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Abstract. A new partial pricing column rule is proposed to the basis-deficiency-allowing
simplex method developed by Pan. Computational results obtained with a set of small
problems and a set of standard NETLIB problems show its promise of success.
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1 Introduction

We are concerned with the linear programming problem in the standard form

min cT x (1)

s.t. Ax = b

x ≥ 0.

where A ∈ Rm×n with m < n, b ∈ Rm, c ∈ Rn, 1 ≤ rank(A) ≤ m. It is assumed that the cost
vector c, the right-hand b, and A′s columns and rows are nonzero, and that the equation Ax = b

is consistent.
It is widely accepted that pivot rules used in the simplex method affect the number of iter-

ations required for solving linear programming problems. Much effort has therefore been made
in the past on finding good pivot rules to improve the efficiency of the underlying method [1-
10]. It is notable that although it usually involves more iterations, a partial pricing rule for
column selection, like that used in the MINOS, involves less computational work per iteration,
and consequently leads to less overall running time than the conventional full pricing.

The basis-deficiency-allowing simplex method for linear programming was developed by Pan
[1] in 1997. A key feature of this method is that it uses a generalized basis allowing deficiency.
Computational results obtained with this method, in which the full pricing rule is used, are
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indeed very encouraging. Therefore, the following questions naturally arise: Can we introduce
some partial pricing to improve the new algorithm? If so, how to do it and what is its efficiency?
In this paper, we propose a new partial pricing rule for column selection for the basis-deficiency-
allowing simplex method to improve its efficiency further. We report computational results
obtained with a set of small problems and a set of standard NETLIB problems, and show the
rule’s promise of success.

2 Preliminaries

For this presentation being self-contained, we first present the basis-deficiency-allowing simplex
method briefly [1]. A basis is a submatrix consisting of any m1 linearly independent set of A’s
columns, whose range space includes b. If m1 = m, it is a normal basis; otherwise, it is a deficient
basis.

Let B be a basis with m1 columns and let N be nonbasis, consisting of the remaining n−m1
columns. Define the ordered basic and nonbasic index sets respectively by

JB = {j1, . . . , jm1} and JN = {k1, . . . , kn−m1}

Thus we have

A = [B, N ] = [aj1 , . . . , ajm1
; ak1

. . . , akn−m1
]

cT = [cT
B, cT

N ] = [cj1 , . . . , cjm1
; ck1

. . . , ckn−m1
]

xT = [xT
B , xT

N ] = [xj1 , . . . , xjm1
; xk1

. . . , xkn−m1
]

Then program (1) can be written as

min cT
BxB + cT

NxN (2)

s.t. BxB + NxN = b

xB ≥ 0, xN ≥ 0.

Given the QR decomposition QT B=R, where Q ∈ Rm×m is orthogonal and R ∈ Rm×m1 is

upper triangular. Let Q and R be partitioned as Q = [Q1, Q2] and R =

[
R1

0

]

, where Q1 ∈

Rm×m1 , Q2 ∈ Rm×(m−m1), R1 ∈ Rm1×m1 is upper triangular, and 0 ∈ R(m−m1)×m1 is the zero
matrix. The canonical matrix may be partitioned as

[QT B QT N QT b] =

[
R1 QT

1 N QT
1 b

0 QT
2 N 0

]

.

The associated basic solution is then

x̄N = 0, x̄B = R−1
1 QT

1 b, (3)

the corresponding objective value is f = cT
BR−1

1 QT
1 b, and the corresponding reduced cost is

z̄N = cN − NT Q1R
−T
1 cB. (4)

Let us take a single iteration. Assume that the current basic solution, say (3), is feasible, i.e.,
x̄B ≥ 0. If in addition, it holds that z̄N ≥ 0, then we are done. Suppose this is not the case.
Conventionally, a nonbasic column is selected to enter the basis by Dantzig’s original rule, i.e.,

q = Argmin{zkj
| j = 1, . . . , n − m1} (5)
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Therefore zkq
< 0, and the nonbasic column akq

will enter the basis. There will be one of the
following cases arising

Case 1 m1 = m, or otherwise m1 < m but QT
2 akq

= 0. In this case, a basic column can be

determined to leave the basis. Introducing the m1-vector ν = R−1
1 QT

1 akq
, which may be obtained

by solving the upper triangular system R1v = QT
1 akq

, we determine a subscript p such that

α =
x̄jp

vp

= min

{
x̄ji

vi

|i ∈ I

}

> 0 (6)

where
I = {i|vi > 0, i = 1, . . . , m1}. (7)

If the preceding I is empty, then the program is unbounded below. Otherwise, (6) is well defined,
and the following formula can be used for updating the basic feasible solution

x̄B := x̄B − αv and x̄kq
:= α (8)

Case 2 m1 < m and some of the (m1 + 1) through mth components of QT akq
are nonzero. In

this case, we have to append QT akq
to the end of the basic columns, and annihilate its (m1 + 2)

through mth entries by premultiplying [QB, QN, Qb] by an appropriate Householder reflection.
As the number of basis’ columns remains unchanged in case 1 and grows by one in case 2, the

associated iterations will be referred to as rank-maintaining and rank-increasing, respectively.
Now we show how to update QR factors when column akq

is selected, and added to the end
of basis B. Assume m1 + 1 < m, and some of the m1 + 2 through mth components of QT akq

is
nonzero, in case 2. Determining Householder reflection H ∈ Rm×m so that the m1 + 2 through
mth components of HQT akq

are zero, we update the QR factors as follows

QT := HQT and R := [R, HQT akq
]. (9)

It is simpler to update QR factors after adding column akq
to the end of the basis B, in case

1. In fact, what needs to do is only adding QT akq
to the end of R, correspondingly. Therefore,

formula (9) may also be useful if matrix H there is taken to be the identity matrix for this case.
Let us show how to update QR factors after deleting the pth basic column, in case 1. Denote

by R̄ ∈ Rm×(m1−1) the matrix, resulting from dropping the pth column of R. If p = m1, then R̄

is itself triangular, and there is no need for any action taken. If p < m1 , otherwise, we determine
the rotations Gj ∈ Rm×m, j = p, . . . , m1 − 1, to annihilate subdiagonal entries in the p through
(m1 − 1)th columns of the Hessenberg matrix R̄. This leads to the updating formula below

QT := Gm1−1 . . .GpQ
T and R := Gm1−1 . . . GpR̄

T . (10)

3 The partial pricing column rule

The package MINOS, developed by Michael A. Saunders et. al in Stanford University, is accepted
as one of the best implementations of the simplex algorithm for solving linear programming
problems [2]. Dantzig’s full pricing rule is used in MINOS for column selection for solving such
problems. In addition, a ’partial pricing’ tactic is also incorporated in it as an option to reduce
computational work involved per iteration. This tactic first partitions the non-basic index set
into a predetermined number of subsets, each of which has about an equal number of indices;
then, it computes reduced costs that correspond to non-basic indices in the first subset, and



26 Partial Pricing Rule Simplex Method with Deficient Basis

finds the smallest one among them. If the one found is not significantly small, it will do the
same thing with the next subset, and so on, until a reduced cost is found small enough, and the
corresponding nonbasic column is hence determined to enter the basis; or, otherwise, optimality
is declared. Computational experiments show that this partial pricing rule is superior to the
conventional full pricing rule practically, since it usually computes and examines a small part of
reduced costs, and consequently consumes less running time overall, even though it might require
more iterations. However, this tactic seems to be blind in the sense that, to a great extent, the
determination of the part of reduced costs to be checked does not depend on information of
reduced costs themselves. In order to overcome this disadvantage, we describe a new partial
pricing rule, and incorporate it in the basic-deficiency-allowing simplex algorithm. Again define
the ordered basic and non-basic index sets below

JB = {j1, . . . , jm}, JN = {k1, . . . , kn−m1}

For the first iteration, the determination of an entering column index is essentially the same as
that under the full pricing rule. But, in order to proceed with subsequent iterations, we introduce
a new index set below

K = {kj |z̄kj
< 0, j = 1, . . . , n − m1}. (11)

If the preceding set is empty, optimality is already achieved. In the other case, we choose an
entering column via

q = Argmin{z̄kj
|kj ∈ K}. (12)

In the next iteration, we do not have to compute all of the reduced costs by (4); instead, we only
compute a part of them, i.e., those associated with the index set K

z̄kj
= ckj

− aT
kj

u, kj ∈ K (13)

where u = Q1R
−T
1 cB. Then we update K as follows

K := {kj ∈ K|z̄kj
< 0}. (14)

If K is nonempty, we determine q via (12). Otherwise, we have to proceed as in the first iteration
by computing all of the reduced costs by (4) and redefining index set K by (11). The preceding
partial pricing rule can be incorporated in the basic-deficiency-allowing simplex algorithm as
follows.

Algorithm 1: Given the QR decomposition QT B = R of an initial basis B, and the associated
sets JB , JN . Assume that the corresponding primal solution is feasible, i.e., x̄B is nonnegative.

1. Compute z̄N by (4).

2. Form index set K by (11).

3. Stop if K is empty.

4. Determine column index q by rule (12).

5. Go to Step 13, if m1 < m and some of the (m1 + 1) through mth components of QT akq

are nonzero.

6. Compute vector v = R−1
1 QT

1 akq
.

7. Stop if set I define by (7) is empty.

8. Determine step-length α and row index p by rule (6).

9. Update x̄ by (8).
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10. Update R and QT by (10).

11. Move the pth index of JB to the end of JN .

12. Set m1 := m1 − 1.

13. Update R and QT by (9).

14. Move the qth index of JN to the end of JB .

15. Set m1 := m1 + 1 .

16. Compute z̄kj
by (13).

17. Update K by (14).

18. If K is nonempty, go to Step 4; else go to Step 1.

Since there are only finitely many bases, the preceding algorithm does not terminate if and
only if cycling occurs. Further, since the number of basic variables does not decrease in the
process, a cycle never involves any rank-increasing iteration; or in other words, cycling can
only occur with rank-maintaining iterations. If nondegeneracy is guaranteed for such iterations,
therefore, there will be no chance of cycling at all, as the objective value decreases strictly. Thus,
based on the well-known results in linear programming we can state the following.

Theorem 3.1. Under the primal non-degeneracy assumption on full iterations, Algorithm 1
terminates at either (a): Step 3, with primal and dual optimal solutions reached; or (b): Step 7,
detecting lower unboundedness of program (1).

4 Achieving primal feasibility

In order to get itself started, Algorithm 1 requires primal feasibility. In this section, we demon-
strate that it is possible to achieve this by solving an auxiliary problem with piecewise-linear
sums of primal infeasibilities as its objective, as have been done with the simplex method. Let
us consider such a procedure to match Algorithm 1.

Assume that at the current iteration the primal deficient solution x̄ is infeasible. Continue
using the same notation as that in Section 3, we obtain

x̄B = R−1
1 QT

1 b, x̄N = 0 (15)

where x̄B 6≥ 0 . If it assumed that the first l (l ≤ m1) variables are negative, and the rest are
nonnegative, then, instead of the problem (1), now the auxiliary system below should be handled:

min z = c̄T x (16)

s.t. Ax = b

x ≥ 0

where −c̄T = (
︷ ︸︸ ︷

1, . . . , 1,
︷ ︸︸ ︷

0, . . . , 0) ∈ Rn , the components of −c̄T consist of l 1’s and n− l 0’s. The
following steps are then similar to those in Algorithm 1, only with row pivot rule modified.

5 Computational results

To gain some idea of the practical behavior of the proposed rule, we have performed some
computational experiments. We report our computational results obtained in this section. The
following two C++ codes were tested, and compared against one another:
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Table 1: Comparison of two codes (Group A)

Iterations Total Time
Crash Phase 1 Phase 2 Total

FULL 229 2 97 328 565.560
PARTIAL 229 2 106 337 543.640

FULL/PARTIAL 1.000 1.000 0.915 0.973 1.040

Table 2: Comparison of two codes (Group B)

Iterations Total Time
Crash Phase 1 Phase 2 Total

FULL 239 5 96 340 563.360
PARTIAL 239 5 103 347 540.350

FULL/PARTIAL 1.000 1.000 0.932 0.980 1.043

1. Code PARTIAL: Algorithm 1 is used as Phase 2. A modification of it is used as Phase 1
(see Section 4).

2. Code FULL: Original basis-deficiency-allowing algorithms are implemented. Algorithm
3.3 in [1] is used as Phase-1, and Algorithm 3.1 in [1] as Phase -2.

In both codes, rows and columns of the constraint matrix are scaled first; an initial basis is
then provided by Pan’s dual crash procedure [1]. For the sake of numerical stability, in addition,
Harris’ practical row selection rule [1] is used, instead of the row selection rule (6). The difference
between the two codes is that Dantzig’s conventional column rule (5) is utilized in both Phase-1
and Phase-2 of FULL, whereas the partial column pivot rule, proposed in this paper, is utilized
in both Phases of PARTIAL.

The first test set of problems includes two groups A and B of small problems; each group
consists of 52 small problems, with sizes of from 2 × 7 to 15 × 37. The second test set includes
16 standard LP problems from NETLIB that do not have BOUNDS and RANGES sections in
their MPS files.

Compiled using the VISUAL C++ 6.0; all runs were carried out under WINSOWS 98 system
on a PIII 600 microcomputer, with memory 128 M bytes. The machine precision used was about
16 decimal places. The reported CPU times were measured in seconds. Considering that running
time required for solving small problem was too short to measure, we arranged our computational
tests so that problems in groups A and B were solved as many as 100000 times.

In Tables 1 and 2, listed are total iteration and time (by running 100000 times) for each of
52 problems with two codes, respectively. Listed are also ratios of FULL iterations to PARTIAL
iterations and FULL total time to PARTIAL total time. It is seen from the tables that overall
FULL required slightly fewer iterations but consumed more time than PARTIAL.

Numerical results obtained with FULL and PARTIAL for the 16 problems from NETLIB are
shown in Tables 3 and 4, respectively. Table 5 compares performance of the two codes by giving
iteration and total running time ratios.

It is seen from the last rows of Tables 3, 4 and 5 that total iterations by FULL and PARTIAL
are 2936 and 3048, respectively. The ratio of them is 0.9630. It is also seen that total running
times by two codes are 110.119 seconds and 70.235 seconds, the ratio is 1.568. So, PARTIAL
requires much less running time than that of FULL overall.

Moreover, from the columns under Cols /Rows and Total Time, it is noted that PARTIAL’s
superiority over FULL increases with the ratio of the number of columns to that of rows for these
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Table 3: Results Obtained with FULL

Problem Rows Iterations Total Time Optimal Value
+Cols Crash P.1 P.2 Total

AFIRO 60 7 0 17 24 0.009 −4.6475314286E+ 02
SC50B 99 5 0 57 62 0.089 −7.0000000000E+ 01
SC50A 99 10 0 50 60 0.091 −6.4575077059E+ 01

ADLITTLE 154 51 1 103 155 0.192 2.2549496316E+ 05
BLEND 158 8 0 117 125 0.450 −3.0812149846E+ 01

SHARE2B 176 76 64 54 194 1.426 −4.1573224074E+ 02
SC105 209 20 0 114 134 1.764 −5.2202061212E+ 01

STOCFOR1 229 77 4 64 145 2.591 −4.1131976219E+ 04
SCAGR7 270 114 54 31 199 4.101 −2.3313898243E+ 06
ISRAEL 317 172 0 232 404 15.308 −8.9664482186E+ 05

SHARE1B 343 117 36 132 285 3.270 −7.6589318579E+ 04
SC205 409 38 0 237 275 31.856 −5.2202061212E+ 01

BEACONFD 436 122 0 17 139 12.770 3.3592485807E+ 04
LOTFI 462 85 0 188 272 8.961 −2.5264706062E+ 01

BRANDY 470 150 62 162 374 26.408 1.5185098965E+ 03
SCSD1 838 5 0 83 88 0.833 8.6666666743E+ 00
Total 1057 221 1658 2936 110.119

Table 4: Results Obtained with PARTIAL

Problem Iterations Total Time Optimal Value
Crash P.1 P.2 Total

AFIRO 7 0 25 32 0.009 −4.6475314283E+ 02
SC50B 5 0 55 60 0.065 −7.0000000000E+ 01
SC50A 10 0 47 57 0.065 −6.4575077059E+ 01

ADLITTLE 51 1 97 149 0.176 2.2549496356E+ 05
BLEND 8 0 159 167 0.446 −3.0812149846E+ 01

SHARE2B 76 68 45 189 1.004 −4.1573224074E+ 02
SC105 20 0 109 129 1.673 −5.2202061212E+ 01

STOCFOR1 77 4 70 151 2.526 −4.1131976229E+ 04
SCAGR7 114 58 48 220 2.087 −2.3313898243E+ 06
ISRAEL 172 0 212 384 8.124 −8.9664482186E+ 05

SHARE1B 117 40 119 276 3.020 −7.6589318579E+ 04
SC205 38 0 248 286 16.323 −5.2202061212E+ 01

BEACONFD 122 0 17 139 8.281 3.3592485807E+ 04
LOTFI 85 0 232 317 8.850 −2.5264703262E+ 01

BRANDY 150 65 162 377 17.232 1.5185098965E+ 03
SCSD1 5 0 110 115 0.464 8.6666666758E+ 00
Total 1057 236 1754 3048 70.235

NETLIB problems. This reveals that the partial pricing rule is amenable to linear programming
problems with the number of columns large, relative to the number of rows. This is what we
desire for the rule.

Finally, we conclude that PARTIAL outperformed FULL overall. Interesting numerical be-
havior of the proposed rule does show its promise of success. Further research needs to be done.
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Table 5: Comparison of FULL and PARTIAL

Problem Rows/Cols FULL/PARTIAL
Iterations

P.1 P.2 Total Total Time
AFIRO 1.889 - 0.680 0.750 1.000
SC50B 1.560 - 1.036 1.033 1.370
SC50A 1.560 - 1.064 1.053 1.400

ADLITTLE 2.464 1.000 1.062 1.040 1.091
BLEND 1.541 - 0.736 0.749 1.009

SHARE2B 1.688 0.941 1.200 1.026 1.420
SC105 1.552 - 1.046 1.039 1.054

STOCFOR1 1.410 1.000 0.914 .0960 1.026
SCAGR7 1.434 0.931 0.646 0.905 1.965
ISRAEL 1.816 - 1.094 1.052 1.884

SHARE1B 2.162 0.900 1.109 1.033 1.083
SC205 1.546 - 0.956 0.962 1.952

BEACONFD 1.705 - 1.000 1.000 1.542
LOTFI 2.392 - 0.810 0.861 1.013

BRANDY 1.570 0.954 1.000 0.992 1.532
SCSD1 9.870 - 0.755 0.765 1.795
Total - 0.936 0.945 0.963 1.568

We expect that the proposed partial pricing column rule’s superiority over the conventional rule
increases with problem sizes.
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