in the table to compare with the given
data. The results are rather satisfying.

Table 1: Example 3: two upper sub-diagonal entries of matrix A.

j ajj+1 aj j4+2 computed )\58) computed )\57) computed )\gs)
1[- 3.569251945735 | +2.448044172744 | 4+7.500000000000i |4-7.000000000000i | +5.999999999999i
2|-1.697317755236 |- 1.070337761180 |- 7.500000000000i |- 7.000000000000i |- 5.999999999999i
31- 3.132965850439 | - 3.376274833182 | +5.500000000000i | +4.999999999999i | 4+-4.0000000000001
4142.269296078105 |- 1.633815326846 |- 5.5000000000001 |- 4.999999999999i |- 4.0000000000001
5]+2.051157187872 |- 3.000355819338 | +3.500000000000i | +3.0000000000001 | 4-2.000000000000i
6|+4.242389062469 | - 4.136546918404 |- 3.500000000000i |- 3.000000000000i |- 2.0000000000001
7|- 0.942857142857 +1.500000000000i | 4-0.000000000000
8 - 1.500000000000i1

Acknowledgments

The author would like to thank the referees for their careful reading and valuable comments.

References

[1] Gladwell G M L. Inverse problems in vibration. Appl. Mech. Review, 1986, 39: 1013-1018.



22

2]
3]
[4]
[5]
(6]
[7]
8]
[9]
[10]
[11]

[12]

Construction of Real Band Anti-Symmetric Matrices from Spectral Data

Ram Y M, Elhay S. An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil
with application to damped oscillatory systems. STAM J. Appl. Math., 1996, 56: 232-244.

Joseph K T. Inverse eigenvalue problem in structural design. ATAA J., 1992, 30: 2890-2896.

Chu M T. Inverse Eigenvalue problems. SIAM Review, 1998, 41(1): 1-39.

Hald O H. Inverse eigenvalues problems for Jacobi matrices. Linear Algebra Appl., 1976, 14: 63-85.
Boley D, Golub G H. Inverse eigenvalue problems for band matrices, in Lecture Notes in Mathe-
matics. Numer. Anal., Dundee 1977, Springer.

Friedland S. The reconstruction of a symmetric matrix from the spectral data. J. Math. Anal. Appl.,
1979, 71: 412-422.

Biegler-Koénig F W. Construction of band matrices from spectral data. Linear Algebra Appl., 1981,
40: 79-87.

Mattis M P, Hochstadt H. On the construction of band matrices from spectral data. Linear Algebra
Appl., 1981, 38: 109-119.

Yin Q X. Quasi-Lanczos method in solving inverse eigenvalue problem for real symmetric band
matrices. Numer. Math., A Journal of Chinese Universities, 1989, 11(1): 65-73 (in Chinese).

He C C, Sun Q Y. About skew-symmetric matrix eigenvalue inverse problem. J. University of
Petroleum, 1995, 19(6): 113-116 (in Chinese).

Horn R A, Johnson C R. Matrix analysis. Cambridge University Press, Cambridge, 1985.



