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Abstract. The structural, elastic, and electronic properties of zirconium nitride (ZrN)
and hafnium nitride (HfN) are investigated by first principles calculation with density
functional theory. The obtained cubic NaCl structure is energetically the most stable
structure at ambient pressure. A pressure induced structural phase transition from
B1 to B2 phase is predicted. The estimated superconducting transition temperature
(Tc) of ZrN and HfN are 9.17 K and 8.66 K respectively. As pressure increases the
superconducting transition temperature also increases.

PACS: 31.15.A-,62.20.D-, 61.50.Ks, 74.70.Ad

Key words: electronic structure, elastic properties, structural phase transitions, superconducting
transition temperature

1 Introduction

The physical properties of materials undergo a variety of changes when subjected to high
pressure [1]. The increase of pressure means the significant decrease in volume, which
results in the change of electronic states and crystal structure. The recent developments
in diamond anvil cell [2] enable the experimentalist to perform the investigation at high
pressure. With the development of high pressure experimental techniques, investigations
on pressure induced structural phase transition and superconductivity are getting the
attention of all.

Transition metal nitrides ZrN and HfN are of great technological and fundamental
importance because of their strength and durability as well as their useful optical, elec-
tronic, magnetic and superconducting properties. The technological application of all
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the above compounds requires significant progress in the fundamental understanding of
their behavior at normal and high pressures. At ambient pressure both ZrN and HfN
crystallize in the NaCl structure .Recently Chen et al.[3] ,using zone annealing technique
grown hafnium nitride(HfN) and zirconium nitride(ZrN) crystals in the rock salt struc-
ture and they were identified as superconductors at ambient pressure. The measured
bulk modulus was 215 GPa (ZrN) and 306 GPa (HfN) by neutron scattering experiments.
There are many theoretical as well as experimental investigations on the structural sta-
bility ZrN and HfN [4-11]. But there are many disagreements between the theory and
experiments in the prediction of stable structure, equilibrium lattice constant and bulk
modulus of these transition metal nitrides TMNs (TM-Zr, Hf). This necessitated further
theoretical studies in these systems. Moreover, the pressure dependence of elastic moduli
and superconductivity have not been reported yet.

In the present investigation, the electronic structure, structural phase transition and
mechanical stability of ZrN and HfN have been investigated using Vienna ab-initio simu-
lation package (VASP) for all possible cubic and hexagonal structures. The superconduct-
ing transition temperature is also estimated using tight binding linear muffin tin orbital
(TB-LMTO) method.

2 Computational details

The total energy calculations are performed in the frame work of density functional the-
ory using the generalized gradient approximation (GGA) [12-14] as implemented in the
VASP code [15-17]. Ground-state geometries are determined by minimizing stresses and
Hellman-Feynman forces using the conjugate-gradient algorithm with force convergence
less than 10−3 eV Å−1. Birllouin zone integration is performed with Gaussian broadening
of 0.1eV during all relaxations. The wave function of the valence electron is expanded by
a plane wave basis with an energy cutoff of 600eV, which is tested to be fully converged
with respect to the total energy for many different volumes. Birllouin-zone integrations
are performed using the Monkhorst-Pack scheme [18] with a grid size of 12×12×12 for
structural optimization. A similar density of k-points and energy cut-off are used to esti-
mate total energy as a function of volume for all the structures considered for the present
study. Scalar-relativistic corrections are also included in all the calculations. Iterative re-
laxation of atomic positions is stopped when the change in total energy between succes-
sive steps is less than 1 meV/cell. With this criterion, the force on the atoms is generally
less than 0.1 eV/Å.

To search for the most stable structure of the transition metal nitrides TMNs ( TM=
Zr, Hf), 5 types of the potential structures have been considered. They include NaCl (B1),
Zinc blende (ZB)(B3), CsCl (B2), WC(Bh) and NiAs(B8). The space group and atomic
position of atoms in the five different phases of TMNs are tabulated in Table 1. The
electronic configurations of Zr, Hf and N atoms are [Kr] 4d25s2 (Z=40), [Xe] 4f145d26s2

(Z=72), and [He] 2s22p3 (Z=7) respectively. The valence electronic configurations chosen
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Table 1: The space group and atomic position in the five phases of TMNs (TM- Zr, Hf).

Phase Space group
Atomic position

TM N

WC (Bh) P6-m2 0, 0, 0 0.333, 0.667,0.5
NiAs(B8) P63/mmc 0, 0, 0 0.333, 0.667,0.25
NaCl(B1) Fm3-m 0, 0, 0 0.5, 0.5,0.5
CsCl(B2) Pm3-m 0, 0, 0 0.5, 0.5,0.5
ZB(B3) F4-3m 0, 0, 0 0.25, 0.25,0.25

in our calculation are 4d25s2 for Zr, 5d26s2 Hf and 2s22p3 for N atoms.

The unit cell for all the structures of TMNs is shown in Fig. 1.

 

Figure 1: Unit cell of various phases of Transition metal nitrides TMNs (TM- Zr,Hf).

The tight binding linear muffin tin orbital method [19-20] was used for the estimation
of electron- phonon coupling constant and electron-electron interaction parameter. Von-
Barth and Hedin parameterization scheme is used for exchange correlation potential. The
Wigner-Seitz sphere was chosen in such a way that the boundary potential was minimum
and charge flow between the atoms was in accordance with the electro-negativity criteria.
The E and K convergence are also checked. The tetrahedron method [21] of Birllouin zone
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integration is used to calculate the total density of states.

3 Results and discussion

3.1 Structural stability and ground state properties

In order to calculate the ground state properties of ZrN and HfN, the total energies are
calculated for five possible phases (B1, B2, B3, Bh and B8) with different reduced volumes.
Fig. 2 (a-b) indicates the plot of the calculated total energy versus reduced volume for
ZrN and HfN respectively.

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 

Figure 2: Total energy versus reduced volume variations for five different crystallographic structures of: (a)
ZrN, (b) HfN.

From these figures, it is observed that both ZrN and HfN are highly stable in the B1
phase at normal pressure, which is consistent with the experimental and other theoretical
reports. The calculated total energies are fitted to the Birch Murnaghan equation of state
(EOS) [22] to determine the ground state properties such as equilibrium lattice constant
and cell volume. The calculated volume V0(Å3), lattice parameters a and c (Å), TM-N
bond length (Å), c/a ratio, valence electron density ρ (electrons/ Å) obtained using VASP
code are given in Table 2, along with experimental [3-4,10] and theoretical [5-9,11] results.
From the Table 2, it is observed that the calculated lattice constants are in good agreement
with the experimental and previous theoretical results.

From Fig. 2 (a-b), it is also observed that both ZrN and HfN will undergo a structural
phase transition from B1 to B2 phase under pressure. In order to determine the transition
pressure at T=0 K, the enthalpy (H) is calculated using the expression, H=E+PV. The
stable structure at a given pressure is the structure for which the enthalpy has its lowest
value. The transition pressure corresponding to the phase transition from B1 to B2 phase
is obtained from the relation HB1(P) = HB2(P), where HB1 and HB2 are the enthalpies
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Table 2: Calculated lattice parameters a and c (Å), cell volume V0 (Å3), the shortest TM-N bond distance
(Å),Valence electron density ρ (electrons/Å3) and c/a ratio at the GGA level for five different phases of ZrN
and HfN.

ZrN HfN
B1 B2 B3 Bh B8 B1 B2 B3 Bh B8

V0
23.98 23.89 30.48 24.65 24.28 24.11 23.76 31.80 23.79 23.66

23.9d 22.83 f 30.58 f 24.80 f 24.9g 24.8i

a

4.578 2.88 4.959 3.128 3.191 4.586 2.875 5.029 2.957 3.195

4.58a 2.473e 4.964 f 3.132 f 3.22g 4.52d,h

4.57b 4.54b

4.58c 4.627i

c
2.91 5.308 2.844 5.353

2.918 f 5.34g

TM-N
2.28 2.38 2.24 2.32 2.33 2.27 2.41 2.18 2.34 2.34

2.26h

ρ 0.375 0.376 0.295 0.367 0.370 0.373 0.373 0.283 0.378 0.380
c/a 0.930 1.663 0.961 1.675
a Exp, Ref. [4].
b FLAPW method within GGA, Ref. [5].
c US-PP method within GGA, Ref. [6]
d Exp, Ref. [3].
e TBIPT, Ref. [7].
f GGA, Ref. [8].
g LDA, Ref. [9].
h Exp, Ref. [10].
i GGA,Ref. [11].

of the B1 and B2 phases respectively. The enthalpy versus pressure curves for both the
structures for ZrN and HfN are displayed in Fig. 3 (a-b).

The estimated transition pressure for ZrN and HfN is 98.53GPa and 134GPa, which is
consistent with the transition pressure of Poonam Ojha et al. [7].

3.2 Elastic properties

Elastic constants are the measure of the resistance of a crystal to an externally applied
stress. For small strains Hooke’s law is valid and the crystal energy E is a quadratic
function of strain [23]. Thus to obtain the total minimum energy for calculating the sec-
ond order elastic constants, a crystal is strained and all the internal parameters are re-
laxed. Consider a symmetric 3×3 nonrotating strain tensor ε which has matrix elements
ε ij (i, j=1,2 and 3) defined by Eq. 1.

ε ij =







e1
e6
2

e5
2
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2 e2

e4
2
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2 e3
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Figure 3: Enthalpy versus pressure curve for: (a) ZrN and (b) HfN in NaCl (B1) and CsCl (B2) structure.

such a strain transforms the three lattice vectors defining the unstrained Bravais lattice
(aK, K=1,2 and 3) to the strained vectors (aK′ , K′=1,2 and 3) as given by Eq. (2)

a′K =(I+ε)aK (2)

where I is defined by its elements, Iij =1 for i= j and 0 for i 6= j. Each lattice vector ak or
a′k is a 3×1 matrix. The change in total energy due to the above strain (1) is

∆E=
E({ei})−E0

V0
=
(

1−
V

V 0

)

P(V0)+
1

2

( 6

∑
1

6

∑
1

Cijeiej

)

+O({e3
i }) (3)

where V0 is the volume of the unstrained lattice, E0 is the total minimum energy corre-
sponding to the unstrained volume of the crystal, P(V0) is the pressure of the unstrained
lattice, and V is the new volume of the lattice due to strain in Eq. (1). In Eq. (3), due
to crystal symmetry Cij is equal to Cji (i.e Cij =Cji ). This reduces the elastic constants
from 36 to 21. Further crystal symmetry reduces the number to 5 (C11, C12, C44, C13, C33)
for hexagonal crystals and 3(C11, C12, C44) for cubic crystals. A proper choice of the set
of strains ei , i = 1,2,··· ,6, in Eq. (3) leads to a parabolic relationship between ∆E/V0

(∆E≡E−E0) and the chosen strain. Such choices for the set {ei} and the corresponding
form for ∆E are shown in Table 3 for cubic [24] and hexagonal [25] lattices.

For each lattice structure of ZrN and HfN studied, we strained the lattice by 0%, ±1%,
and ±2% to obtain the total minimum energies E(V) at these strains. These energies and
strains are fitted with the corresponding parabolic equations of ∆E/V0 as given in Table
3 to yield the required second-order elastic constants. While computing these energies all
atoms are allowed to relax with the cell shape and volume fixed by the choice of strains
{ei}. From the calculated elastic constants Cij, the bulk modulus and shear modulus of
cubic and hexagonal crystals are calculated using the Voigt-Reuss- Hill (VRH) averaging
scheme [26-28]. The strain energy 1/2Cijeiej of a given crystal in Eq. (3) must always be
positive for all possible values of the set {ei}; otherwise the crystal would be mechani-
cally unstable. The calculated elastic constants Cij(GPa), bulk modulus B0(GPa) and its
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Table 3: Strain combinations in the strain tensor [Eq.(1)] for calculating the elastic constants of cubic and
hexagonal structures.

Cubic crystals Hexagonal crystals

Strain parameters ∆E/V0 Parameters ∆E/V0

(unlisted ei=0) (unlisted ei=0)

1 e1=e2=δ, e3= (1+δ)−2-1 3(C11-C12)δ2 e1=δ (1/2) C11δ2

2 e1=e2= e3=δ (3/2)(C11+2C12)δ2 e3=δ (1/2) C33δ2

3 e6=δ, e3=δ2(4-δ2)−1 (1/2) C44δ2 e4=δ (1/2) C44δ2

4 e1=e2=δ (C11+2C12)δ2

5 e1=e3=δ (1/2)(C11+C33+2C13)δ2

Note: The independent elastic constants for cubic (B1,B2,B3 structures) and hexagonal (B8, Bh structures)
are calculated from the above strains. Symmetry dictates Cij=Cji and all unlisted Cij=0. The strain δ is
varied in steps of 0.01 from δ=- 0.02 to 0.02. ∆E [Eq. (3)] is the The equilibrium or unstrained lattice
volume is V0.

derivative B′
0, Young’s modulus E(GPa), Shear modulus G(GPa), Poisson’s ratio (v)), B/G

ratio, elastic anisotropy A and micro hardness H(GPa) for ZrN and HfN are given in Ta-
ble 4, along with the experimental [3] and theoretical data [8,11,29-30]. Obviously, the
calculated results are in accordance with the experimental data [3] and previous theoret-
ical results [8, 11, 29-30].

For a stable hexagonal structure, the five independent elastic constants Cij (C11, C12,
C33, C13, C44) should satisfy the well known Born-Huang criteria for stability [31].

C12>0, C33>0, C11>C12, C44>0

(C11+C12)C33>2C2
13

while for a cubic crystal, the three independent elastic constants Cij (C11, C12, C44) should
satisfy the Born-Huang criteria for the stability of cubic crystals [31].

C44>0, C11> |C12|, C11+2C12>0

The calculated elastic constants Cij (GPa) satisfy these conditions, ensuring the mechan-
ical stability of ZrN and HfN at ambient pressure. Young’s modulus (E) and Poisson’s
ratio v are the two important factors for technological and engineering application. The
stiffness of the solid can be analyzed using the young’s modulus (E) value. The Young’s
modulus (E) and Poisson’s ratio v are calculated using the following formulae

E=
9BG

(3B+G)
(4)

v=
(3B−2G)

2(3B+G)
(5)

Among the phases considered for ZrN and HfN, cubic B1 phase is stiffer than the other
phases (B2, B3, Bh, and B8). During elastic deformation no volume change occurs, If



328 A. T. Asvini Meenaatci, R. Rajeswarapalanichamy, and K. Iyakutti / J. At. Mol. Sci. 4 (2013 ) 321-335

Table 4: Calculated elastic constants Cij(GPa), bulk modulus B0 (GPa) and its derivative B0’, Young’s modulus
E(GPa), shear modulus G(GPa), Poisson’s ratio, B/G ratio, Elastic anisotropy A, and microhardness H(GPa)
for five different phases of ZrN and HfN.

ZrN HfN

B1 B2 B3 Bh B8 B1 B2 B3 Bh B8

C11

550 475 259 417 407 673 523 315 450 394

471a 478b 261b 417c 408c 679a 518e 303e 440e

530b 591d

C12

100 100 144 137 116 122 117 155 170 102

138a 98b 139b 136c 115c 119a 117e 163e 172e

121c

C44

108 58 75 70 73 126 85 79 102 100

88a 34b 62b 69c 74c 150a 14e 77e 103e

110b 118d

C13
85 127 107 231
85c 130c 109e

C33
602 510 645 425
599c 520c 645e

B0

250 225 182 228 229 306 253 208 257 247

215a 225b 179b 225c 228c 306a 251e 210e 253e

250b 279d

B0’ 4.28 4.19 4.04 4.08 4.19 4.12 4.10 4.02 4.09 4.18
E 376 281 181 329 308 463 337 210 368 203
G 154 109 68 131 121 186 132 79 146 116
v 0.24 0.29 0.33 0.25 0.27 0.24 0.27 0.33 0.26 0.29

B/G 1.62 2.06 2.67 1.74 1.89 1.64 1.91 2.63 1.76 2.12
A 0.33 0.30 0.372 - - 0.31 0.26 0.33 - -
H 26.27 15.24 7.71 21.93 18.59 32.17 20.34 9.00 23.24 15.89

a Exp, Ref. [3].
b GGA, Ref. [8].
c Ref. [29].
d US-PP within GGA, Ref. [30]
e US-PP, Ref. [11].

v = 0.5, this indicates that the material is incompressible. The low v value means that
a large volume change is associated with its deformation. In addition, Poisson’s ratio
provides more information about the characteristics of the bonding forces than any of the
other elastic constants. Among the five different phases of ZrN and HfN, the Poisson’s
ratio of cubic B1 phase is lower than other phases (B2, B3, Bh and B8), indicating that Zr-
N and Hf-N bonding are more directional in the B1 phase. In order to predict the brittle
and ductile behavior of solids, Pugh [32] introduced a simple relationship that the ratio
of bulk modulus to shear modulus (B/G) is associated with ductile or brittle characters
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Figure 4: Calculated pressure dependence of elastic constants Cij and bulk modulus B0 (GPa) B1- ZrN and
B1-HfN at T=0 K.

of a material. A high B/G corresponds to ductility, whereas a low ratio is associated with
brittleness. Pugh [32] gave a critical value for ductile-brittle transition.

If B/G<1.75, the material behaves in a brittle manner, otherwise, in a ductile man-
ner. At 0 K and 0 GPa, the calculated values for ZrN and HfN shows that these materials
are brittle for B1 phase and ductile for B2,B3,Bh and B8 Phases. This conclusion is in ac-
cordance with theoretical results [29,33] and experimental data[3]. Generally all crystals
are elastically anisotropic, even a cubic crystal, which is isotropic in structure, has elastic
anisotropy as a result of a fourth rank tensor property of elasticity. A proper description
of an anisotropic behavior has a very important implication in engineering science as
well as in crystal physics. For a cubic crystal, the elastic anisotropic parameter A is given
by

A=
2C44

(C11+C12)
(6)

For elastically isotropic crystals, anisotropic parameter A must be equal to one, while
any departure from unity corresponds to the degree of elastic anisotropy possessed by
the crystal. Our calculated the anisotropic parameter A for B1-ZrN and B1-HfN at 0
GPa is 0.33, which is in good agreement with theoretical value 0.53 [29]. The calculated
pressure dependence of elastic constants Cij (GPa) and bulk modulus of B1 phase ZrN
and HfN are shown in Fig. 4.

From these figures, it is observed that C11 varies largely under the effect of pressure
as compared with the variations in C12 and C44. The elastic constant C11 represents the
elasticity in length. A longitudinal strain produces a change in C11. The elastic constants
C12 and C44are related to the elasticity in shape, which is a shear constant. A transverse
strain causes change in shape without change in volume. Therefore, C12 and C44 are less
sensitive to pressure as compared with C11. As pressure increases all the elastic constants
and bulk modulus of B1 phase of ZrN and HfN increases monotonically. The investi-
gation of the stiffness can be completed by providing the micro hardness parameter H,
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Figure 5: Band structure of (a) ZrN and (b) HfN in NaCl structure at normal pressure.

given by the following relation [34]

H=
(1−2v)E

6(1+v)
(7)

The calculated H values are given in Table 4 reveals that HfN is harder than ZrN due to
the strong covalent-ionic Hf-N bonds.

3.3 Electronic structure

The normal pressure band structure of ZrN and HfN along the symmetry directions L-Γ-
X-W-L (for NaCl structure) are given in Fig. 5(a) and (b) respectively. The Fermi level is
indicated by dotted horizontal line.

The overall topology of the band structure under normal pressure is same for both
ZrN and HfN. From the band structure of ZrN (Fig. 5a) and HfN (Fig. 5b), it is evident
that the lowest band lying around -12 eV is mainly due to N-2s states. The energy bands,
which lies around -5 eV arise mainly from Zr-5s (Fig. 5a) and Hf-6s (Fig. 5b) and also
contain a small contribution from 2p state electrons of the nitrogen atom. The Zr-4d and
Hf-5d like bands at the Fermi level hybridize with N-2p states and lie together at the X
point. There is no energy gap between the conduction band and the valence band. Hence
at normal pressure both ZrN and HfN exhibit metallic character. The total density of
states of ZrN and HfN in the NaCl, ZB, CsCl, WC and NiAs structure are given in Fig. 6
(a-b) respectively.

In the density of states of ZrN and HfN with NaCl structure, there is a deep valley
called pseudo gap near the Fermi level which results from the strong hybridization be-
tween nd (n= 4,5) states of the transition metal atom (TM=Zr,Hf) and N-2p states. The
presence of pseudo gap indicates significant covalent bonding between TM and N atoms
in the cubic NaCl structure. In addition the energy region for the hybridization between
the transition metal (TM=Zr,Hf) nd (n=4,5) states and N-2p states in the NaCl structure
is from -8 to 0 eV for ZrN and -10 to 0 eV for HfN, which is wider than those in another
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EF EF 

Figure 6: Total density of states of (a) ZrN and (b) HfN in five different phases. The Fermi level is indicated
as dotted lines.

(b) 

(a) 

(a)
(b) 

(b)

Figure 7: High pressure band structure and density of states of : (a) ZrN and (b) HfN in the CsCl structure.

structures (CsCl, ZB, WC and NiAs) and hence suggest the TM-N (TM=Zr,Hf) bonding
in the NaCl structure exhibit characteristics. From Fig. 6, it is found that the density of
states at the Fermi level in the NaCl structure in the other structures. This indicates that
both ZrN and HfN have higher conductivity in NaCl structure.

Under high pressure, ZrN and HfN undergo structural phase transition from sixfold
coordinated NaCl structure to eightfold coordinated CsCl structure. So for computing the
high pressure band structure and density of states, we have chosen the CsCl structure as
the stable structure for ZrN and HfN (Fig. 7).

As pressure increases, the entire band structure is slowly shifted up in energy and the
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Figure 8: Charge density distribution of cubic B1 phase of: (a) ZrN (b) HfN.

valence band width increases. This is because of the enhanced overlapping of the wave
functions with the neighboring atoms. Visible changes are seen in the band structure at
Γ point corresponding to high pressure structure (Fig. 7), Since the electronic system is
strongly coupled to the lattice under pressure.

To visualize the nature of the bond character, charge density distribution of cubic
NaCl phase of ZrN and HfN are shown in Fig. 8. From these figures, it is observed
that there is an increase of the electron density around the N atoms, and a decrease in
the interstitial region between the transition metal atoms (TM=Zr,Hf) where the metal-
metal bonds have formed. We note the difference of the electronegativites between the
transition metal (TM-Zr,Hf) and N appears in the difference of charge transfer. These
imply that beside the strong covalent interaction, an ionic contribution also exists in the
Zr-N and Hf-N systems. Therefore, the bonding is a unusual mixture of metallic, covalent
and ionic in attribution in ZrN and HfN.

3.4 Superconductivity under pressure

Hard superconducting materials are of considerable interest for specific applications.
Transition metal nitrides having sodium chloride structure (e.g VN, NbN) are also hard
superconductors with relatively higher Tc. The continuous promotion of s, p to d shell
in solids under pressure is one of the factor which will induce superconductivity. The
superconducting transition temperature (Tc) is calculated using the Allen dynes formula
[35]

Tc=
<ω>

1.2
exp

[

−1.04(1+λ)

λ−µ∗(1+0.62λ)

]

(8)

where <ω> is the average phonon frequency and is given by

<ω>=
√

(0.5θ2
D) (9)
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Table 5: µ∗, λ, <ω> and Tc as function of pressure for ZrN and HfN in the normal pressure structure (NaCl
structure).

ZrN HfN

P µ∗ λ <ω> TC P µ∗ λ <ω> TC

(GPa) (K) (GPa) (K)

0.00 0.10 0.62 364 917 0.00 0.10 0.8 185 8.66
0.626a 10.0a

33.02 0.11 0.63 456 10.87 17.44 0.11 1.0 220 14.58
90.01 0.15 0.69 687 14.24 38.11 0.12 1.05 260 17.73
98.53 0.16 0.73 743 16.66 69.57 0.124 1.12 290 21.42
133 0.166 0.72 790 15.83 134 0.126 1.13 310 22.9
192 0.17 0.70 840 14.52 159 0.127 1.02 330 20.73

a Ref. [3].

where θD is the debye temperature. The electron phonon coupling constant is calculated
using the formula

λ=
N(EF)< I2

>

M<ω2>
(10)

where M is the atomic mass, <ω2
> is an average of the phonon frequency square and

< I2
> is the square of the electron-phonon matrix element averaged over the Fermi en-

ergy. The electron-electron interaction parameter is estimated using the relation

µ∗=
0.26N(EF)

(1+N(EF))
(11)

with the Fermi energy and N (EF) obtained from the self-consistent calculation. The cal-
culated values of µ∗, <ω>, λ and Tc under various pressures for cubic NaCl zirconium
nitride (ZrN) and hafnium nitride (HfN) are given in Table 5. As Debye temperature is
proportional to the characteristic phonon frequency of the lattice. The path to higher Tc
lies in the direction of higher θD(P). But under high pressure, a higher Debye tempera-
ture can also lower Tc. That is because the coupling constant can decrease, if the phonon
frequencies are large. At normal pressure, the calculated Tc value is 9.17 K and 8.66 K
for ZrN and HfN respectively. This is in good agreement with the experimental obser-
vation of Chen et al. [3]. In ZrN and HfN, the increase of Tc is due to increase of λ and
delocalized anion d-electron number.

Phonon softening also enhances the superconducting transition temperature in zirco-
nium nitride and hafnium nitride under high pressure. The contribution from µ∗(P) to
the variation of Tc(P) is much less than that of λ(P). From this it is concluded that both
ZrN and HfN are electron-phonon mediated superconductors. The Tc(max) value of ZrN
and HfN in the NaCl (B1) structure is attributed due to N-3d state electrons. The decrease
in Tc above 98.53 GPa in ZrN and 134 GPa in HfN is due to the phase transition from B1
to B2 phase.
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4 Conclusions

We report, the electronic band structure, density of states, charge density distribution,
mechanical properties, structural phase transition and superconducting transition tem-
perature of ZrN and HfN under normal and high pressure. Our results suggest that at
ambient pressure, ZrN and HfN are stable in the cubic NaCl structure. From our analysis,
we also predict B1 to B2 phase transition in ZrN and HfN under pressure. The calculated
bulk modulus values reveal that these materials are incompressible. It is observed that
the bonding in cubic NaCl-ZrN and NaCl-HfN are a mixture of metallic, covalent, and
ionic characters. At normal pressure, it is found that HfN is harder than ZrN. When
the pressure is increased, it is predicted that, Tc increases and reaches a maximum value
thereafter Tc starts to decrease. The main reason behind the decrease in Tc is the struc-
tural phase transition. The highest value of Tc(P) estimated is 16.66 K for B1-ZrN and
22.9 K for B1-HfN.
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