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Abstract. A more general algebraic expression for the calculation of the four-mode Franck-
Condon factors was derived straightforwardly on the base of the closed form expression of
the Franck-Condon integrals between arbitrary multidimensional harmonic oscillators un-
der the Duschinsky mixing effects. This new algebraic expression was applied to study
the photoelectron spectra of D2CO+(eA 2B1). Franck-Condon analyses and spectral simu-
lations were carried out on the D2CO+(eA 2B1) - D2CO(eX 1A1) photoionization processes.
The spectral simulations of vibrational structures based on the computed Franck-Condon
factors are in excellent agreement with the observed spectra.
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1 Introduction

The square of the vibrational overlap integral between two electronic states is called the
Franck-Condon factor (FCF). Calculations of FCFs are crucial for interpreting vibronic spec-
tra of molecules as well as studying nonradiative processes. Recently, we have developed a
new method for calculating Franck-Condon factors of multidimensional harmonic oscillators
including the Duschinsky effect [1, 2]. Some explicit algebraic formulas of two-dimensional
(two-, three-, and four-mode) Franck-Condon factors were derived straightforwardly by the
properties of Hermite polynomials and Gaussian integrals. This new method was applied to
study the photoelectron spectra of ClO−2 , SO2, CH3OO− and so on [3–7]. Our approach is
alternative to other existing ones [8–19] and has the advantages of being efficient and having
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no singular points. Accordingly, our method can be applied to any displaced-distorted-rotated
harmonic oscillators and should be valuable in the studies of vibronic spectroscopy and non-
radiative processes of molecules. However, up to date, an explicit algebraic form expression
to calculate the three-dimensional four-mode Franck-Condon factors under the Duschinsky
mixing effects has not been reported according to our knowledge.

In this work, we extended our approach to calculate three-dimensional Franck-Condon
factors. An analytical expression for the calculation of the three-dimensional four-mode
Franck-Condon integrals has been exactly derived. In addition, a general explicit formula
of the three-dimensional Franck-Condon factors was given. As an example we present a cal-
culation of the intensity distribution in the photoelectron spectrum of the D2CO+(eA2B1) –
D2CO(eX 1A1) transition of Formaldehyde.

2 Theoretical method

In Refs. [1, 2], a closed form expression for multidimensional Franck-Condon integrals be-
tween displaced distorted-rotated harmonic potential surfaces has been derived
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Let us present the explicit form of the three-dimensional four-mode FC integrals of the
type 〈v′′1 ,v′′2 ,v′′3 |v′1,0,0〉. Setting I−2Q=β, I−2P=α, the derivative part of Eq. (1) can be
written as
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Substituting Eq. (7) into Eq. (1), we obtain
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This result of Eq. (8), however, is unsuitable for computer implementation because when the
factors in the Hermite polynomials such as α11=0 (α=I−2P), then the arguments of Hermite
polynomials diverge. To circumvent this, using the definition of the Hermite polynomial,
relative Franck-Condon factors (FCF) are defined as
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By means of Eq. (8), we obtained the computational formula of FCFs for the three-dimensional
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four-mode case
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where A,B,C,D and E are defined by A=−(I−2P), B=2(I−P)δ, C=−(I−2Q), D=−2Rδ

and E=4R, respectively. The multiple, nested summation form is not only easily coded and
evaluated by computer, but also removes the diverging values of the Hermite polynomials in
Eq. (8).

3 Example for an application

As an example we present a calculation of the intensity distribution in the photoelectron
spectrum of the D2CO+(eA 2B1) – D2CO (eX 1A1) transition of Formaldehyde, which has been
studied in great detail in previous experimental and theoretical works [20–24]. First, to
obtain the structure data and the force constants data which are needed to make Duschinsky’s
J matrix and K vector [4], we used the nonempirical molecular orbital method program,
Gaussian03 [25].

The optimized geometric parameters and computed vibrational frequencies for the eX 1A1
state of D2CO and eA 2B1 state of D2CO+ obtained at the CASSCF level in this work are applied,
respectively. J matrix and K vector in terms of the Gaussian03 output for the two electronic
states are given by [4]
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where K is in units of amu1/2 Å. J describes the mixing of normal modes. Then, according
to the method of the present paper, FCF calculations on the eA 2B1 – eX 1A1 photoionization
were carried out. The computed FCFs were used to simulate the vibrational structure of the
eA 2B1 – eX 1A1 photoionization spectrum of D2CO, employing a Gaussian line-shape and a
full-width-at-half-maximum (FWHM) of 130 cm−1 for the D2CO+ (eA 2B1) – D2CO (eX 1A1)
photoionization.

Figure 1: (a) The experimental photoele
tron spe
trum of D2CO (from Ref. [5℄), and (b) thesimulated spe
trum employing the ab initio for
e 
onstants and geometry for D2CO+ (eA 2B1) andthe neutral D2CO (eX 1A1) with vibrational assignments provided for the D2CO+ (eA 2B1) � D2CO(eX 1A1) photoionization pro
ess. The FWHM used for the 
omponents of the simulated spe
trumis 130 
m−1.
The simulated photoelectron spectrum of the D2CO+ (eA 2B1) – D2CO (eX 1A1) photoion-

ization is shown in Fig. 1(b), with the experimental observed photoelectron spectrum shown
in Fig. 1(a). Vibrational assignments for the symmetric CO stretching ω2 and CD2 scissor ω3
modes of the molecular ion D2CO+ are also provided with the labels (0,n,0−0,0,0),(0,0,n−
0,0,0),(0,n,1−0,0,0),(0,n,2−0,0,0),(0,n,3−0,0,0) corresponding to the (0,ω2,ω3−0,0,0)
transition. From the harmonic calculation, it was found that the FCFs for transitions involv-
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ing the other modes of D2CO+ are negligibly small and therefore they were not included in
the assignments. The relative intensities were chosen to match the second PE bands between
14.0 and 15.5 eV in the experimental spectrum [5]. It was found that the computed photo-
electron spectrum of D2CO for the D2CO+ (eA 2B1) – D2CO (eX 1A1) photoionization is almost
identical to the experimental spectrum. However, discrepancies between simulation and ob-
servation become larger for peaks with higher quantum numbers due to anharmonicity effects
not included in the FCF calculations.

4 Conclusions

An explicit algebraic expression has been derived to calculate the three-dimensional four-
mode Franck-Condon factors between displaced distorted-rotated harmonic potential sur-
faces. This equation is exact for harmonic systems, no approximation whatsoever having been
introduced in its derivation. Our method is general, in contrast to previous works in which
exact FCF were obtained for very special cases by performing a finite series expansion, or
approximate expressions by making use of the contact transformation perturbation methods.
Practical calculations of Franck-Condon factors using the new formula for the intensity distri-
bution in the photoelectron spectrum of the eA 2B1 – eX 1A1 transition of D2CO were carried
out. The spectral simulations of vibrational structures based on the computed Franck-Condon
factors are in excellent agreement with the observed spectrum.
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