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Abstract. We use the incremental unknowns method in conjunction with the iterative
methods to approximate the solution of the nonsymmetric and positive-definite linear sys-
tems generated from a multilevel discretization of three-dimensional convection-diffusion
equations. The condition numbers of incremental unknowns matrices associated with the
convection-diffusion equations and the number of iterations needed to attain an acceptable
accuracy are estimated. Numerical results are presented with two-level approximations,
which demonstrate that the incremental unknowns method when combined with some iter-
ative methods is very efficient.
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1 Introduction

The incremental unknowns method was first introduced by Temam [1] to study long time in-
tegration of dissipative evolutionary equations when finite difference approximations are used.
Incremental unknowns of different types have been proposed as a means to develop linear elliptic
problem and nonlinear evolutionary equations. Garcia [2] studied the algebraic framework ap-
propriate to one and two dimensional linear partial differential equations when several levels of
discretization are considered. The hierarchical ordering of the nodal unknowns lead to a linear
system (A)(x) = (b), which can be written, with the use of the incremental unknowns ordered in
the same way, as the equivalent system [A][x] = [b], where [A] = ST (A)S and [b] = ST (b). Here,
S stands for the transfer matrix from the incremental unknowns [x] to the nodal unknowns (x),
i.e., (x) = S[x]. Hereafter, we always solve the linear system [A][x] = [b], instead of the linear
system (A)(x) = (b), with the use of the following iterative methods: the Conjugate Gradient
method when [A] is a symmetric and positive-definite matrix, the iterative methods such as MR,
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GCR, Orthomin(k) [7], HSS and PSS [13, 14] when [A] is a real nonsymmetric and positive-
definite matrix, and the Bi-CGSTAB method (see [5]) when [A] is a nonsingular matrix. By
specializing the PSS method to block triangular (or triangular) and skew-Hermitian splittings
(BTSS or TSS), the PSS method naturally leads to a BTSS or TSS iteration method, so the
BTSS (or TSS) method is a special case of the PSS method.

The article is organized as follows. In Section 2, we introduce the convection-diffusion equa-
tions. In Section 3, we report six iterative methods, i.e., MR, GCR, Orthomin(k), Bi-CGSTAB,
HSS, BTSS, for computing a nonsymmetric linear system. In Section 4, using the construction
of transfer matrix S (see [11]) and the utiliztion of space decomposition, we analyze some prop-
erties of incremental unknowns and the transfer matrix. In Section 5, we apply the incremental
unknowns method to solve the convection-diffusion equations and estimate condition numbers of
the incremental unknown matrices. Moreover, it will be demonstrated that at most k iterations
are needed to obtain an acceptable solution with MR, GCR, Orthomin(k). Numerical results
with two-level approximations are presented and analyzed in Section 6.

2 Convection-diffusion equations

We consider the three-dimensional convection-diffusion equations
{

Lu = −∇ · (∇u + bu) = f, in Ω,
u(x) = 0, on ∂Ω,

where b > 0, x = (x1, x2 , x3) ∈ R
3. When the central finite difference is used for the spatial

multi-level discretization, we have the problem of approximating the solutions of large sparse
systems of linear equations

AU = g, (1)

where the vectors U, g ∈ R
N , A ∈ R

N×N is a nonsymmetric and positive-definite matrix of
order N . The dimension N is the number of nodal points and U is the vector corresponding to
the nodal values of the unknown function. In order to approximate the solution of (1), several
iterative methods, such as Minimum Residual (MR), Generalized Conjugate Residual (GCR),
Orthomin(k), Bi-CGSTAB methods, Hermitian and Skew-hermitian Splitting method (HSS) and
Block Triangular and Skew-hermitian Splitting method (BTSS), can be considered.

We introduce incremental unknowns (IU) method to a linear system (see, [2, 3]). Let U ∈ R
N

be the (l + 1)-level IU vector (l > 0) of the form

U =

(

Y0

Z l

)

, Zl =







Z1

...
Zl






,

where

(i). Y0 is the properly ordered set of the approximate nodal values of u at the coarsest grid
points;

(ii). Zl is the properly ordered set of the incremental unknowns at the level l, which is the
increment of u to the average of the values at the neighboring coarse grid points.

Moreover, let S be the transfer matrix from U to U

U = SU,
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where S is nonsingular. Then (1) becomes

AU = g, (2)

where A = ST AS, g = ST g. Here A is called the incremental unknowns matrix of A and has

a positive-definite symmetric part, namely H = 1
2 (A

T
+ A) is positive-definite, which will be

confirmed in Section 5. The convergence properties of incremental unknowns method can be
found in [1, 11].

3 Some iterative methods

We consider the following six well-known algorithms: MR, GCR, Orthomin(k), Bi-CGSTAB,
HSS and BTSS for approximating the solution of a linear system (1) or (2).

The first three algorithms have some similarities, i.e., the MR algorithm is a special case of
the Orthomin(k) algorithm with k = 0, and Orthomin(k) is the truncated GCR method (storing
k directions). For the convergence rates of the first three methods, we have the following result
proved in [7].

Theorem 3.1. If {r(i)} is the sequence of residuals generated by the MR, GCR, Orthomin(k)
algorithms, then

‖r(i)‖2 ≤

{

1 −
1

ν(A)
2

}i/2

‖r(0)‖2. (3)

where ν(A) = λmax(AT A)1/2/λmin(H) and H = 1
2 (A + AT ) is the symmetric part of A.

From Theorem 3.1, the convergence rate depends on the number ν(A) which is the condi-
tion number of A when A is a matrix with a positive-definite symmetric part. In three space
dimensions, Garcia has shown that the condition number of the incremental unknowns matrix
associated with the Laplace operator is O(1/H2)O((1/h)| log(h)|) [12], where H is the mesh size
of the coarsest grid and h is the mesh size of the finest grid. Furthermore, if block diagonal
scaling is used, the condition number of the preconditioned incremental unknowns matrix asso-
ciated with the Laplace operator turns out to be O(1/h). In contrast, the condition number of
the nodal unknowns matrix associated with the Laplace operator is O(1/h2). Hence we observe
an improvement in the case of incremental unknowns for the convergence rates.

Bi-CGSTAB is a finite termination method. The theoretical convergence properties of Bi-
CGSTAB are very much the same as those of CGS, which can be found in [5, 15]. The essential
difference is that often Bi-CGSTAB is more smoothly converging than CGS, i.e., its oscillations
are less pronounced. We will give some numerical comparisons between Bi-CGSTAB and MR,
GCR, Orthomin(k) for solving the convection-diffusion equations in Section 6.

Due to [13, Theorem 2.2] and [14, Theorem 2.3], we know the HSS and the BTSS iteration
methods converge unconditionally to the exact solution of the positive-definite linear system
(1). We call the HSSIU method an incremental unknowns method in conjunction with the HSS
iterative method and the BTSSIU method an incremental unknowns method in conjunction
with the BTSS iterative method for solving the linear system (2). Furthermore, we will give
applications of BTSS to the linear system (1) and BTSSIU to the linear system (2) of the
convection-diffusion equations whose coefficient matrices possess the block two-by-two structure:

A =

(

W F
E N

)

=

(

W 0
E + FT N

)

+

(

0 F
−FT 0

)

= T1 + S1.

The results will be reported in Section 6.
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4 Properties of incremental unknowns

We consider d + 1 levels of meshes in R
3

h0 = (h1,0, h2,0, h3,0),

hl = (h1,l, h2,l, h3,l), hi,l = hi,0/2l, 0 6 l 6 d, i = 1, 2, 3,

where hi,0 represents the mesh size of the coarsest grid and hi,d represents the mesh size of the
finest grid along the xi direction. Different meshes are allowed in three directions x1, x2 and x3.
To these meshes we associate the grids ℜl = ℜhl

consisting of points (j1h1,l, j2h2,l, j3h3,l), where
j1, j2, j3 ∈ Z. We denote by Ul the set of nodal points Ul = ℜl

⋂

Ω̄. For j = (j1, j2, j3) ∈ Z
3 we

denote by Kj,l the cube

Kj,l = (j1h1,l, (j1 + 1)h1,l) × (j2h2,l, (j2 + 1)h2,l) × (j3h3,l, (j3 + 1)h3,l),

and by Tl the set of all cubes Kj,l, 0 6 l 6 d.
For the sake of simplicity, we consider the case where Ω is a cuboid (0, 1)3 and hi,0 = 1/N ,

i = 1, 2, 3, N ∈ N. We denote by Vl the space of continuous real functions on Ω̄ that are Q1

(affine with respect to x1, x2 and x3 respectively) on each cube Kj,l ⊂ Ω. Since the cubes
{Kj,l ∈ Tl} are obtained by dividing the cubes of Tl−1 into eight equal cubes, we observe that
V0 ⊂ V1 ⊂ · · · ⊂ Vd.

Since Vd−1 ⊂ Vd, it is useful to define a supplement Wl of Vl−1 in Vl so that Vl = Vl−1 ⊕ Wl,
1 6 l 6 d. By reiteration we then have

Vd = V0 ⊕ W1 ⊕ · · · ⊕ Wd. (4)

We can also define the decomposition of u ∈ Vd corresponding to (4), which reads:

u = u0 +
d
∑

l=1

ul, u0 ∈ V0, ul ∈ Wl. (5)

An analysis shows that ul(x), x ∈ Ul \ Ul−1, l = 1, · · · , d are the incremental values of u at the
different levels of discretization [6]. We then endow Vd with a semi-norm corresponding to the
incremental values:

[u]2d =
d
∑

l=1

∑

x∈Ul\Ul−1

|ul(x)|2.

For a function u ∈ Vd we associate the step function ũ such that

ũ(x) = u(j1hd, j2hd, j3hd), ∀x ∈ Kj,d, j = (j1, j2, j3), 0 6 ji 6 2dN.

We observe that ũ is defined in an extend region Ω∗
hd

, where Ω∗
hd

= (0, 1+hd)
3. We first establish

the following result:

Lemma 4.1. For every u of the form (5), there exist constants c1, c2, c3 and c4 depending only
on the shape of Ω such that for every u ∈ Vd,

c1

(

∫

Ω∗

hd

|ũ|2dx

)
1

2

6 |u|L2(Ω) 6 c2

(

∫

Ω∗

hd

|ũ|2dx

)
1

2

, (6)
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|u|L2(Ω) 6 c3

{

|u0|
2
L2(Ω) + h1,0h2,0h3,0[u]2d

}
1

2

. (7)

Consequently,
(

∫

Ω∗

hd

|ũ|2dx

)
1

2

6 c4

{

|u0|
2
L2(Ω) + h1,0h2,0h3,0[u]2d

}
1

2

. (8)

Proof The results (6) and (7) are proved in [11, Lemma 8] and [11, Lemma 5]. The estimate
(8) can be obtained by simply combining (6) and (7).

We define the finite difference operators ∇hd
= (∇1,hd

,∇2,hd
,∇3,hd

)T :

∇i,hd
u(x) =

1

hi,d
{u(x + hi,dei) − u(x)}, i = 1, 2, 3,

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). It is easy to observe that ∇1,hd
, ∇2,hd

and ∇3,hd
are defined in the extended region Ω∗

1,d = (0, 1) × (0, 1 + hd) × (0, 1 + hd), Ω∗
2,d =

(0, 1 + hd) × (0, 1)× (0, 1 + hd) and Ω∗
3,d = (0, 1 + hd) × (0, 1 + hd) × (0, 1), respectively. Let Sd

be the transfer matrix from the incremental unknowns Ud to the nodal unknowns Ud. Then we
obtain the following lemma.

Lemma 4.2. There exists a constant c5 depending only on the shape of Ω, such that

‖Sd‖2 6 c5 · 8
d/2. (9)

Proof Observe

‖Sd‖
2
2 = sup

Ud 6=0

〈SdUd, SdUd〉

〈Ud, Ud〉
= sup

Ud 6=0

〈Ud, Ud〉

〈Ud, Ud〉
,

where 〈·, ·〉 denotes the usual Euclidean scalar product. Let ũ be the step function associated
with Ud. It follows from (8) that

〈Ud, Ud〉 =
1

h1,dh2,dh3,d

∫

Ω∗

hd

|ũ|2dx 6
c2
4

h1,dh2,dh3,d

{

|u0|
2
L2(Ω) + h1,0h2,0h3,0[u]2d

}

.

Thanks to (6), we get

|u0|
2
L2(Ω) 6 c2

2

∫

Ω∗

hd

|ũ0|
2dx 6 c2

2h1,0h2,0h3,0〈Y0, Y0〉

and [u]2d = 〈Zd, Zd〉. Therefore,

〈Ud, Ud〉 6
c2
4 · 8

d

h1,0h2,0h3,0

{

c2
2h1,0h2,0h3,0〈Y0, Y0〉 + h1,0h2,0h3,0〈Z

d, Zd〉
}

.

By taking c5 = (c2
4 max{c2

2, 1})
1

2 , we obtain

〈Ud, Ud〉 6 c2
5 · 8

d〈Ud, Ud〉,

which leads to (9).
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5 Incremental Unknowns for convection-diffusion equations

We consider the convection-diffusion equations given in Section 2 on the cube Ω = (0, 1)3 with
the homogeneous Dirichlet boundary conditions. Let d, N be nonnegative integers with d > 1
and N > 2, h0 = 1/N , hd = h0/2d. The discrete equation with mesh size hd is:

(LdUd)m,n,e =
1

h2
d

(2um,n,e − um−1,n,e − um+1,n,e) +
1

h2
d

(2um,n,e − um,n−1,e − um,n+1,e)

+
1

h2
d

(2um,n,e − um,n,e−1 − um,n,e+1) +
b

2hd
(um+1,n,e − um−1,n,e)

+
b

2hd
(um,n+1,e − um,n−1,e) +

b

2hd
(um,n,e+1 − um,n,e−1)

= fm,n,e, m, n, e = 1, · · · , 2dN − 1, (10)

um,n,e = 0, if m or n or e = 0 or 2dN, (11)

where um,n,e and fm,n,e are the approximate values of u and f at (mhd, nhd, ehd) respectively.
Let Ad, Bi,d, Ci,d, i = 1, 2, 3 be the matrix forms of the difference operators defined by

(AdUd)m,n,e = (2um,n,e − um−1,n,e − um+1,n,e) + (2um,n,e − um,n−1,e − um,n+1,e)

+ (2um,n,e − um,n,e−1 − um,n,e+1),

(B1,dUd)m,n,e = um+1,n,e − um,n,e, (B2,dUd)m,n,e = um,n+1,e − um,n,e,

(B3,dUd)m,n,e = um,n,e+1 − um,n,e, (C1,dUd)m,n,e = um,n,e − um−1,n,e,

(C2,dUd)m,n,e = um,n,e − um,n−1,e, (C3,dUd)m,n,e = um,n,e − um,n,e−1.

for m, n, e = 1, · · · , 2dN − 1.

Now we can write (10) and (11) in the following matrix form:

LdUd =
1

h2
d

AdUd −
b

2hd
[(B1,d + C1,d) + (B2,d + C2,d) + (B3,d + C3,d)]Ud = fd.

When b 6= 0, Ld is nonsymmetric. Using the boundary condition (11), we obtain by simple
calculation that

〈LdUd, Ud〉 =
1

h2
d

〈AdUd, Ud〉.

Because Ad is positive-definite, Ld is also positive-definite. Consider the incremental unknowns
Ud. Let Sd be the transfer matrix from Ud to Ud such that Ud = SdUd. Then we get

LdUd = fd,

where Ld = ST
d LdSd and fd = ST

d fd.

Since Sd is a nonsingular matrix,

〈
1

2
(Ld + L

T

d )Ud, Ud〉 = 〈LdUd, Ud〉

= 〈ST
d LdSdS

−1
d Ud, S

−1
d Ud〉

= 〈LdUd, Ud〉,
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it is evident that Ld has a positive-definite symmetric part. Due to Theorem 3.1 in Section 3
and [5,13,14], if the six iterative methods are used on the linear system

LdUd = fd,

then the incremental unknown methods are convergent and (3) holds for the MR, GCR and
Orthomin(k) algorithms.

Theorem 5.1. There exist constants c6, c7 and c8 depending on the shape of Ω but not on hd,
such that

λmin(H) >
c6

d3hd
, (12)

λmax(L
T

d Ld)
1

2 6 c7
d

h2
d

(1 + bd−
1

2 8
d
2 hd), (13)

and hence,

ν(Ld) 6 c8 log4(hd)
{

h−1
d + b[− log(hd)8

log(hd)]−
1

2

}

,

where H = 1
2 (L

T

d +Ld) and ν(Ld) = λmax(L
T

d Ld)
1

2 /λmin(H). Therefore, to reduce the residual of
the approximation solution by a factor ε while the residual is generated by one of the MR, GCR
and Orthomin(k) algorithms, we need at most k iterations, where

k = 2c2
8 log8(hd)

{

h−1
d + b[− log(hd)8

log(hd)]−
1

2

}2

| log(ε)|. (14)

Proof Thanks to [11, Theorem 1], there exist two constants c′1 and c′2 which depend only on
the shape of Ω, such that for any Ud

c′1hd

d3
6

〈AdUd, Ud〉

〈Ud, Ud〉

=

∫

Ω∗

1,hd

(∇1,hd
ũ)2dx +

∫

Ω∗

2,hd

(∇2,hd
ũ)2dx +

∫

Ω∗

3,hd

(∇3,hd
ũ)2dx

〈Ud, Ud〉
6 c′2d, (15)

where ũ is the step function associated with Ud. We obtain

λmin(H) = inf
Ud 6=0

〈1
2 (L

T

d + Ld)Ud, Ud〉

〈Ud, Ud〉
= inf

Ud 6=0

〈LdUd, Ud〉

〈Ud, Ud〉

= inf
Ud 6=0

1

h2
d

〈AdUd, Ud〉

〈Ud, Ud〉
>

c′1
d3hd

,

with c6 = c′1. Then the inequality (12) is proved.
If we define the matrices Ad = ST

d AdSd, Bi,d = ST
d Bi,dSd and Ci,d = ST

d Ci,dSd, then

λmax(L
T

d Ld)
1

2 = ‖Ld‖2 6
1

h2
d

‖Ad‖2 +
b

2hd

(

‖B1,d‖2 + ‖C1,d‖2

+‖B2,d‖2 + ‖C2,d‖2 + ‖B3,d‖2 + ‖C3,d‖2

)

.

It follows from (15) that

‖Ad‖2 = λmax(Ad) = sup
Ud 6=0

〈AdUd, Ud〉

〈Ud, Ud〉
6 c′2d.
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With the help of Lemma 4.2,

‖B1,d‖2 = ‖ST
d B1,dSd‖2 6 ‖ST

d ‖2‖B1,dSd‖2 6 c5 · 8
d/2‖B1,dSd‖2.

Since

‖B1,dSd‖
2
2 = sup

Ud 6=0

〈B1,dSdUd, B1,dSdUd〉

〈Ud, Ud〉
= sup

Ud 6=0

〈B1,dUd, B1,dUd〉

〈Ud, Ud〉

= sup
Ud 6=0

∫

Ω∗

1,hd

(∇1,hd
ũ)2dx

〈Ud, Ud〉
6 c′2d,

we obtain

‖B1,dSd‖2 6 (c′2d)
1

2 , ‖B1,d‖2 6 c5 · 8
d/2(c′2d)

1

2 .

Similarly, we can obtain that the upper bounds of ‖C1,d‖2, ‖B2,d‖2, ‖C2,d‖2, ‖B3,d‖2 and ‖C3,d‖2

are c5 · 8
d/2(c′2d)

1

2 . Therefore,

λmax(L
T

d Ld)
1

2 6
c′2d

h2
d

+ c5
3b · 8d/2

hd
(c′2d)

1

2

6
d

h2
d

{

c′2 + 3(c′2)
1

2 c5d
− 1

2 b8d/2hd

}

.

With c7 = max{c′2, 3(c′2)
1

2 c5}, the inequality (13) follows. Consequently,

ν(Ld) = λmax(L
T

d Ld)
1

2 /λmin(H) 6 c7/c6d
4(h−1

d + bd−
1

2 8
d
2 )

6 c8 log4(hd)
{

h−1
d + b[− log(hd)8

log(hd)]−
1

2

}

.

To reduce the residual of the solution by a factor ε with k steps, using (3) with (12) and (13),
it is sufficient to require

{

1 −
1

c2
8 log8(hd){h

−1
d + b[− log(hd)8log(hd)]−

1

2 }2

}
k
2

6 ε,

or equivalently,

k >
2| log(ε)|

| log(1 − c−2
8 log−8(hd){h

−1
d + b[− log(hd)8log(hd)]−

1

2 }−2)|
.

Since | log(1 − x)| > x, there holds

k > 2c2
8 log8(hd)

{

h−1
d + b[− log(hd)8

log(hd)]−
1

2

}2

| log(ε)|.

Remark 5.1. If b = 0, then (Ld) is the incremental unknowns matrix associated with the
Laplace problem in three space dimensions. As a result, we can recover the condition number
O(h−1

d log4(hd)) in [11].
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6 Numerical results

In this section, we perform several examples to examine effectiveness and feasibility of the incre-
mental unknown methods.

Example 1 Consider the system of linear equations (1), for which Ad is the matrix generated
from the two-level finite difference discretization of the three-dimensional convection-diffusion
equation on the unit cube Ω = [0, 1]3 with the homogeneous Dirichlet boundary conditions.
For our numerical tests, b = 0.1 is taken and the step sizes along three directions are the
same, i.e., hd = 1/2dn, d = 1. The discrete values at nodal points are taken as those of
u(x, y, z) = 100xyz(1 − x)(1 − y)(1 − z) which is the exact solution. The right-hand side fd is
obtained by computing fd = AdUd, with Ud being the exact solution.

We use the two-level incremental unknowns method in conjunction with the four iterative
methods: GCR, MR, Orthomin(1) and Bi-CGSTAB, to approximate the solution of the (2n−1)3-
by-(2n− 1)3 linear system (2). Without special claim, all our tests in this subsection are started
from zero vector and terminated when the iteration satisfies ‖r(k)‖2/‖r

(0)‖2 < 10−6, where r(k)

is the residual of the kth iteration.
We illustrate the plots of the two level incremental unknowns (n = 4, d = 1) and the nodal

unknowns ordered by different levels in Figs. 1-4 for the four algorithms. From Figs. 1-4, one can
see that the incremental unknowns in the fine mesh are less than the nodal unknowns in the fine
mesh, and the incremental unknowns in the coarsest mesh are equivalent to the nodal unknowns
in the coarsest mesh, which correspond to their definition. Furthermore, the four-dimensional
slices of the exact solution and the numerical solution are plotted in the left and the right of
Fig. 5, respectively, which use a two level uniform 15 × 15 × 15 mesh (n = 8, d = 1) and are
approximate to each other.

The relative L2 norm(log10) of the error is plotted against the iteration number in the left of
Fig. 6. The effectiveness of the Bi-CGSTAB algorithms and other algorithms are compared with
the same initial error on a uniform 9× 9× 9 mesh. The left of Fig. 6 shows the decrease in error
with respect to the iterations. We see that with the Bi-CGSTAB method, the error decreases
faster than that of the MR, GCR, Orthomin(1) methods.

The relative L2 norm(log10) of the error is plotted against the CPU time used in the right
of Fig. 6. Here we use a uniform 9 × 9 × 9 mesh. It is observed that the Bi-CGSTAB method
uses the least CPU time with a given accuracy requirement.

We observe that using IU in conjunction with the Bi-CGSTAB iteration method can save
CPU time and use less number of iteration with the required accuracy. Although the CPU time
of the MR and Orthomin(1) iteration method is longer than that of the Bi-CGSTAB method,
we can see that they are still two stable methods.

Example 2 We will compare HSS, BTSS, HSSIU and BTSSIU, and demonstrate the con-
vergence behavior of the incremental unknowns method in conjunction with HSS and BTSS.
All our numerical tests are started from zero vector and terminated when the iteration satisfies
‖r(k)‖2/‖r

(0)‖2 < 10−4, where r(k) is the residual of the kth iteration. Here b = 10 is taken
and the step sizes along three directions are the same, i.e., hd = 1/2dn, d = 1, Ω = [0, 1]3. The
discrete values at nodal points are those of u(x, y, z) = 100xyz(1−x)(1−y)(1−z) which is taken
as the exact solution. The right-hand side fd is obtained by computing fd = AdUd, where Ud is
the exact solution and the size of the matrix Ad is (2dn)3 × (2dn)3.

In Table 1, we list the experimentally optimal parameter αexp and the corresponding spectral
radii ρ(M(αexp)) of the iteration matrices M(αexp) of the HSS, BTSS, HSSIU and BTSSIU meth-
ods for different n. It is observed that when n is increasing, αexp is decreasing and ρ(M(αexp))
is increasing for HSS, BTSS, and HSSIU. But ρ(M(αexp)) of BTSSIU has a little change when
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Figure 1: The approximate solution and the incremental unknowns ordered by different levels with the

MR method, 7 × 7 × 7 mesh.
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Figure 2: The approximate solution and the incremental unknowns ordered by different levels with the

GCR method, 7 × 7 × 7 mesh.
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Figure 3: The approximate solution and the incremental unknowns ordered by different levels with the

Bi − CGSTAB method, 7 × 7 × 7 mesh.
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Figure 4: The approximate solution and the incremental unknowns ordered by different levels with the

Orthomin(1) method, 7 × 7 × 7 mesh.
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Figure 5: The four-dimensional slices of the exact solution (left) and the numerical solution (right), with

a 15 × 15 × 15 mesh.
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Figure 6: The relative L2 norm(log10) of the error against the iteration number (left) and the CPU time

(right) by using IU in conjunction with the Bi-CGSTAB algorithm and the MR, GCR, Orthomin(1)

algorithms, 9 × 9 × 9 mesh.
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Table 1: αexp and ρ(M(αexp)) for Example 2.

n 3 4 5 6
HSS αexp 3.9575 3.8050 2.9005 2.3996

ρ(M(αexp)) 0.3163 0.4043 0.4352 0.4971
BTSS αexp 4.1103 2.8032 2.5034 2.6116

ρ(M(αexp)) 0.3234 0.5204 0.6163 0.7544
HSSIU αexp 2.5968 2.3881 2.3103 2.202

ρ(M(αexp)) 0.4569 0.4916 0.5115 0.5293
BTSSIU αexp 3.7452 3.5003 3.1285 2.8957

ρ(M(αexp)) 0.6972 0.7210 0.7117 0.6939

Table 2: IT and CPU time for Example 2.

n 3 4 5 6
HSS IT 13 17 18 27

CPU 0.01560 1.4060 10.0620 40.3600
BTSS IT 8 13 25 25

CPU 0.0650 0.6250 7.5150 31.1720
HSSIU IT 13 15 15 16

CPU 0.1560 1.1250 7.7650 31.1250
BTSSIU IT 10 11 11 11

CPU 0.0940 0.5940 3.4530 13.9060
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Figure 7: The curves of the spectral radii of the iteration matrices with respect to different α for the

HSS (left) and HSSIU (right) iteration methods.

αexp is decreasing. This is confirmed by Figs. 7 and 8, which depict the curves of the spectral
radii of the iteration matrices with respect to different α for HSS, BTSS, HSSIU and BTSSIU.
Evidently, from Fig. 7 we see that ρ(M(αexp)) attains the minimum at about αexp, and mono-
tonically increases when n is increasing, and that the increment of spectral radii of HSSIU is less
than that of spectral radii of HSS. The same situation is observed in Fig. 8. In particular, we can
see that ρ(M(αexp)) of BTSSIU is less than that of BTSS when n is large. Because BTSS has
the same computational workload as BTSSIU, the actual computing CPU time of BTSS may
be more than that of BTSSIU. These facts are further confirmed by the numerical results listed
in Table 2. Because BTSS has a less computational workload than HSS at each IT, the actual
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Figure 8: The curves of the spectral radii of the iteration matrices with respect to different α for the

BTSS (left) and BTSSIU (right) iteration methods.
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Figure 9: The eigenvalue distributions for the HSS (left) and BTSS (right) methods.
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Figure 10: The eigenvalue distributions for the HSSIU (left) and BTSSIU (right) methods.

CPU time of BTSS may be much less than that of HSS. It is concluded from these figures and
tables that BTSS will be more efficient than HSS. From Table 2, we can see that the IT (number
of iteration) and CPU time of HSS are more than those of HSSIU respectively, which also occur
for BTSS and BTSSIU.

In Figs. 9 and 10, we plot the eigenvalues of the iteration matrices of the HSS, BTSS, HSSIU
and BTSSIU using the optimal parameter α when b = 10 and n = 6, d = 1. It is clear that the
eigenvalue distributions of the four iteration matrices are quite different. The eigenvalues of the
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HSS iteration matrix are tightly clustered around the real axis and a circular arc on the complex
plane, while those of the BTSS iteration matrix are clustered on the real axis and two arcs on
the complex plane. Moreover, the eigenvalues of the BTSS iteration matrix is considerably less
than that of the HSS iteration matrix along the direction of the imaginary axis. However, the
eigenvalue distributions of the BTSSIU and HSSIU iteration matrices become complex and keep
their original figures partly while the eigenvalues appear to be clustered around the origin point.

We have applied the two-level incremental unknowns to the HSS and BTSS iteration methods,
namely, the HSSIU and BTSSIU iteration methods with the two-level discretization. Due to
the convergence of HSS and BTSS, HSSIU and BTSSIU inherit advantages of those methods.
Numerical examples have been implemented to show that, in the sense of computational storage
and CPU time, the HSSIU and BTSSIU methods are much more efficient than the HSS and BTSS
methods. This confirms that the incremental unknowns method is an effective one, especially in
conjunction with some iteration methods.
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