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Abstract. In this paper, we describe how to construct a real anti-symmetric (2p− 1)-band
matrix with prescribed eigenvalues in its p leading principal submatrices. This is done in two
steps. First, an anti-symmetric matrix B is constructed with the specified spectral data but
not necessary a band matrix. Then B is transformed by Householder transformations to a
(2p−1)-band matrix with the prescribed eigenvalues. An algorithm is presented. Numerical
results are presented to demonstrate that the proposed method is effective.
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1 Introduction

This work deals with inverse eigenvalue problems for real banded anti-symmetric matrices. The
solution of inverse eigenvalue problems is currently attracting a great interest due to their im-
portance in many applications. In particular, real banded matrices play an important role in
areas as applied mechanics [1,2], structure design [3], circuit theory and inverse Sturm-Liouville
problem [4].

Let p, n ∈ N, 0 < p ≤ n and {λ
(k)
j }k

j=1(k = n − p + 1, · · · , n) be a set of real numbers with

λ
(k)
j = −λ

(k)
k−j+1, j = 1, · · · , k; k = n − p + 1, · · · , n. (1)

λ
(k)
j ≤ λ

(k−1)
j ≤ λ

(k)
j+1, j = 1, · · · , k − 1; k = n − p + 2, · · · , n. (2)

The problem is to determine a real anti-symmetric n × n matrix A with eigenvalues {λ
(k)
j i}k

j=1

(i2 = −1) in the leading k × k principal submatrix of A(k = n − p + 1, · · · , n) and ast = 0 for
|s − t| ≥ p. In this paper a matrix A is called real anti-symmetric if A ∈ Rn×n, AT = −A. A
similar problem with symmetric matrices has been studied in many papers, (see [5–10]). For
anti-symmetric matrices, the case p = 2 has been studied by He Chengcai [11], but the complex
numbers were used there, so that the computation is rather complicated .
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In Section 2 the eigen-properties of real anti-symmetric matrices were studied. In Section 3
an anti-symmetric matrix B is constructed where B has the specified spectral data, but it is not
necessary a banded matrix. In Section 4 B is transformed to a (2p − 1)-band matrix with the
prescribed spectra. In Section 5, an algorithm is presented with numerical examples which show
that the method is effective.

2 Some properties of real anti-symmetric matrices

In order to prove our main results, let us first investigate the eigen- properties of real anti-
symmetric matrices. Some of them are well known so the proof is omitted.

Let A be a real anti-symmetric n × n matrix, i.e. A ∈ Rn×n, AT = −A. Then −iA ∈

Cn×n, (−iA)H = iAT = −iA, hence −iA is Hermitian and its eigenvalues are real. Let {λ
(k)
j }k

j=1

be the eigenvalues of the k × k leading principal submatrix of −iA(k = 1, · · · , n) satisfying

λ
(k)
1 ≤ λ

(k)
2 ≤ · · · ≤ λ

(k)
k . (3)

According to Cauchy interlacing theorem, we have

λ
(k)
j ≤ λ

(k−1)
j ≤ λ

(k)
j+1, j = 1, · · · , k − 1; k = 2, · · · , n. (4)

Noting that A = i(−iA), we assert that {λ
(k)
j i}k

j=1 be the eigenvalues of k×k leading submatrix of

A and (4) hold. Furthermore, because {λ
(k)
j i}k

j=1 are roots of a polynomial with real coefficients,
so

λ
(k)
j = −λ

(k)
k−j+1, j = 1, · · · , k; k = 1, · · · , n. (5)

Lemma 2.1. The eigenvalues of real anti-symmetric n×n matrix A are either zeroes or conjugate

imaginaries. Let {λ
(k)
j i}k

j=1 be the eigenvalues of the k × k leading submatrices of A satisfying
(3), then (4) and (5) hold.

Lemma 2.2. [12, 2.5.14] A ∈ Rn×n is anti-symmetric if and only if there exist an orthogonal
matrix U ∈ Rn×n such that

T = UT AU =

























0
. . .

0
0 β1

−β1 0
0 β2

−β2 0
. . .

0 βr
−βr 0

























(6)

and ±β1i, · · · ,±βri are all non-real eigenvalues of A. In this paper, T is referred to as the
normal canonical form of A if β1 ≤ β2 ≤ · · · ≤ βr in (6).

Remark 2.1. The orthogonal matrix U can be chosen as follow: the first n − 2r columns are
the orthonormal eigenvectors corresponding to zero eigenvalues of A, the remaining columns are
the orthonormal imagine part and real part of the eigenvectors corresponding to eigenvalues
β1i, · · · , βri respectively. The orthonormalization is needed when there are multiple eigenvalues.
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3 Construction of real anti-symmetric matrices from spec-

tral data

One of the main results, Theorem 3.1, will be given in this section, whose proof depends on
several lemmas.

Theorem 3.1. Let {λ
(k)
j }k

j=1(k = n−p+1, · · · , n, 0 < p ≤ n) be a set of real numbers satisfying

(1), (2), then there exists a real anti-symmetric n × n matrix B with eigenvalues {λ
(k)
j i}k

j=1 in
the k × k leading principal submatrix of B(k = n − p + 1, · · · , n).

3.1 Some lemmas

To prove theorem 3.1, we need following three lemmas.

Lemma 3.1. Let

µ1 < a1 < µ2 < · · ·µk < ak < 0, (7)

then there exist b1, · · · , bk ∈ R such that

T2k+1 =

















0 a1 b1
−a1 0 0

0 a2 b2
−a2 0 0

. . .
...

0 ak bk
−ak 0 0

−b1 0 −b2 0 · · · −bk 0 0

















(8)

has eigenvalues ±µ1i, · · · ,±µki, 0.

Proof Let

bl =















k
∏

j=1

(µ2
j − a2

l )

∏

t6=l

(a2
t − a2

l )















1
2

, l = 1, · · · , k. (9)

It follows from (7) that bl ∈ R. Direct calculation gives

p(λ) = det(λI − T2k+1) = λ





k
∏

j=1

(λ2 + a2
j) +

k
∑

j=1

b2
j

∏

t6=j

(λ2 + a2
t )



 = λq(λ),

where

q(λ) =

k
∏

j=1

(λ2 + a2
j) +

k
∑

j=1

b2
j

∏

t6=j

(λ2 + a2
t ).

Let g(λ) =

k
∏

j=1

(λ2 + µ2
j) , then both q(λ) and g(λ) are monic polynomials of degree 2k , while

by (9),

q(±ali) = 0 + b2
l

∏

t6=l

(a2
t − a2

l ) =

k
∏

j=1

(µ2
j − a2

l ) = g(±ali), l = 1, · · · , k.
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So q(λ) ≡ g(λ) and therefore p(λ) = λ
∏k

j=1(λ
2 + µ2

j) which means that T2k+1 has eigenvalues
±µ1i, · · · ,±µki, 0.

Remark 3.1. For the purpose of the later use in constructing of a real anti-symmetric banded
matrix numerically, we need to find an orthogonal matrix U so that UT T2k+1U is the normal
canonical form of T2k+1. Note that the eigenvector corresponding to eigenvalue µji can be taken
as

ξj =

(

−b1µji

µ2
j − a2

1

,
a1b1

µ2
j − a2

1

, · · · ,
−bkµji

µ2
j − a2

k

,
akbk

µ2
j − a2

k

, 1

)T

= vj + wji,

where vj , wj ∈ R2k+1 are defined by

vj =

(

0,
a1b1

µ2
j − a2

1

, · · · , 0,
akbk

µ2
j − a2

k

, 1

)T

, wj =

(

−b1µj

µ2
j − a2

1

, 0, · · · , 0,
−bkµj

µ2
j − a2

k

, 0, 0

)T

. (10)

The eigenvector corresponding to the zero eigenvalue can be taken as

ξ0 =

(

0,−
b1

a1
, · · · , 0,−

bk

ak

, 1

)T

. (11)

By (9), it can be verified that ξ0, w1, v1, · · · , wk, vk are orthogonal vectors. They can be taken
as the columns of the matrix U after being normalized.

Lemma 3.2. Let

µ1 < a1 < µ2 < · · · < ak−1 < µk < 0. (12)

Then there exist b0, b1, · · · , bk ∈ R such that

T2k =





















0 b0
0 a1 b1

−a1 0 0
0 a2 b2

−a2 0 0
. . .

...
0 ak−1 bk−1

−ak−1 0 0
−b0 −b1 0 −b2 0 · · · −bk−1 0 0





















(13)

has eigenvalues ±µ1i, · · · ,±µki.

Proof Let

b0 =

k
∏

j=1

µj

/

k−1
∏

j=1

aj , (14)

bl =



−
k
∏

j=1

(µ2
j − a2

l )

/

a2
l

∏

t6=l

(a2
t − a2

l )





1
2

, l = 1, · · · , k − 1. (15)

Then b0, b1, · · · , bk ∈ R because of (12). It is easy to verified that

p(λ) = det(λI − T2k) = (λ2 + b2
0)

k−1
∏

j=1

(λ2 + a2
j) + λ2

k−1
∑

j=1

b2
j

∏

t6=j

(λ2 + a2
t ).
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Noticing that g(λ) ≡ p(λ)−

k
∏

j=1

(λ2 +µ2
j) is a polynomial of degree not greater than 2k−2, while

by (14) and (15),

g(0) = p(0) −
k
∏

j=1

µ2
j = b2

0

k−1
∏

j=1

a2
j −

k
∏

j=1

µ2
j = 0,

g(±ali) = 0 − a2
l b

2
l

∏

t6=l

(a2
t − a2

l ) −
k
∏

j=1

(µ2
j − a2

l ) = 0. l = 1, · · · , k − 1.

So g(λ) = 0 and therefore p(λ) =

k
∏

j=1

(λ2 + µ2
j) which implies that T2k has eigenvalues ±µ1i, · · · ,

±µki.

Lemma 3.3. Let {aj}
n−1
j=1 , {µj}

n
j=1 be two sets of real numbers with

aj = −an−j, j = 1, · · · , n − 1. (16)

µj = −µn−j+1, j = 1, · · · , n. (17)

µ1 ≤ a1 ≤ µ2 ≤ · · · ≤ an−1 ≤ µn. (18)

Let

Tn−1 =























0
. . .

0
0 a1

−a1 0
0 a2

−a2 0
. . .

0 ar
−ar 0























(19)

be the normal canonical form of a real anti-symmetric (n− 1)× (n− 1) matrix with eigenvalues
{aji}

n−1
j=1 . Then there exists c ∈ Rn−1 such that matrix

Tn =
[

Tn−1 c
−cT 0

]

(20)

has eigenvalues {µji}
n
j=1 .

Proof Lemma 3.1 and Lemma 3.2 guarantee the existence of c ∈ Rn−1 when the strict inequal-
ities hold in (18) and n is odd or even respectively. If there are some equalities in (18), we may
take some ais and µis out so that the remainder of (18) satisfies strict inequalities and (16)-(17)
still hold. For example, if

µ1 < a1 = µ2 = · · · = µs < as ≤ · · · ≤ µn,

then because of (17), (18), we have

µ1 < a1 = µ2 = · · · = µs < as ≤ · · · ≤ an−s < µn−s+1 = · · · = µn−1 = an−1 < µn.
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In this case, we may take a1 = µ2 = · · · = µs and µn−s+1 = · · · = µn−1 = an−1 out, remaining

µ1 < as ≤ · · · ≤ an−s < µn.

For another example, if

µ1 < a1 = µ2 = · · · = as < µs+1 ≤ · · · ≤ µn,

then (18) must be

µ1 < a1 = µ2 = · · · = as < µs+1 ≤ · · · ≤ µn−s < an−s = · · · = µn−1 = an−1 < µn.

In this case, we may take a1 = µ2 = · · · = µs and µn−s+1 = · · · = µn−1 = an−1 out, remaining

µ1 < as < µs+1 ≤ · · · ≤ µn−s < an−s < µn.

Repeat the above process till the remainder satisfies strict inequalities, denote by

µ̂1 < â1 < µ̂2 < · · · < âr < 0 < −âr < · · · < −µ̂2 < −â1 < −µ̂1, (21)

where, without loss of generality, suppose n is odd. According to Lemma 3.1, there exist
b̂1, · · · , b̂r ∈ R such that

T2r+1 =





















0 â1 b̂1
−â1 0 0

0 â2 b̂2
−â2 0 0

. . .
...

0 âr b̂r
−âr 0 0

−b̂1 0 −b̂2 0 · · · −b̂r 0 0





















(22)

has eigenvalues ±µ̂1i, · · · ,±µ̂ri, 0.

Now, denote the numbers that have been taken out from (18) by ±a1,· · · , ±as,0,· · · ,0. It is
obvious that there exists a permutation matrix P such that

PT Tn−1P =



































0
. . .

0
0 a1

−a1 0
. . .

0 as
−as 0

0 â1
−â1 0

. . .
0 âr

−âr 0



































. (23)
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On the other hand, from (22) we see that

T̂n =





















































0 0
. . .

...

0
...

0 a1

...

−a1 0
...

. . .
...

0 as

...
−as 0 0

0 â1 b̂1
−â1 0 0

. . .
...

0 âr b̂r
−âr 0 0

0 · · · · · · · · · · · · · · · · · · 0 −b̂1 0 · · · −b̂r 0 0





















































(24)

has eigenvalues 0,· · · ,0, ±a1i,· · · , ±asi,±µ̂1i, · · · ,±µ̂ri, 0, which are actually {µji}
n
j=1 by the

definition of a1,· · · , as,µ̂1, · · · , µ̂r.
Now let

c = P
[

0, · · · , 0, b̂1, 0, · · · , b̂r, 0
]T

, (25)

then c ∈ Rn−1 and

Tn =
[

Tn−1 c
−cT 0

]

=
[

P 0
0 1

]

[

PT Tn−1P PT c
−cT P 0

]

[

PT 0
0 1

]

=
[

P 0
0 1

]

T̂n

[

PT 0
0 1

]

.

Therefore, Tn has eigenvalues {µji}
n
j=1 as T̂n.

3.2 The proof of Theorem 3.1

Let

B(n−p+1) =



























0
. . .

0
0 λ

(n−p+1)
1

−λ
(n−p+1)
1 0

. . .
0 λ(n−p+1)

rn−p+1

−λ(n−p+1)
rn−p+1

0



























(26)

be the normal canonical form of a real anti-symmetric (n − p + 1) × (n − p + 1) matrix having

eigenvalues {λ
(n−p+1)
j i}n−p+1

j=1 with λ
(n−p+1)
1 ≤ λ

(n−p+1)
2 ≤ · · · ≤ λ

(n−p+1)
n−p+1 . We shall construct a

sequence of matrices B(n−p+1), · · · , B(n) = B by embedding a last row and column to preceding
matrix, step by step. We now describe how to construct B(m+1) from B(m). Suppose that B(m)

be real anti-symmetric matrix with its leading k × k principal submatrix having eigenvalues
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{λ
(k)
j }k

j=1 where λ
(k)
1 ≤ λ

(k)
2 ≤ · · · ≤ λ

(k)
k ,(k = n− p + 1, · · · , m). By Lemma 2.2, there exists an

unitary matrix Um such that

UmB(m)UT
m = T (m) =

























0
. . .

0
0 λ

(m)
1

−λ
(m)
1 0

. . .
0 λ

(m)
rm

−λ
(m)
rm 0

























, (27)

where T (m) is normal canonical form of B(m). By Lemma 3.3, there exists c(m) ∈ Rm so that

B
(m+1)

=

[

T (m) c(m)

−c(m)T

0

]

(28)

with eigenvalues {λ
(m+1)
j i}m+1

j=1 . Let

Um+1 =
[

Um 0
0 1

]

. (29)

Then

B(m+1) = U
T

m+1B
(m+1)

Um+1 =

[

UT
mT (m)Um UT

mc(m)

−c(m)T

Um 0

]

=

[

B(m) UT
mc(m)

−c(m)T

Um 0

]

(30)

is a real anti-symmetric (m+1)× (m+1) matrix with eigenvalues {λ
(k)
j i}k

j=1 in the leading k×k

submatrix of B(m+1)(k = n − p + 1, · · · , m, m + 1). This process for m = n − p + 1, · · · , n − 1
gives us a matrix B which satisfies all conditions in Theorem 3.1. This completes the proof of
Theorem 3.1.

4 Construction of banded anti-symmetric matrices from

spectral data

Theorem 4.1. Let {λ
(k)
j }k

j=1(k = n− p+1, · · · , n.0 < p ≤ n) be a set of real numbers satisfying

(1), (2), then there exists a real anti-symmetric n × n matrix A with eigenvalues {λ
(k)
j i}k

j=1 in
the leading k × k submatrix of A(k = n − p + 1, · · · , n) and ast = 0 for |s − t| ≥ p.

Proof By Theorem 3.1, there exists a real anti-symmetric n × n matrix B with eigenvalues

{λ
(k)
j i}k

j=1 in the leading k × k submatrix of B(k = n − p + 1, · · · , n). But B is not necessary a
banded matrix. In order to transform B into (2p−1)-diagonal form we begin to zero the elements
outside the band in the nth column(row) and continue with the (n−1)th, (n−2)th,· · · , (p+1)th
column(row), using Householder transformations. Working backward in this way, we do not
destroy anti-symmetry and the eigenvalues of the p leading submatrices. We construct similar
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matrices B = A0, A1, · · · , An−p = A, where the last j columns and rows of Aj are of (2p − 1)-
diagonal form. To be specific, for j = 0, 1, · · · , n − p − 1, let

an−j =





a1,n−j

...
an−j−p+1,n−j





be the upper part of the (n − j)th column of Aj . Let Hj ∈ Rn−j−p+1 be Householder matrix
such that

Hjan−j = ren−j−p+1,

where r ∈ R and en−j−p+1 ∈ Rn−j−p+1 the (n − j − p + 1)th unit vector. Now let

Hj =

[

Hj 0
0 Ij+p−1

]

. (31)

Then the (n − j)th column and row of

Aj+1 = HjAjH
T
j (32)

are of (2p−1)-diagonal form. This transformation reserves the (2p−1)-diagonal form of the last
j columns and rows of Aj . It reserves the eigenvalues of the p greatest leading submatrices of Aj

either. As consequence, the matrix A = An−p has (2p − 1)-diagonal form and same eigenvalues
in the p greatest leading submatrices as those in B.

5 Numerical methods and examples

The process of the proof of Theorems 3.1 and 4.1 provide us with an algorithm to construct the
required matrix as follows:

Algorithm 1 This algorithm construct a real anti-symmetric matrix from given spectrum data.

Step 1 Compute B(n−p+1) by (26).
Set U (n−p+1) = In−p+1.

Step 2 For m = n − p + 2, · · · , n do Step 3-5.

Step 3 Compute c(m) by (9), (25) when m is odd, or by (14),(15),(25) when m is even.

Step 4 Compute B(m) by (30).

Step 5 If m < n, compute U (m+1) by (10), (11).

Step 6 For j = 0, 1, · · · , n − p − 1 do Step 7-8.

Step 7 Compute Aj+1 by (31), (32).

Step 8 Set A0 = B.

Step 9 Output A = An−p.

Using the above algorithm for the construction of real anti-symmetric matrix from given
spectrum data, we give some examples here to illustrate that the results obtained in this paper
are correct. Numerical experiments have been performed implementing a MATLAB routine on
an PC.
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Example 1 (p = 2, n = 7) Given {λ
(7)
j }7

j=1={−7,−5,−3, 0, 3, 5, 7} and {λ
(6)
j }6

j=1 = {−6,−4,

−2, 2, 4, 6}. The computed real anti-symmetric tri-diagonal matrix is given below:















0.000000 3.285052
−3.285052 0.000000 −2.389232

2.389232 0.000000 −3.772709
3.772709 0.000000 −3.204164

3.204164 0.000000 −3.872983
3.872983 0.000000 −5.196152

5.196152 0.000000















.

Example 2 (p = 2, n = 7) Given {λ
(7)
j }7

j=1={−5,−5,−2, 0, 2, 5, 5} and {λ
(6)
j }6

j=1 = {−5,−3,

−1, 1, 3, 5}. This time (1), (2) hold with equality. The desired matrix is computed as follows:















0.000000 −5.000000
5.000000 0.000000 0.000000

0.000000 0.000000 −1.314257
1.314257 0.000000 −1.749915

1.749915 0.000000 −2.282658
2.282658 0.000000 −4.358899

4.358899 0.000000















.

Example 3 (p = 3, n = 8) Given {λ
(8)
j }8

j=1={−7.5,−5.5,−3.5,−1.5, 1.5, 3.5, 5.5, 7.5}, {λ
(7)
j }7

j=1

= {−7,−5,−3, 0, 3, 5, 7} and {λ
(6)
j }6

j=1={−6,−4,−2, 2, 4, 6}. Because A is anti-symmetric penta-
diagonal, we only list two upper sub-diagonal entries in Table 1. The eigenvalues of tree greatest
leading principal submatrices of A are computed and list in the table to compare with the given
data. The results are rather satisfying.

Table 1: Example 3: two upper sub-diagonal entries of matrix A.

j aj,j+1 aj,j+2 computed λ
(8)
j computed λ

(7)
j computed λ

(6)
j

1 - 3.569251945735 +2.448044172744 +7.500000000000i +7.000000000000i +5.999999999999i

2 - 1.697317755236 - 1.070337761180 - 7.500000000000i - 7.000000000000i - 5.999999999999i

3 - 3.132965850439 - 3.376274833182 +5.500000000000i +4.999999999999i +4.000000000000i

4 +2.269296078105 - 1.633815326846 - 5.500000000000i - 4.999999999999i - 4.000000000000i

5 +2.051157187872 - 3.000355819338 +3.500000000000i +3.000000000000i +2.000000000000i

6 +4.242389062469 - 4.136546918404 - 3.500000000000i - 3.000000000000i - 2.000000000000i

7 - 0.942857142857 +1.500000000000i +0.000000000000

8 - 1.500000000000i
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