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Abstract. The Frantz–Nodvik model was extended to propagate pulse through a doub-
le-pass laser amplifier and to study beam-interaction effects on the output-energy flu-
ence and gain factor according to the distance between two beams. We also obtained
the necessary approximation equations for the saturation state and small input pulse.
The results show that minimum output energy and gain occur when two beams com-
pletely coincide. The comparison between numerical, analytical, and empirical results
demonstrates a good correspondence.
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1 Introduction

Increasing efficiency and decreasing amplifier levels are of great significance particularly
in laser-joint systems, and an appropriate analytical model can successfully be used to
optimize the design of such optical structures. In practice, double- or multi-pass ampli-
fiers functionally amplify extremely low- and high-energy pulses [1–3]. Most analytical
models that have been proposed for optical amplifiers are based on the Frantz–Nodvik
theory [4]. In this model, only by assuming that the gain factor depends on the direc-
tion of laser beam propagation through the amplifying medium, the relationship be-
tween input- and output-energy fluxes is obtained according to the initial gain factor
and saturation-energy flux. Modifying the gain factor, this model is used again for the
second pass [5]. By providing a simple analysis and assuming that the initial distribu-
tion of gain is uniform throughout the active medium, the Frantz–Nodvik model leads to
very good results for explaining the amplifier’s behavior. When the laser pulse width (tp)
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is much larger than the time necessary for the optical pulse to pass through the ampli-
fier (τ) and the gain slightly changes during pulse pass due to pumping and under-drop
mechanisms, the Frantz–Nodvik model that is independent of input pulse’s temporal be-
havior and the laser active medium’s type is valid and employed [6–9]. When the gain
distribution is not uniform due to the amplifier’s non-uniform pumping or the radial de-
pendence of the distribution of input intensity, a special accuracy is required to employ
the Frantz–Nodvik model [10–13]. In such instance, by assuming that the gain spatial
distribution is known before the optical pulse enters the amplifier, the one pass version
of this model can be used for every point inside the amplifier. The transverse distribu-
tion of output-beam intensity can be obtained by iterating this model. For consecutive
passes and the assumption that tp ≫ τ, the optical gain of each beam is affected by its
neighboring beams’ intensity. In this case, except for a special state in which the beams’
propagation directions coincide [14], there is not any appropriate analytical model to de-
scribe how the output-energy flux depends on the distance between beams’ propagation
directions [15–20]. The only existing model of multi-pass amplifiers provides necessary
calculations just by qualitative and approximate considerations concerning beams over-
lapping and regardless of passing beams’ spatial position [21]. Hence, for appropriate
initial and boundary conditions on the amplifier’s input and output surfaces, the mass
contrast and photon flux of each beam can be obtained only through numerically solving
the position-dependent rate equations [22–25].

In this paper, for the first time, after solving the rate equations for a double-pass
amplifier, we obtain the analytical solutions for the dependence of input-energy fluence
on the radial-position-dependent optical gain and transmission factor between the first
pass and second pass, and the fluence of output energy to gain for the known directions
of input and output beams. The obtained results are consistent with the numerical and
empirical results.

2 Position-dependent rate equations for double-pass amplifiers

When the input beam’s temporal width is small enough compared with the upper level’s
lifetime and active medium’s pumping time, the following simplified rate equations can
be used to obtain the mass contrast between the active medium’s upper and down levels
(N(r,z,t)) and the photon density of first and second passes (Φ1(r,z,t) and Φ2(r,z,t)) [10]

∂

∂t
Φ1(r,z,t)+c

∂

∂z
Φ1 (r,z,t)=N(r,z,t)cσΦ1 (r,z,t) (1)

∂

∂t
Φ2(r,z,t)−c

∂

∂z
Φ2 (r,z,t)=N(r,z,t)cσΦ2 (r,z,t) (2)

∂

∂t
N(r,z,t)=−N(r,z,t)cσ[Φ1 (r,z,t)+Φ2(r,z,t)] (3)
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In addition to radial position (r), the mass contrast and photon density are a function
of spatial position along the beam propagation direction (z) and time (t). Eqs. (1) and
(2) show the transport of photons along z in which Φ1 and Φ2 respectively propagate
along the positive and negative directions of z and in the distance r1 and r2 from z. The
parameter c denotes the propagation speed of the laser field into the active medium and
σ represents the induced-emission cross section.

3 Solving rate equations

By removing the nonlinear terms in Eqs. (1)–(3), and integrating them over the amplifier
length from z=0 to z= L, we obtain

Φ2(r,L,t)−Φ2(r,0,t)−Φ1(r,L,t)+Φ1(r,0,t)=
1

cσ

∫ L

0

∂

∂t
N(r,z,t)σdz (4)

First, we divide both sides of (4) by the input-photon density at r= r1, or Φ1(r1,0,t)

Φ2(r,L,t)

Φ1(r1,0,t)
−

Φ2(r,0,t)

Φ1(r1,0,t)
−

Φ1 (r,L,t)

Φ1(r1,0,t)
+

Φ1(r,0,t)

Φ1(r1,0,t)
=

1

cσΦ1 (r1,0,t)

∫ L

0

∂

∂t
N(r,z,t)σdz (5)

According to (6) and (7), the small-signal gain, G(r,t), is dependent on the photon density
and mass contrast between the active medium’s energy levels

G(r,t)=
Φ1(r,L,t)

Φ1(r,0,t)
=

Φ2(r,0,t)

Φ2(r,L,t)
(6)

G(r,t)= e
∫ L

0 N(r,z,t)σdz (7)

The beam-transfer function (ψ), which connects the first-pass output beam to the
second-pass input beam by assuming that the laser pulse’s temporal behavior does not or
slightly changes from the first exit to second entry (this assumption is often appropriate),
is a function of the transmission of parts after the amplifier (T) and beams’ radial position

ψ(r,T)=
Φ2 (r,L,t)

Φ1 (r,L,t)
(8)

The radial dependence of the photon density in the first and second passes are shown
by f1(r,z) and f2(r,z), respectively

Φ1(r,z,t)= f1(r,z)Φ1(r1,z,t) (9)

Φ2(r,z,t)= f2(r,z)Φ2(r2,z,t) (10)
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By inserting (6), (8), and (9) into (5), we get

G(r1,t)ψ(r,T)−ψ(r,T)G(r1,t)G(r,t)−G(r,t)+1=
1

cσΦ1 (r,0,t)

∂

∂t

∫ L

0
N(r,z,t)σdz (11)

The saturation-energy fluence, JS, is defined as

JS =
h̄ω

σ
(12)

where h̄ω represents the laser-transition photon energy. By inputting (12) to (11), the
equation required to connect the input-photon density, gain factor, and beam-transfer
function is obtained

ch̄ωΦ1(r,0,t)=
Js

∂
∂t

∫ L
0 N(r,z,t)σdz

[1+G(r1,t)ψ(r,t)]+[1−G(r,t)]
(13)

Now, both sides of (4) is divided by Φ2(r2,0,t). Similarly to the calculations led to
(13), and using G(r,t), ψ(r,T), and (10), we get the equation below for the output-photon
density

ch̄ωΦ2(r,0,t)=

(
JsG(r2,t)ψ(r,T)

ψ(r,T)[1−G(r2,t)]−1

) ∂
∂t

∫ L
0 N(r,z,t)σdz

1+
[

1
ψ(r,T)[1−G(r2,t)]−1

]
1

G(r,t)

(14)

The fluence of input and output energies can be achieved by integrating the photon
density at z=0

Jin (r)=
∫

∞

−∞

h̄ωcΦ1(r,0,t)dt (15)

Jout(r)=
∫

∞

−∞

h̄ωcΦ2 (r,0,t)dt (16)

When the period of time each beam passes the active medium is much shorter than
the laser pulse width, which is usually for laser pulses with temporal width of the order of
10−8s or more, we can neglect the temporal dependence of G and consider the gain to be
only a function of position asG(r). This assumption will be applied to all the calculations
of the sections 3.1, 3.2, and 4.

3.1 Propagating beams along one direction for two passes

In the special state, beams’ directions coincide (r=r1=r2); consequently, G(r)=G1(r,r1)=
G2(r,r2). Because (1), (2), and (3) do not contain derivative with respect to r and consider-
ing u(r,t)= ∫ L

0 N(r,z,t)σdz, we can use the equation below for each r. The effect of radial
position r on the gain is inserted into the calculations by the function ψ
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du=

[
∂

∂t

∫ L

0
N(r,z,t)σdz

]
dt (17)

The integration of (13) and (14) is possible using (7), (15), and (16). The following
equations give the relationship between Jin and Jout for every known value of r through
the parameter G

exp

(
Jin (r)

Js

)
=

[
G(r)

G0

][
G(r)−1

G0−1

]− 1
1+ψ

[
G(r)ψ+1

G0ψ+1

]− ψ
(1+ψ)

(18)

exp

(
Jout(r)

Js

)
=

[
G(r)−1

G0−1

]− ψ2

1+ψ
[

G(r)ψ+1

G0ψ+1

]− ψ
(1+ψ)

(19)

where G0 is the initial gain of small signal in the active medium, which is constant and
dependent of position. By dividing (19) by (18), we get the relationship between the input
fluence and output fluence

Jout(r)= Jin (r)+ Js

[
ln

(
G0

G(r)

)
+(ψ−1)ln

(
G0−1

G(r)−1

)]
(20)

By combining (18) and (19), we can make them similar to the Frantz–Nodvik classical
equation as far as possible

e
(1+ψ)

(
Jout(r)

Js

)

−1

e
(1+ψ)

(
Jin(r)

Js

)

−1

=

(
G0−1

G(r)−1

)ψ2 (
ψG0+1

ψG(r)+1

)ψ
−1

(
G(r)
G0

)ψ+1(
G0−1

G(r)−1

)(
ψG0+1

ψG(r)+1

)ψ
−1

(21)

For the special case ψ = 1 and the uniform distribution of input-photon fluence, in
which all the output beam returns to the amplifier for the second pass without any
change, (21) is reduced to (22) for the double-pass amplifier at the limit state r1 = r2 for
T=1 [10]

e

(
2Jout

Js

)

−1

e

(
2Jin

Js

)

−1

=G2
0 (22)

There is another special case at ψ = 0 in which the first-pass output beam does not
return to the amplifier anymore. In other words, the transmission is zero between the
two passes, T=0. In this state, (21) gives Jout=0, which is correct.

3.2 Propagating beams along two different directions

When two beams’ directions do not coincide, the Frantz–Nodvik theory leads to an ap-
propriate approximation for the gain during each pass (r= r1, r= r2), which can be used
for G1 and G2 in order to integrate (13) and (14) [4]
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G1=
G0e

Jin(r1)
Js

(1−G0)+G0e
Jin(r1)

Js

(23)

G2=
G0e

Jin2(r2)
Js

(1−G0)+G0e
Jin2(r2)

Js

(24)

where Jin2(r2) denotes the fluence of the second-pass input energy

Jin2(r2)=TJin(r1)G1 (25)

Therefore, (13) and (14) bring about (26) and (27)

Jin (r)=
JS

[1+G1ψ(r)]

∫ lnG

lnG0

du

1−eu
(26)

Jout (r)= Js

(
ψ(r)G2

ψ(r)[1−G2]−1

)
×
∫ lnG

lnG0

du

1+
(

1
ψ(r)[1−G2]−1

)
e−u

(27)

The integration of (26) and (27) is simply done

G(r)=
G0

G0+(1−G0)exp
[
−[1+G1ψ(r)] Jin(r)

Js

] (28)

Jout(r)= Js

[
ψ(r)G2

1−ψ(r)[1−G2]

]
ln

(
1+G0 [ψ(r)(1−G2)−1]

1+G(r)[ψ(r)(1−G2)−1]

)
(29)

Combining (28) and (29) and removing G(r), the relationship between the input-
energy and output-energy fluences can be obtained for a double-pass amplifier

exp

[
−

(
1−(1−G2)ψ

G2ψ

)(
Jout(r)

Js

)]

=
G0(1−G2)ψ+(1−G0)exp

[
−(1+G1ψ)

(
Jin(r)

Js

)]

{1+G0 [(1−G2)ψ−1]}
{

G0+(1−G0)exp
[
−(1+G1ψ)

(
Jin(r)

Js

)]} (30)

Eqs. (30), (23), (24), and (25) show the double-pass amplifier’s behavior in the frame-
work of single-pass amplifier model and according to the radial situation, which is called
the generalized analytical model of double-pass amplifiers.

Now, we investigate (30) in special states. If the input-energy fluence is much lower
than the saturation-energy flux (Jin ≪ Js), the approximation G1≈G2≈G0 is very appro-
priate and will be substituted for (23) and (24). In this instance, (30) is simplified further
as
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exp

[
−

(
1−(1−G0)ψ

G0ψ

)(
Jout(r)

Js

)]
=

ψG0+exp
[
−(1+G0ψ)

(
Jin(r)

Js

)]

(1+ψG0)
{

G0+(1−G0)exp
[
−(1+G0ψ)

(
Jin(r)

Js

)]}

(31)

In the saturation state: Jin ≥ Js, G1≪G0, G2≪G0, and G1≈G2≈1; accordingly, (30) is
reduced to

exp

[
−

(
1

ψ

)(
Jout (r)

Js

)]
=

exp
[
−(1+ψ)

(
Jin(r)

Js

)]

G0+(1−G0)exp
[
−(1+ψ)

(
Jin(r)

Js

)] (32)

4 Beam-transfer function

The uniform intensity distribution and Gaussian intensity distribution are the most im-
portant items we usually deal with in practice. Hence, we study the function ψ in the
following two states.

4.1 Input beam with uniform intensity distribution

For the uniform intensity distribution, the photon density at z=0 is given by

Φ1(r,0,t)=

∣∣∣∣
Φ0 f (t); |r−r1|≤ a1

0 ; |r−r1|> a1
(33)

where f (t) represents the temporal changes in input intensity, Φ0 is constant, and 2a1

is the input beam diameter. By assuming that the pulse’s temporal behavior does not
change after passing the amplifier, there is a similar expression for the second-pass input
beam

Φ2(r,L,t)=

∣∣∣∣
Φ0TG(r,t) f (t) ;|r−r2|≤ a2

0 ; |r−r2|> a2
(34)

Considering (8), (33), and (34), the beam-transfer function is obtained as

ψ(r,T)=

∣∣∣∣
T ;|r−r2|≤ a2

0 ;|r−r2|> a2
(35)

4.2 Input beam with Gaussian intensity distribution

For the Gaussian intensity distribution with the spot size of w1, the input-photon density
is given by
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Φ1(r,0,t)=Φ0 f (t)exp

[
−2

(
r−r1

w1

)2
]

(36)

Also, the second-pass input-photon density is defined as

Φ2(r,L,t)=Φ0 f (t)G(r)Texp

[
−2

(
r−r2

w2

)2
]

(37)

Accordingly, the function ψ is achieved by considering (8), (36), and (37)

ψ(r,T)=Texp

[
2

(
r−r1

w1

)2
]

exp

[
−2

(
r−r2

w2

)2
]

(38)

5 Investigation of double-pass amplifier’s behavior using the gen-

eralized model

Based on (30), Figs. 1 and 2 show the behavior of G(r) and Jout(r) for a Gaussian input
beam in three states: too far away from saturation (Jino/Js =0.1), saturation (Jino/Js =1),
and complete saturation (Jino/Js = 2.81), similarly to what we faced in practice. In these
calculations, according to the empirical values, we selected G0 = 8.804 for 98 J pump-
ing energy delivered to the lamp, T = 0.23, the first-pass input-spot size is 0.88 mm,
and the second-pass input-spot size is 0.5 mm. The first-pass input-beam direction is
along the amplifying probe’s symmetry axis (r1 =D/2) and we selected the second-pass
beam’s normalized radial position to the amplifying probe diameter (r2/D) at five dif-
ferent positions from 0.1 to 0.5. As the passing beams’ propagation directions approach
each other, the beam-interaction effect on the active medium’s gain becomes clearer, the
output-energy gain and fluence reaches their minimum for r2=r1, and G≈1 for Jino/Js≥1.
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Figure 1: The gain’s radial behavior. D is the amplifying probe diameter. G0=8.804 for pumping energy 98 J,
which is consistent with empirical observations.
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Figure 2: The normalized output fluence’s radial behavior Jout/Js.G0 =8.804 for pumping energy 98 J.
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Figure 3: The approximate-model error’s radial behavior Ess for Jin << Js.

When |r2−r1|≤(w1+w2)/2 and the beams’ directions do not coincide, non-uniform spa-
tial changes in the gain distort the spatial distribution of intensity for the second-pass
beam. This impact is evident in Figs. 1 and 2 for r2/D=0.4.

We define the relative error due to applying (31) and (32) in two special states Jin ≪ Js

and Jin ≫ Js for a Gaussian input beam respectively as

Ess=

[
Jout ss(r)− Jout(r)

Jout ss(r)

]
×100 (39)

Est=

[
Jout st(r)− Jout(r)

Jout st(r)

]
×100 (40)

Figs. 3 and 4 provide the error-calculation results for five different values of r2/D.
The diagrams indicate that the error due to the simplified model (32) varies between −20
and −50% for the output fluence Ess and Jino/Js = 0.1. As the input fluence rises and
exceeds the saturation state, the approximation (31) becomes invalid and an error more
than ±50% is observed in the results. Eq. (32) is only valid in the complete saturation
state of the active medium’s gain. The diagrams of Fig. 4 demonstrate that only when
the gain is completely saturated in the first and second passes, (32) leads to acceptable
results. This state occurs when the passing beams’ directions are very close to each other:
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Figure 4: The approximate-model error’s radial behavior Est for saturated output fluence.

|r2−r1|<max(w1,w2) and Jin ≥ Js. This state is observed only in the last diagram of Fig.
4 for r2 = r1, in which the error is lesser than 40% for |r−r1|<w1.

When the beams’ directions coincide, there is an exact analytical solution (22) to the
problem and it can be compared with the results of (30) to study the dependence of the
output fluence on input fluence for a double-pass amplifier. Furthermore, for this special
state, the results of Frantz–Nodvik model with two separate passes and the gain factor
correction [5] can be studied and compared with other methods’. In this calculation the
factor of transmission between two passes is equal to one (T = 1), and three different
values of gain factor (0.05 cm−1, 0.272 cm−1, and 1 cm−1) have been used to study the
results’ gain dependence. It can be shown that a small difference about 5% for the average
and large values of gain and (Jin/Js)≤1, and this error is negligible for the small values
of gain and (Jin/Js)≥1, which suggests that (30) is correct.

6 Comparing analytical results with empirical observations

To confirm the calculated equations in the section 3.2, the output energy of a double-pass
Nd:YAG amplifier with effective length of 80 mm was measured according to the distance
between passing beams. The single-pass gain G0 was separately calculated by measuring
the input and output fluences and using the Frantz–Nodvik model. The single-pass gain
was obtained 0.1589cm−1, 0.2181cm−1, and 0.2719cm−1 for the pumping energy values
of 50, 72, and 98 J respectively. In these calculations, the input beam diameter is 3 mm
and the amplifying probe diameter is 9 mm.

Employing (23) and (24), for each value of pumping energy, the first-pass and second-
pass gains (G1(r1) and G2(r2)) and the output fluence (Jout(r,r1,r2)) were calculated from
(30) for a double-pass amplifier. By integrating Jout with respect to r, the double-pass
amplifier’s output energy, Eout(r1,r2), is obtained according to the center of two passing
beams r1 and r2

Eout(r1,r2)=2π
∫ D/2

r2

Jout(r,r1,r2)rdr (41)
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Table 1: Properties of Nd :YVO4, Nd :YAG, and Nd :YLF [5, 26, 27].

Properties Nd :YVO4 Nd :YAG Nd :YLF

Laser wavelength (nm) 1064 1064 1047(π)
1053(σ)

Peak absorption wavelength (nm) 808 808 792 (π)
797 (σ)

Stimulated emission cross section
(×10−19 cm2)

25 (π)
7 (σ)

2.8 1.8 (π)
1.2 (σ)

Fluorescence lifetime (¯s) 90 230 485

Line width (nm) 0.96 0.51 1.47

Peak absorption coefficient (cm−1) 31.4 (π)
9.2 (σ)

7 10.8 (π)
3.59(σ)

Absorption bandwidth (nm) 15.7 2.5 4.0
(@792nm)
3.2 (797nm)

Thermal conductivity (Wm−1K−1) 5 14 6.3

Thermo-optical coefficient (×10−6K−1) 8.5
3.0

7.3 -4.3 (π)
-2.0 (σ)

Thermal fracture limit (Wcm−1K−1) 57.6 94.8 22

Table 2: Small-signal gain and saturation intensity of Nd :YVO4, Nd :YAG, and Nd :YLF.

Type Small-signal gain Saturation intensity

Nd :YVO4 25.4 8.30 Wmm−2

Nd :YAG 2.52 29.0 Wmm−2

Nd :YLF 3.42 21.7 Wmm−2

where D represents the amplifying medium diameter.

Eq. (30) is studied with the calculation of output energy according to the distance
between the passing beams’ centers for Jin≪ Js and Jin≥ Js (Eqs. (31) and (32) respectively
for 72 J and 98 J). It is observed that when the distance between beams’ directions is more
than half the beams’ total spot size, the analytical results are completely consistent with
the empirical results. In all the states, the input-beam energy is 19.5 mJ and the beam
diameter is 2.5 mm. As the beams’ directions approach each other, the model largely
follows observed empirical behavior and gives smaller values of output energy at 10-
20% for propagating two beams along one direction.

Table 1 provides a comparison between the thermal and optical properties of Nd:YV
O4, Nd :YAG, and Nd :YLF. Table 2 makes a comparison between the small-signal gain
and saturation intensity of them.

The beam profile in the focal region of a beam from a typical multimode fiber looks
similar to the solid line in Fig. 5. Fig. 6 makes a comparison between ln(G0,G) and
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Figure 5: Multimode fiber-coupled pump beams for Gaussian and Top-Hat approximations compared to the
empirical results.
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Figure 6: Signal-pump overlap dependence of small-signal gain.

ln(G0,T) versus signal-pump overlap ratio wl/wp. Fig. 7 in fact provides gain variation
versus input-signal power.

7 Conclusions

The model we devised here is an extension of Frantz–Nodvik model for double-pass
optical amplifiers, which can be used to design optical-joint systems with double- and
multi-pass amplifiers and to optimize their efficiency.
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Figure 7: Variation in extraction efficiency and gain vs. input-signal power.

Without need for the numerical solution to partial rate equations of mass contrast and
photon density, this model can be used to optimize double-pass amplifiers and multi-
pass amplifiers (whose gain is completely dependent on the distance between beams)
through iterating. Despite the assumptions that the optical pulse’s temporal behavior
does not change after it passes the amplifier, the passing time is much shorter than the
input-pulse temporal width, and the transverse distribution of the first-pass beam’s in-
tensity is not distorted in spite of beam-interaction effects on optical gain, this model
leads to appropriate and acceptable results. The calculation results indicate that the out-
put energy and efficiency of a double-pass amplifier reach their minimum when the two
passing beams’ directions coincide. As beams move away each other, the interaction
between beams declines. In practice, the maximum efficiency is obtained when the dis-
tance between beams’ centers exceeds the sum of passing beams’ spot size. These con-
siderations along with empirical observations and the comparison of results confirm this
model’s effectiveness.
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Appendix

As a result of long extending tails at the first or too short tails in the latter, resolving
absorption spectra in the wavenumber scale into the exact Lorentzian or into the exact
Gaussian peaks are inadequate. Also, such peaks that appear asymmetric have their
shorter tails on the low-wavenumber side. Therefore, a Lorentzian function is modified
to show an exponential decay on its short wavenumber side through

B(ν̃)≡ I0
(Γ/2π)

(ν̃− ν̃0)
2+(Γ/2)2

.
1

1+exp
[
(ν̃−ν̃0)−Γ/2

Γ/2

] (42)

This “one-side truncated” function shows a single peak, whose position is given by
ν̃p = ν̃0+0.07Γ, the half-maximum full width is defined as ∆ν̃FWMH = 0.9625Γ, and the

integrated intensity is I≡
∫

∞

0 B(ν̃)dν̃=0.60544I0. Note that the band integrated intensity
correlates with its transition oscillator strength through
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f =
3mc2

πne2

I

N
(43)

where m represents electronic mass, e electronic charge, c speed-of-light constant, n medium
refractive index, and N denotes ion concentration.


