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Abstract. Let 1 < p ≤ 2, E be a real p-uniformly smooth Banach space and T : E → E

be a continuous and strongly accretive operator. The purpose of this paper is to investigate
the problem of approximating solutions to the equation Tx = f by the Ishikawa iteration
procedure with errors�

xn+1 = anxn + bn(f − Tyn + yn) + cnun,
yn = a′

n
xn + b′

n
(f − Txn + xn) + c′

n
vn, n ≥ 0

where x0 ∈ E, {un}, {vn} are bounded sequences in E and {an}, {bn}, {cn}, {a
′
n
}, {b′

n
}, {c′

n
}

are real sequences in [0, 1]. Under the assumption of the condition 0 < α ≤ bn + cn,∀n ≥ 0,

it is shown that the iterative sequence {xn} converges strongly to the unique solution of the
equation Tx = f . Furthermore, under no assumption of the condition lim

n→∞
(b′

n
+ c′

n
) = 0, it

is also shown that {xn} converges strongly to the unique solution of Tx = f .

Key words: Strongly accretive operator equation; Ishikawa iteration procedure with errors; solution;
p-uniformly smooth Banach space.
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1 Introduction and preliminaries

Let E be a real Banach space with norm ‖ · ‖, let E∗ denote the dual space of E, and let
〈·, ·〉 denote the generalized duality pairing between E and E∗. For 1 < p < ∞, the mapping
Jp : E → 2E∗

defined by

Jp(x) =
{

u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖‖u∗‖, ‖u∗‖ = ‖x‖p−1
}

, x ∈ E,
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32 Approximation Solutions of Nonlinear Strongly Accretive Operator Equations

is called the duality mapping with the gauge function φ(t) = tp−1. In particular, the duality
mapping with the gauge function φ(t) = t, denoted by J , is referred to be the normalized duality
mapping. It is a well-known fact[17] that Jp(x) = ‖x‖p−2J(x) for x ∈ E \ {0} and 1 < p < ∞.
Equivalently, the duality mapping Jp can be defined as the subdifferential of the functional
Ψ(x) = p−1‖x‖p , that is,

x∗ ∈ Jp(x) ⇔ x∗ ∈ ∂Ψ(x) =
{

f ∈ E∗ : p−1‖y‖p − p−1‖x‖p ≥ 〈y − x, f〉, ∀y ∈ E
}

. (1)

In addition, it is also known that Jp(λx) = λp−1Jp(x), ∀λ ≥ 0.
An operator T with the domain D(T ) and range R(T ) in E is said to be strongly accretive

if for x, y ∈ D(T ) there exists j(x− y) ∈ J(x− y) such that 〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2 for
some constant k > 0; or equivalently, for x, y ∈ D(T ) there is jp(x − y) ∈ Jp(x − y) such that

〈Tx − Ty, jp(x − y)〉 ≥ k‖x − y‖p (2)

for some constant k > 0. In particular, T is said to be accretive if for x, y ∈ D(T ) there is
j(x − y) ∈ J(x − y) such that 〈Tx − Ty, j(x − y)〉 ≥ 0; or equivalently, for x, y ∈ D(T ) there
exists jp(x − y) ∈ Jp(x − y) such that 〈Tx − Ty, jp(x − y)〉 ≥ 0. Without loss of generality, we
assume that k ∈ (0, 1). It is known that an operator T with the domain D(T ) and range R(T )
in E is accretive if and only if for all x, y ∈ D(T ) and r > 0 there holds the inequality

‖x − y‖ ≤ ‖x − y + r(Tx − Ty)‖.

It is also known that T is strongly accretive if and only if there exists a positive number k such
that (T −kI) is accretive where I is the identity operator of D(T ). The accretive operators were
introduced independently by Browder[1] and Kato[2] in 1967. An early fundamental result, due to
Browder, in the theory of accretive operators states that the initial value problem du/dt + Tu =
0, u(0) = u0 is solvable if T is a locally Lipschitzian and accretive operator on E. A strongly
accretive operator is sometimes called the strictly accretive operator. These operators have been
investigated previously by many authors; see [5-14, 18] for more details.

Now we remind the reader of the following fact: In most of the known results on the Ishikawa
iteration procedure (with errors) for finding solutions to nonlinear equations Tx = f of strongly
accretive operators, generally, the Lipschitz continuity or uniform continuity is imposed on the
strongly accretive operators T . Moreover, the sequences of the iteration parameters are assumed
or possible to be convergent to zero. See, for example, [5-14, 18].

Now, let us recall the following iteration procedures due to Xu[5].
(I) The Ishikawa iteration procedure with errors is defined as follows: For a nonempty closed

convex subset C of a Banach space E and an operator T : C ⊂ E → E, the sequence {xn} in C
is defined from an arbitrary x0 ∈ C by

{

xn+1 = anxn + bnTyn + cnun,
yn = a′

nxn + b′nTxn + c′nvn, n ≥ 0,

where {un}, {vn} are two bounded sequences in C and {an}, {bn}, {cn}, {a
′
n}, {b

′
n}, {c

′
n} are real

sequences in [0,1] satisfying certain restrictions.
(II) The Mann iteration procedure with errors is defined as follows: If a′

n = 1, b′n = c′n = 0 for
all n ≥ 0, then the above Ishikawa iteration procedure with errors is called the Mann iteration
procedure with errors.

Let 1 < p ≤ 2, E be a real p-uniformly smooth Banach space and T : E → E be a continuous
and strongly accretive operator. In this paper, we investigate the problem of approximating
solutions to the equation Tx = f by the Ishikawa iteration procedure with errors

{

xn+1 = anxn + bn(f − Tyn + yn) + cnun,
yn = a′

nxn + b′n(f − Txn + xn) + c′nvn, n ≥ 0
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where x0 ∈ E, {un}, {vn} are bounded sequences in E and {an}, {bn}, {cn}, {a
′
n}, {b

′
n}, {c

′
n} are

real sequences in [0,1]. Under the assumption of the condition 0 < α ≤ bn + cn, ∀n ≥ 0, it is
shown that the iterative sequence {xn} converges strongly to the unique solution of the equation
Tx = f . Furthermore, under no assumption of the condition b′n + c′n → 0(n → ∞), it is also
shown that {xn} converges strongly to the unique solution of Tx = f . The results presented
in this paper improve and extend some earlier and recent results obtained previously by many
authors, see, e.g., [5-14,18].

Next, we give some preliminaries. Let E be a real Banach space. Recall that the modulus
ρE(·) of smoothness of E is defined by

ρE(τ) = sup {(‖x + y‖ + ‖x − y‖) /2 − 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ ≤ τ} , τ > 0,

and that E is said to be uniformly smooth if lim
τ↓0

ρE(τ)/τ = 0. It is known (cf. [15]) that if E is

uniformly smooth, then E is a smooth and reflexive Banach space, and Jp is single-valued, and
uniformly continuous on any bounded subset of E. Recall that for a real number 1 < p ≤ 2,
a Banach space E is said to be p-uniformly smooth if ρE(τ) ≤ dτp, ∀τ > 0, where d > 0 is a
constant. It is known (cf. [16]) that for a real Hilbert space H, ρH(τ) = (1+τ2)1/2−1 and hence
H is 2-uniformly smooth. It is also known that if 1 < p < 2, Lp (or lp) is p -uniformly smooth;
while if 2 ≤ p < ∞, Lp (or lp) is 2-uniformly smooth. Xu[16] gave the following characterization
for a real p-uniformly smooth Banach space: Let E be a real smooth Banach space and p be
a fixed number in (1,2]. Then E is p-uniformly smooth if and only if there exists a constant
dp > 0such that

‖x + y‖p ≤ ‖x‖p + p〈y, Jp(x)〉 + dp‖y‖
p, ∀x, y ∈ E.

Proposition 1.1 Let 1 < p ≤ 2 and E be a real p-uniformly smooth Banach space. Then

‖x + y‖p ≤ ‖x‖p + p〈y, Jp(x + y)〉, ∀x, y ∈ X.

Proof. The conclusion follows from (1).

Proposition 1.2 Let 1 < p ≤ 2. Then

(i) (a + b)p−1 ≤ 2p−1(ap−1 + bp−1), ∀a, b,∈ [0,∞);

(ii) (a + b + c)p−1 ≤ 22(p−1)(ap−1 + bp−1 + cp−1), ∀a, b, c,∈ [0,∞).

Proof. 1) If a, b are both zero, then the conclusion (i) is obviously true; if one is zero and the
other is not zero, for example a = 0, b 6= 0, then the conclusion (i) is obviously true; if a, b are
not zero, then

(a + b)p−1 =
(a + b)p

a + b
≤

2p−1(ap + bp)

a + b
≤ 2p−1(ap−1 + bp−1).

This shows that the conclusion (i) is still true.

2) From the conclusion (i), it follows that

(a + b + c)p−1 ≤ 2p−1
(

a + b)p−1 + cp−1
]

≤ 2p−1
[

2p−1(ap−1 + bp−1) + cp−1
]

≤ 22(p−1)(ap−1 + bp−1 + cp−1).

This proves that the conclusion (ii) is true.
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Lemma 1.1. [15] Let 1 < p ≤ 2 and E be a real p-uniformly smooth Banach space. Then
Jp : E → E∗ is Holder continuous with power (p− 1), that is, there exists a constant r > 0 such
that

‖Jp(x) − Jp(y)‖ ≤ r‖x − y‖p−1, ∀x, y ∈ E. (3)

Lemma 1.2. [14] Let {σn}, {δn} and {γn} be three nonnegative real sequences satisfying

σn+1 ≤ (1 − λn)σn + δn + γn

with {λn} ⊂ [0, 1],

∞
∑

n=0

λn = ∞, δn = o(λn), and

∞
∑

n=0

γn < ∞. Then lim
n→∞

σn = 0.

Lemma 1.3. [18] Suppose that {µn} and {νn} are two nonnegative real sequences satisfying
the following inequality

µn+1 ≤ γµn + νn, ∀n ≥ 0,

where γ ∈ [0, 1) and lim
n→∞

νn = 0. Then lim
n→∞

µn = 0.

Browder[1] proved that if T : E → E is locally Lipschitzian and accretive then T is m-
accretive; i.e., the operator (I +T ) where I denotes the identity operator of E is surjective. This
result was subsequently generalized by Martin[3] to continuous accretive operators. It can be
seen that the following lemma is an immediate consequence of Martin’s result.

Lemma 1.4. [4] If T : E → E is continuous and strongly accretive then T maps E onto E;
that is, for each f ∈ E the equation Tx = f has a solution in E.

2 Main results

Theorem 2.1. Let 1 < p ≤ 2, E be a real p-uniformly smooth Banach space and T : E → E be
a continuous and strongly accretive operator. S : E → E is defined as Sx = f − Tx + x for each
x ∈ E. Let {an}, {bn}, {cn}, {a

′
n}, {b

′
n}, {c

′
n} be real sequences in (0,1) satisfying the following

conditions
(i) an + bn + cn = a′

n + b′n + c′n = 1;
(ii) cn → 0(n → ∞), b′n + c′n → 0(n → ∞);

(iii) 0 < α ≤ bn + cn ≤ min

{

pη

p − 1
,

1

p(k − η)
, 1

}

for some η ∈ (0, k).

Let {xn} be the sequence in E generated from an arbitrary x0 ∈ E by the Ishikawa iteration
procedure with errors:

{

xn+1 = anxn + bnSyn + cnun,
yn = a′

nxn + b′nSxn + c′nvn, n ≥ 0, (ISE)

where {un}, {vn} are two bounded sequences in E. Assume that {Sxn}, {Syn} are both bounded.
Then {xn} converges strongly to the unique solution x∗ of the equation Tx = f if and only if
{Tyn} converges strongly to f .

Proof. At first, we observe that the equation Tx = f has a unique solution which is denoted
by x∗. Indeed, the existence follows from Lemma 1.4 and the uniqueness from the strong accre-
tiveness of T . We also observe that for x, y ∈ E,

〈Sx − Sy, Jp(x − y)〉 = −〈Tx− Ty, Jp(x − y)〉 + ‖x − y‖p

≤ −k‖x− y‖p + ‖x − y‖p = (1 − k)‖x − y‖p.
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Now, set αn = bn + c and βn = b′n + c′n. Then (ISE) can be rewritten as

{

xn+1 = (1 − αn)xn + αnSyn + cn(un − Syn),
yn = (1 − βn)xn + βnSxn + c′n(vn − Sxn), n ≥ 0.

(ISE1)

Put d = ‖x0 − x∗‖ + sup
n≥0

‖Syn − x∗‖ + sup
n≥0

‖un − x∗‖. Then, by inductive reasoning, we get

‖xn − x∗‖ ≤ d, ∀n ≥ 0.

Since {xn}, {Sxn}, {vn} are bounded, it follows from (ISE1) that {yn} is bounded. Let

K = {Sxn}
∞
n=0 ∪ {Syn}

∞
n=0 ∪ {xn}

∞
n=0 ∪ {yn}

∞
n=0 ∪ {un}

∞
n=0 ∪ {vn}

∞
n=0 ∪ {x∗}.

Put M = 1 + sup
x∈K

‖x‖ + diamK, where diamK denotes the diameter of K.

Sufficiency. Suppose {Tyn} converges strongly to f . Then we assert that {xn} converges
strongly to x∗. Indeed, it follows from Proposition 1.1 and the definition of M that

‖xn+1 − x∗‖p = ‖(1 − αn)xn + αnSyn − x∗ + cn(un − Syn)‖p

≤ ‖(1 − αn)xn + αnSyn − x∗‖p + p〈cn(un − Syn), Jp(xn+1 − x∗)〉
≤ ‖(1 − αn)xn + αnSyn − x∗‖p + pMpcn.

(4)

Now, set wn = (1 − αn)xn + αnSyn. Then it follows from (3) and Proposition 1.1 that

‖wn − x∗‖p ≤ (1 − αn)p‖xn − x∗‖p + pαn〈Syn − x∗, Jp(wn − x∗)〉
= (1 − αn)p‖xn − x∗‖p + pαn〈Syn − x∗, Jp(wn − x∗) − Jp(yn − x∗)〉

+pαn〈Syn − x∗, Jp(yn − x∗)〉
≤ (1 − αn)p‖xn − x∗‖p + rpαn‖Syn − x∗‖ · ‖wn − yn‖

p−1

+p(1 − k)αn‖yn − x∗‖p

≤ (1 − αn)p‖xn − x∗‖p + rpαnM‖wn − yn‖
p−1

+p(1 − k)αn‖yn − x∗‖p.

(5)

Utilizing Proposition 1.2, we have

‖wn − yn‖
p−1 = ‖(1 − αn)(xn − yn) + αn(Syn − yn)‖p−1

≤ {‖xn − yn‖ + ‖Syn − yn‖}
p−1

= {‖βn(Sxn − xn) + c′n(vn − Sxn)‖ + ‖Syn − yn‖}
p−1

≤ 22(p−1){βp−1
n ‖Sxn − xn‖

p−1 + c′p−1
n ‖vn − Sxn‖

p−1 + ‖Syn − yn‖
p−1}

≤ (4M)p−1(βp−1
n + c′p−1

n + ‖Tyn − f‖p−1).
(6)

As in the proof of (4), we obtain

‖yn − x∗‖p = ‖(1 − βn)xn + βnSxn + c′n(vn − Sxn) − x∗‖p

≤ ‖(1 − βn)(xn − x∗) + βn(Sxn − x∗)‖p + pc′n〈vn − Sxn, Jp(yn − x∗)〉
≤ (1 − βn)p‖xn − x∗‖p + pβn〈Sxn − x∗, Jp((1 − β)(xn − x∗) + βn(Sxn − x∗))〉

−pβn〈Sxn − x∗, Jp((1 − βn)(xn − x∗))〉
+pβn〈Sxn − x∗, Jp((1 − βn)(xn − x∗))〉 + pMpc′n

≤ (1 − βn)p‖xn − x∗‖p + rp‖βn(Sxn − x∗)‖p + p(1 − k)βn‖xn − x∗‖p + pMpc′n
≤ [(1 − βn)p + p(1 − k)βn] ‖xn − x∗‖p + (rβp

n + c′n)pMp.
(7)
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Substituting (6) and (7) into (5), we derive

‖wn − x∗‖p ≤ (1 − αn)p‖xn − x∗‖p

+rpαnM · (4M)p−1(βp−1
n + c′p−1

n + ‖Tyn − f‖p−1) + p(1 − k)αn

· {[(1 − βn)p + p(1 − k)βn]‖xn − x∗‖p + (rβp
n + c′n)pMp}

≤ [(1 − αn)p + p(1 − k)αn]‖xn − x∗‖p + 4p−1rpMp

·(βp−1
n + c′p−1

n + ‖Tyn − f‖p−1) + p2Mp(βn + rβp
n + c′n).

(8)

Substituting (8) into (4), we deduce

‖xn+1 − x∗‖p ≤ [(1 − αn)p + p(1 − k)αn] ‖xn − x∗‖p

+D
{

βp−1
n + βn + βp

n + c′p−1
n + c′n + cn

}

+ D‖Tyn − f‖p−1,
(9)

where D = max{4p−1rpMp, rp2Mp, p2Mp}. Note that for 1 < p ≤ 2 we have

(1 − t)p−1 ≤ 1 − (p − 1)t, ∀t ∈ [0, 1].

Since 0 < α ≤ αn ≤ min {pη/p− 1, 1/(p(k − η)), 1} for some η ∈ (0, k), we deduce

(1 − αn)p + p(1 − k)αn ≤ (1 − (p − 1)αn) (1 − αn) + p(1 − k)αn

= 1 − pkαn + (p − 1)α2
n

≤ 1 − pkαn + (p − 1) ·
pη

p − 1
αn

= 1 − p(k − η)αn,

(10)

and 0 ≤ 1 − p(k − η)αn ≤ 1 − p(k − η)α < 1. Substituting (10) into (9), we obtain

‖xn+1 − x∗‖p ≤ (1 − p(k − η)αn)‖xn − x∗‖p

+D{βp−1
n + βn + βp

n + c′p−1
n + c′n + cn} + D‖Tyn − f‖p−1

≤ (1 − p(k − η)α)‖xn − x∗‖p

+D{βp−1
n + βn + βp

n + c′p−1
n + c′n + cn} + D‖Tyn − f‖p−1

= (1 − p(k − η)α)‖xn − x∗‖p + θn,

(11)

where
θn = D{βp−1

n + βn + βp
n + c′p−1

n + c′n + cn} + D‖Tyn − f‖p−1.

Since ‖Tyn − f‖ → (n → ∞), by virtue of the condition (ii) and by using Lemma 1.3 for (11),
we infer that ‖xn − x∗‖ → 0 as n → ∞.

Necessity. Suppose that {xn} converges strongly to the unique solution x∗ of the equation
Tx = f . Then, it follows from the continuity of S that {Sxn} converges strongly to Sx∗ = x∗.
Since

‖yn − xn‖ = ‖βn(Sxn − xn) + c′n(vn − Sxn)‖ ≤ 2Mβn → 0, n → ∞.

So, we have lim
n→∞

yn = lim
n→∞

xn = x∗. Hence, this implies that lim
n→∞

Syn = Sx∗ = x∗. Thus, we

have
‖Tyn − f‖ = ‖Syn − yn‖ ≤ ‖Syn − x∗‖ + ‖yn − x∗‖ → 0(n → ∞).

The proof is thus complete.

Remark 2.1. By the careful analysis of the proof of Theorem 2.1, we readily see that if the
condition (iii) in Theorem 2.1 is replaced by the following condition: lim infn→∞(bn+cn) > α > 0,
and

lim sup
n→∞

(bn + cn) < min

{

pη

p − 1
,

1

p(k − η)
,

}

for some η ∈ (0, k),

then Theorem 2.1 is still valid.
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Theorem 2.2. Let E, T, S be as in Theorem 2.1. Let {an}, {bn}, {cn}, {a
′
n}, {b

′
n}, {c

′
n} be real

sequences in (0,1) satisfying the conditions:
(i) an + bn + cn = a′

n + b′n + c′n = 1;

(ii)

∞
∑

n=0

(bn + cn) = ∞, cn = o(bn);

(iii)

∞
∑

n=0

(bn + cn)c′p−1
n < ∞.

Let {xn} be the sequence in E generated from an arbitrary x0 ∈ E by the Ishikawa iteration
procedure (ISE) with errors, where {un}, {vn} are two bounded sequences in E. Assume that
{Sxn}, {Syn} are both bounded. Then {xn} converges strongly to the unique solution of the
equation Tx = f if and only if {Txn} converges strongly to f .

Proof. Following the idea of the proof in Theorem 2.1, we know that the equation Tx = f
has a unique solution which is denoted by x∗ and that {xn}, {yn} are both bounded. Let
K, M, {αn}, {βn} be as in the proof of Theorem 2.1. Next, we still need to use the rewritten
version of (ISE).

Sufficiency. Suppose that {Txn} converges strongly to f . Set wn = (1 − αn)xn + αnSyn.
Then, observe that

‖xn+1 − x∗‖p = ‖(1 − αn)xn + αnSyn + cn(un − Syn) − x∗‖p

≤ ‖(1 − αn)(xn − x∗) + αn(Syn − x∗)‖p + pcnMp

≤ (1 − αn)p‖xn − x∗‖p + pαn〈Syn − x∗, Jp(wn − x∗)〉 + pcnMp

−pαn〈Syn − x∗, Jp(yn − x∗)〉 + pαn〈Syn − x∗, Jp(yn − x∗)〉
≤ (1 − α)p‖xn − x∗‖p + rpαn‖Syn − x∗‖‖wn − yn‖

p−1

+p(1 − k)αn‖yn − x∗‖p + pMpcn

≤ (1 − αn)p‖xn − x∗‖p + rpαnM‖wn − yn‖
p−1

+p(1 − k)αn‖yn − x∗‖p + pMpcn.

(14)

Utilizing the estimates (6) and (7), we have

‖wn − yn‖
p−1 = ‖αn(Syn − xn) − βn(Sxn − xn) − c′n(vn − Sxn)‖p−1

≤ 22(p−1)
{

αp−1
n ‖Syn − xn‖

p−1 + βp−1
n ‖Sxn − xn‖

p−1 + c′p−1
n ‖vn − Sxn‖

p−1
}

≤ 22(p−1)
{

αp−1
n Mp−1 + ‖Sxn − xn‖

p−1 + c′p−1
n Mp−1

}

≤ (4M)p−1
{

αp−1
n + ‖Txn − f‖p−1 + c′p−1

n

}

,

(15)

and
‖yn − x∗‖p = ‖xn − x∗ + βn(Sxn − xn) + c′n(vn − Sxn)‖p

≤ ‖xn − x∗ + βn(Sxn − xn)‖p + pMpc′n
≤ ‖xn − x∗‖p + pβnMp−1‖Sxn − xn‖ + pMpc′n
≤ ‖xn − x∗‖p + pMp‖Txn − f‖ + pMpc′n.

(16)

Now, substituting (15) and (16) into (14), we have

‖xn+1 − x∗‖p

≤ (1 − αn)p‖xn − x∗‖p + rpαnM · (4M)p−1
{

αp−1
n + ‖Txn − f‖p−1 + c′p−1

n

}

+p(1 − k)αn · {‖xn − x∗‖p + pMp‖Txn − f‖ + pMpc′n} + pMpcn

≤ [(1 − αn)p + p(1 − k)αn]‖xn − x∗‖p + rpαnM
·(4M)p−1

{

αp−1
n + ‖Txn − f‖p−1 + c′p−1

n

}

+p2Mpαn {‖Txn − f‖ + c′n} + pMpcn

≤ [(1 − αn)p + p(1 − k)αn]‖xn − x∗‖p

+D0αn

{

αp−1
n + ‖Txn − f‖p−1 + ‖Txn − f‖ + c′p−1

n + c′n
}

+ D0cn,

(17)
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where D0 = max{rpM(4M)p−1, p2Mp}.
Since for 1 < p ≤ 2 we have (1 − t)p−1 ≤ 1 − (p − 1)t, ∀t ∈ [0, 1], so, it is easy to see that

(1 − αn)p + p(1 − k)αn

≤ (1 − (p − 1)αn)(1 − αn) + p(1 − k)αn = 1 − pkαn + (p − 1)α2.
(18)

Substituting (18) into (17), we obtain

‖xn+1 − x∗‖p

≤ [1 − pkαn]‖xn − x∗‖p + (p − 1)α2
n‖xn − x∗‖p

+D0αn

{

αp−1
n + ‖Txn − f‖p−1 + ‖Txn − f‖ + c′p−1

n + c′n
}

+ D0cn,
≤ [1 − pkαn]‖xn − x∗‖p + D0αn

{

αp−1
n + αn + ‖Txn − f‖p−1 + ‖Txn − f‖

}

+D0cn + D0(αnc′p−1
n + αnc′n).

(19)

Now, set σn = ‖xn − x∗‖p, δn = D0αn

{

αp−1
n + αn + ‖Txn − f‖p−1 + ‖Txn − f‖

}

+ D0cn, γn =
D0(αnc′p−1

n + αnc′n) and λn = pkαn. Then (19) reduces to

σn+1 ≤ (1 − λn)σn + δn + γn.

Since cn = o(bn) and
∑∞

n=0 αnc′p−1
n < ∞, we conclude that cn = o(αn) and

∑∞

n=0 αnc′n < ∞.
Therefore, according to the conditions (ii), (iii), we can see that

∞
∑

n=0

λn = ∞, δn = o(λn) and

∞
∑

n=0

γn < ∞.

Hence, by using Lemma 1.2, we know that σn → 0(n → ∞) i.e., xn → x∗(n → ∞).
Necessity. Suppose that {xn} converges strongly to the unique solution x∗ of the equation

Tx = f. Then it follows from the continuity of T that {Sxn} converges strongly to Sx∗ = x∗.
Thus, it is readily seen that

‖Txn − f‖ = ‖Sxn − xn‖ ≤ ‖Sxn − x∗‖ + ‖xn − x∗‖ → 0(n → ∞).

The proof is for this theorem complete.
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