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Abstract. The propagation characteristics of elasto-thermodiffusive Lamb waves
in a homogenous isotropic, thermodiffusive, elastic plate have been investigated in
the context of linear theory of generalized thermodiffusion. After developing the
formal solution of the mathematical model consisting of partial differential equa-
tions, the secular equations have been derived by using relevant boundary condi-
tions prevailing at the surfaces of the plate for symmetric and asymmetric wave
modes in completely separate terms. The secular equations for long wavelength
and short wavelength waves have also been deduced and discussed. The ampli-
tudes of displacement components, temperature change and mass concentration
under the Lamb wave propagation conditions have also been obtained. The com-
plex transcendental secular equations have been solved by using a hybrid numer-
ical technique consisting of irreducible Cardano method along with function iter-
ation technique after splitting these in a system of real transcendental equations.
The numerically simulated results in respect of phase velocity, attenuation coef-
ficient, specific loss factor and relative frequency shift of thermoelastic diffusive
waves have been presented graphically in the case of brass material.

AMS subject classifications: 74G15

Key words: Diffusion, Cardano method, relative frequency, thermal relaxation, iteration
method.

1 Introduction

The use of Lamb waves for non-destructive evaluation of plates has attracted attention
due to its interrogating efficiency over a reasonably extensive region. The influences
of harmonically varying temperature and strain fields on the static and dynamic beha-
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viour of plates have been investigated by Kozlov [1] and Massalas [2]. Saxena and
Dhaliwal [3] studied two dimensional problems of axisymmetric and plane strain in
coupled thermoelastic wave propagation in a homogenous isotropic plate. Kumar [4]
investigated coupled thermoelastic waves in a plate of thickness 2h subjected to ax-
ially symmetric hydro-static tension by using integral transform technique. Sharma
et al. [5] and Sharma [6] studied the propagation of thermoelastic waves in homoge-
nous isotropic plates subjected to stress-free thermally insulated, stress-free isother-
mal, rigidly-fixed thermally insulated and rigidly-fixed isothermal boundary condi-
tions in the context of generalized theories of thermoelasticity. Jin et al. [7] studied
Lamb wave propagation and interaction in plates by using boundary element method.

The thermodiffusion in elastic solids occurs due to coupling of the fields of tem-
perature, mass diffusion and strain fields in addition to heat and mass exchange with
environment. Sherief et al. [8] derived the governing equations, variational principles
and reciprocity theorems for generalized thermodiffusion in elastic solids in addition
to the establishment of uniqueness of the solution under suitable conditions. Sherief
and Saleh [9] studied the disturbance due to a time dependent thermal shock acting on
the surface of a stress-free half-space with the help of Laplace transforms in the con-
text of theory of generalized thermoelastic diffusion. Recently Aouadi [10] studied the
elasto-thermodiffusive interactions in an infinitely long cylinder subjected to thermal
shock on its surface with a permeating substance. Aouadi [11] used Laplace trans-
form technique to investigate the problem of a stress free half-space whose surface
is subjected to a time dependent thermal shock with variable electrical and thermal
conductivity in the context of theory of generalized thermoelastic diffusion. Sharma
[12] studied the propagation of plane harmonic generalized thermoelastic diffusive
waves in heat conducting solids. It is found that there are three longitudinal waves,
namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-
mode) which are possible to propagate in such solids in addition to decoupled trans-
verse waves. Sharma et al. [13] studied the problem of a stress free, homogenous
isotropic, thermodiffusive elastic half space in the context of generalized theory of
linear thermoelastic diffusion.

Keeping in view the applications of thermodiffusive processes, an attempt has
been made in this paper to study various characteristics of elasto-thermodiffusive
Lamb waves. The secular equations for plate waves have been obtained in the simplest
form and closed mathematical conditions. The phase velocity, attenuation coefficient,
specific loss factor of energy dissipation and relative frequency shift of wave propa-
gation have been computed by using irreducible case of Cardano’s method with the
help of DeMoivre’s theorem and functional iteration method from the transcendental
secular equations. The computer simulation results have been presented graphically.

2 Formulation of the problem

We consider a homogenous isotropic, thermo diffusive elastic plate of thickness 2d in-
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Figure 1: Geometry of the problem.

itially at uniform temperature T0 and concentration C0. We take origin of the rectangu-
lar Cartesian co-ordinate system oxyz on the middle surface of the plate. The xy-plane
is chosen to coincide with the middle surface of the plate and z-axis normal to it along
the thickness. We take x-axis along the direction of wave propagation in such a way
that all the particles on the line parallel to y-axis are equally displaced, so that all the
field quantities are independent of y-co-ordinate. The surfaces z = ±d of the plate are
assumed to be (i) stress free, isoconcentrated and thermally insulated/ isothermal or
(ii) rigidly fixed, isoconcentrated and thermally insulated/ isothermal boundaries.

The basic governing equations for the displacement ~u(x, z, t) = (u, 0, w), temper-
ature change T(x, z, t) and mass concentration C(x, z, t) in the context of generalized
thermo diffusion theory of solids, in the absence of body forces and heat sources are
given by [8]

µ∇2~u + (λ + µ)∇(∇ · ~u)− β1∇T − β2∇C = ρ̈~u, (2.1)

K∇2T − ρCe(Ṫ + t0T̈)− β1T0∇ · (̇~u + t0̈~u)− aT0(Ċ + t0C̈) = 0, (2.2)

∇2C− 1
Db

(Ċ + t1C̈)− β2

b
T0∇2(∇ · ~̇u)− a

b
∇2T = 0, (2.3)

where

∇ =
( ∂

∂x
, 0,

∂

∂z

)
, ∇2 =

∂2

∂2x
+

∂2

∂2z
,

β1 = (3λ + 2µ)αT, β2 = (3λ + 2µ)αC,

αT is coefficient of linear thermal expansion, αC is coefficient of linear diffusion ex-
pansion, λ and µ are Lame’s parameters, ρ is density, Ce is specific heat, a is thermo-
diffusive constant, b is diffusive constant, K is thermal conductivity, C is concentration,
T is temperature change, t0 and t1 are thermal relaxation times.

Upon using Helmholtz representation for displacements through the relations

u =
∂ϕ

∂x
+

∂ψ

∂z
, w =

∂ϕ

∂z
− ∂ψ

∂x
, (2.4)
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in Eqs. (2.1)-(2.3), we obtain

∇2 ϕ− ϕ̈− β̄C− T = 0, (2.5)

∇2ψ =
ψ̈

δ2 , (2.6)

∇2T − (Ṫ + t0T̈)− εT∇2(ϕ̇ + t0 ϕ̈)− ā(Ċ + t0C̈) = 0, (2.7)

∇2C−vb(Ċ + t1C̈)−∇4 ϕ− b̄∇2T = 0, (2.8)

where we have introduced the quantities

x′ =
ω∗x
CL

, z′ =
ω∗z
CL

, t′ = ω∗t, u′ =
ρω∗CLu

β1T0
, w′ =

ρω∗CLw
β1T0

, (2.9a)

T′ =
T
T0

, C′ =
C
C0

, t′0 = ω∗t0, t′1 = ω∗t1, ω∗ =
Ce(λ + 2µ)

K
, (2.9b)

ā =
aC0

ρCe
, b̄ =

aT0

bC0
, vb =

c2
L

ω∗Db
, c2

L =
λ + 2µ

ρ
, c2

S =
µ

ρ
(2.9c)

δ2 =
c2

S
c2

L
, β̄ =

β2C0

β1T0
, εT =

T0β2
1

ρCe(λ + 2µ)
, εc =

β1β2T0

ρCe(λ + 2µ)
. (2.9d)

3 Boundary conditions

The following two sets of boundary conditions are assumed to be satisfied at the sur-
faces z = ±d of the plate:

(i) σzz = 0 = σxz, C = 0,
∂T
∂z

= 0 (or T = 0), (3.1)

(ii) u = 0 = w, C = 0,
∂T
∂z

= 0 (or T = 0). (3.2)

Here the stresses σzz and σxz can be written for the constitutive relations with the help
of Eqs. (2.4)-(2.6) and quantities (2.9) as follows:

σzz = ϕ̈− 2δ2
(∂2 ϕ

∂x2 +
∂2ψ

∂x∂z

)
, σxz = ψ̈ + 2δ2

( ∂2 ϕ

∂x∂z
− ∂2ψ

∂x2

)
. (3.3)

4 Solution of the problem

We take the solution of the form

(ϕ, ψ, C, T) =
(

ϕ̃(z), ψ̃(z), C̃(z), T̃(z)
)
exp

{
iξ(x− ct)

}
, (4.1)

where c = ω/ξ is non-dimensional phase velocity, ω(ω′ = ω/ω∗) and ξ(ξ ′ = ξcL/ω∗)
are the non-dimensional circular frequency and wave number, respectively. The primes
have been suppressed for convenience.
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Upon using solution (4.1) in Eqs. (2.5)-(2.8) and solving resulting system of equa-
tions, the expression for ϕ, ψ, T and C are obtained as

ϕ =
[ 3

∑
j=1

(AJ sin mjz + BJ cos mjz)
]

exp
{

iξ(x− ct)
}

, (4.2)

T =
[ 3

∑
j=1

Sj(Aj sin mjz + BJ sin mjz)
]

exp
{

iξ(x− ct)
}

, (4.3)

C =
[ 3

∑
j=1

Vj(AJ sin mjz + BJ cos mjz)
]

exp
{

iξ(x− ct)
}

, (4.4)

ψ = (A4 sin βz + B4 cos βz) exp
{

iξ(x− ct)
}

, (4.5)

where

Sj =
ξ2c2

{
(1− a2

j )
[
(1 + βb)a2

j − τ1ωb

]
− βba2

j

[
1− (1 + εa)a2

j

]}

(1 + βb)a2
j − τ1ωb

,

Vj =
ξ2c2b̄a2

j

[
1− (1 + εa)a2

j

]

(1 + βb)a2
j − τ1ωb

, (4.6)

β2 = ξ2
( c2

δ2 − 1
)

, α2 = ξ2(c2 − 1), τ0 = t0 + iω−1,

τ1 = t1 + iω−1, m2
j = ξ2(a2

j c2 − 1), j = 1, 2, 3. (4.7)

Here a2
j are roots of complex cubic equation

A3 − LA2 + MA− N = 0, (4.8)

where

L =

{
1 + τ1ω̄b + τ0

[
(1 + ab)(1 + εa) + (1 + βb)(εT − εa)

]}

(1− εCβ)
, (4.9)

M =
τ0(1 + ab) + τ1ω̄b

[
1 + τ0(1 + εT)

]

(1− εCβ)
, (4.10)

N =
τ0τ1ωb

(1− εCβ)
. (4.11)

The displacement components u and w can be obtained by using Eqs. (4.2)-(4.5) in
(2.4) as

u =
[ 3

∑
j=1

iξ(Aj sin mjz + Bj cos mjz)

+ β(A4 cos βz− B4 sin βz)
]

exp
{

iξ(x− ct)
}

, (4.12)
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w =
[ 3

∑
j=1

mj(Aj cos mjz− Bj sin mjz)

− iξ(A4 sin βz + B4 cos βz)
]

exp
{

iξ(x− ct)
}

. (4.13)

5 Secular equations

In this section we derive the secular equations which govern the motion of a plate sub-
jected to stress-free, isoconcentrated and thermally insulated/ isothermal and rigidly
fixed, isoconcentrated and thermally insulated/ isothermal boundary conditions on
its surfaces z = ±d.

5.1 Stress-free boundaries

Invoking the boundary conditions (3.1) at the surfaces z = ±d of the plate and us-
ing Eqs. (4.2)-(4.5), we obtain the system of eight simultaneous linear equations in the
unknowns (A1, A2, A3, A4, B1, B2, B3, B4)T. This system of equations has a non-trivial
solution if and only if the determinant of the coefficient of amplitudes vanishes. Af-
ter applying lengthy algebraic reductions and simplifications, the secular equations
for stress-free, isoconcentrated, isothermal and stress-free, isoconcentrated, thermally
insulated boundaries of the plate are respectively, obtained as

( tan m4d
tan m1d

)±1
+ X

( tan m4d
tan m2d

)±1
+ Y

( tan m4d
tan m3d

)±1
= Z, (5.1)

( tan m1d
tan m4d

)±1
+ X′

( tan m2d
tan m4d

)±1
+ Y′

( tan m1d
tan m4d

)±1
= G′

[( tan m1d
tan m4d

tan m2d
tan m4d

)±1

+X′′
( tan m2d

tan m4d
tan m3d
tan m4d

)±1
+ Y′′

( tan m3d
tan m4d

tan m1d
tan m4d

)±1
]

, (5.2)

where

X =
m2(V3S1 −V1S3)
m1(V2S3 −V3S2)

, Y =
m3(V1S2 −V2S1)
m1(V2S3 −V3S2)

, (5.3a)

X′ =
m3m1V2(S3 − S1)
m2m3V1(S2 − S3)

, Y′ =
m1m2V3(S1 − S2)
m2m3V1(S2 − S3)

, (5.3b)

Z = − (β2 − ξ2)2

4ξ2βm1(V2S3 −V3S2)

[
V1(S2 − S3) + V2(S3 − S1) + V3(S1 − S2)

]
, (5.3c)

G′ =
(β2 − ξ2)2m1S1(V2 −V3)

4ξ2βm2m3V1(S2 − S3)
, (5.3d)

X′′ =
m1S1(V2 −V3)
m1S1(V2 −V3)

, Y′′ =
m3S3(V1 −V2)
m1S1(V2 −V3)

. (5.3e)

Here, the superscript −1 corresponds to symmetric and +1 refers to skew symmetric
modes.
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5.2 Rigidly fixed boundaries

By invoking boundary conditions (3.2) on the boundaries z = ±d of the plate, we
again arrive at the system of eight simultaneous linear equations in amplitudes vector
(A1, A2, A3, A4, B1, B2, B3, B4)T. The condition of existence of non-trivial solution of
this system leads to the secular equations in the case of rigidly fixed, isoconcentrated,
isothermal and rigidly fixed, isoconcentrated, thermally insulated plates. These secu-
lar equations have the same form as that of Eqs. (5.1)-(5.2) except that the quantities Z
and G′ will get replaced with

Z∗ =
−ξ2

βm1(V2S3 −V3S2)

[
V1(S2 − S3) + V2(S3 − S1) + V3(S1 − S2)

]
, (5.4a)

G∗ =
−ξ2m1S1(V2 −V3)
βm2m3V1(S2 − S3)

. (5.4b)

respectively.

6 Regions of secular equations

The close inspection reveals that the secular Eqs. (5.1)-(5.2) are complex transcenden-
tal equations, which contain complete information about various characteristics of the
plate waves such as the phase velocity, wave number, attenuation coefficient, spe-
cific loss and relative frequency shift etc. Depending upon whether m1, m2, m3, β are
real, purely imaginary or complex, the frequency Eqs. (5.1)-(5.2) are correspondingly
altered as follows:

Region I When the characteristic roots are of the type

α2 = −α′2, β2 = −β′2, m2
j = −m′2

j , j = 1, 2, 3,

so that
α = −iα′, β = −iβ′, mj = −im′

j, j = 1, 2, 3,

are purely imaginary or complex numbers. In this case the secular equations are writ-
ten from Eqs. (5.1)-(5.2) by replacing circular tangent functions with hyperbolic tan-
gent functions.

Region II If two of the characteristic roots are of the type

α2 = −α′2, m2
j = −m′2

j , j = 1, 2, 3,

so that
α = −iα′, mj = −im′

j, j = 1, 2, 3,

then the frequency equations can be obtained from Eqs. (5.1)-(5.2) by replacing circular
tangent functions of mj (j = 1, 2, 3) with hyperbolic tangent functions.

Region III In the general case, the characteristic roots are given by m2
j (j = 1, 2, 3),

α2, β2, and the secular equations are given by Eqs. (5.1)-(5.2).
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7 Solution of secular equations

In general, the wave number and hence the phase velocity of the waves is a complex
quantity, therefore the waves are attenuated in space. If we write

c−1 = V−1 + iω−1Q, (7.1)

so that ξ = R + iQ, where R = ω/V and Q are real numbers. Here V is the propaga-
tion speed and Q the attenuation coefficient of the waves. Upon using representation
(7.1) in secular Eq. (5.2), the values of propagation speed V and attenuation coefficient
Q for different modes of wave propagation can be obtained. Since c′ = c/c1 is the
non-dimensional complex phase velocity, so V ′ = V/c1 and Q′ = c1Q are the non-
dimensional phase speed and attenuation coefficient, respectively. Here dashes have
been omitted for convenience.

Upon using representation (7.1) in secular Eqs. (5.1)-(5.2) which on separating the
real and imaginary parts provide us

T1

T4
+

X1D1

D2

T2

T4
+

Y1D1

D3

T3

T4
− Z1D1

D4
=

X2D1

D∗
2

T′2
T4

+
Y2D1

D∗
3

T′3
T4
− Z2D1

D∗
4

T′4
T4

, (7.2)

T′1
T′4

+
X1D∗

1
D∗

2

T′2
T′4

+
Y1D∗

1
D∗

3

T′3
T′4
− Z1D∗

1
D∗

4
= −X2D∗

1
D2

T2

T′4
− Y2D∗

1
D3

T3

T′4
+

Z2D∗
1

D4

T4

T′4
, (7.3)

T1

T4
+

X′
1D1

D2

T2

T4
+

Y′1D1

D3

T2

T4
− ∆1 =

X′
2D1

D∗
2

T′2
T4

+
Y′2D1

D∗
2

T′3
T4
− ∆2 − ∆3, (7.4)

T′1
T′4

+
X′

1D∗
1

D∗
2

T′2
T′4

+
Y′1D∗

1
D∗

3

T′3
T′4
− ∆4 = −X′

2D∗
1

D2

T2

T′4
− Y′2D∗

1
D3

T3

T′4
− ∆5 + ∆6, (7.5)

where Ti = tan(2pid), T′i = tanh(2qid), i = 1, 2, 3, 4;

(pi, qi) =
(
Re(mi), Im(mi)

)
, (i = 1, 2, 3), (p4, q4) =

(
Re(β), Im(β)

)
, (7.6a)

(X1, X2) =
(
Re(X), Im(X)

)
, (Y1, Y2) =

(
Re(Y), Im(Y)

)
, (7.6b)

(X′
1, X′

2) =
(
Re(X′), Im(X′)

)
, (Y′1, Y′2) =

(
Re(Y′), Im(Y′)

)
, (7.6c)

(X
′′
1 , X

′′
2 ) =

(
Re(X

′′
), Im(X

′′
)
)
, (Y

′′
1 , Y

′′
2 ) =

(
Re(Y

′′
), Im(Y

′′
)
)
, (7.6d)

(Z1, Z2) =
(
Re(Z), Im(Z)

)
, (G′1, G′2) =

(
Re(G′), Im(G′)

)
. (7.6e)

∆i(i = 1, 2, 3, 4, 5, 6) are given in Appendix.

Di =

{
1 + cosh 2qid

cos 2pid
, for asymmetric,

cosh 2qid
cos 2pid

− 1, for asymmetric,
(7.7a)

D∗
i =

{
1 + cos 2pid

cosh 2qid
, for asymmetric,

cos 2pid
cosh 2qid

− 1, for asymmetric,
(7.7b)

D4 =

{
1 + cosh2q4h

cos 2p4h , for asymmetric,
cosh 2q4h
cos 2p4h − 1, for asymmetric,

(7.7c)
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D∗
4 =

{
1 + cos 2p4h

cosh 2q4h , for asymmetric,
cos 2p4h
cosh 2q4h − 1, for asymmetric.

(7.7d)

Upon using representation (7.1) the complex roots a2
i (i = 1, 2, 3) of Eq. (4.6) are

computed with the help of reduced Cardano’s method. The characteristic roots a2
i

(i = 1, 2, 3) are further used to solve the secular Eqs. (5.1)-(5.2) to obtain phase veloc-
ity (V) and attenuation coefficient (Q) by using function iteration numerical technique
outlined below [14].

The each of the real secular Eqs. (7.2)-(7.5) are f (V, Q) = 0 and g(V, Q) = 0. In
order to apply functional iteration method we write V = f ∗(V, Q) and Q = g∗(V, Q),
where the functions f ∗ and g∗ are selected in such a way that they satisfy the condi-
tions ∣∣∣∂ f ∗

∂V

∣∣∣ +
∣∣∣∂ f ∗

∂Q

∣∣∣ < 1,
∣∣∣∂g∗

∂V

∣∣∣ +
∣∣∣∂g∗

∂Q

∣∣∣ < 1, (7.8)

for all V, Q in the neighbourhood of the root. If (V0, Q0) be the initial approximation to
the root, then we construct the successive approximations according to the formulae

V1 = f ∗(V0, Q0) · · · Q1 = g∗(V1, Q0),
V2 = f ∗(V1, Q1) · · · Q2 = g∗(V2, Q1),

...
...

...
Vn+1 = f ∗(Vn, Qn)· · · Qn+1 = g∗(Vn+1, Qn). (7.9)

The sequence {Vn, Qn} of approximations to the root will converge to the actual value
(V0, Q0) of the root provided (V0, Q0) lies in the neighbourhood of the actual root. For
the initial value c = c0 = (V0, Q0), the roots aj (j = 1, 2, 3) are computed from Eqs.
(7.2)-(7.5) by using Cardano’s procedure for each value of the wave number R, for an
assigned frequency. The values of aj (j = 1, 2, 3) so obtained are then used in secular
Eqs. (7.2)-(7.5) to obtain the current values of V and Q each time which are further used
to generate the sequence (7.9). The process is terminated as and when the condition
|Vn+1 − Vn| < ε, ε being arbitrarily small number to be selected at random to achieve
the accuracy level, is satisfied. The procedure is continuously repeated for different
values of the wave number R to obtain corresponding values of the phase velocity (V)
and attenuation coefficient (Q) We have selected tolerance ε = 10−5 for the purpose of
numerical computations in Section 10.

The specific loss factor being the measure of energy dissipation in a specimen
through a stress cycle (∆W) to the elastic energy (W) stored in the specimen at maxi-
mum strain is also computed. For a sinusoidal plane wave of small amplitude, Kol-
sky [15] shows that the specific loss ∆W/W equals 4π times the absolute value of the
imaginary part of ξ to the real part of ξ. Hence

∣∣∣∆W
W

∣∣∣ = 4π
∣∣∣ Im(ξ)
Re(ξ)

∣∣∣ = 4π
∣∣∣VQ

ω

∣∣∣. (7.10)
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The thermo-mechanical coupling factor (K2) is defined as

K2 =
∣∣∣∣
Vins −Viso

Viso

∣∣∣∣, (7.11)

where Vins and Viso are the real phase speeds of the wave under thermally insulated
and isothermal boundary conditions prevailing at the stress free surface of the mate-
rial half space. The relative frequency shifts Ωi (i = 1, 2), of acoustic symmetric and
asymmetric modes are defined as:

Ωi =
∣∣∣∣
ωins −ωiso

ωiso

∣∣∣∣, i = 1, 2. (7.12)

8 Special cases of secular equations

In this section we discuss the reduction of secular equations in case of thin and thick
plate structures.

8.1 Long-wavelength waves

In the case of thin plates the transverse wavelength with respect to thickness is quite
large, so that ξd ¿ 1. The Regions I and II yield the results of interest in this case. In
Region I, the symmetric case has no roots. For the skew-symmetric case, on retaining
the first two terms in the expression of hyperbolic tangents, the secular Eq. (5.2) for
stress-free, isoconcentrated and thermally insulated case reduces to

−(ξ2 − β2)2 =
d2

3

[
4ξ2β4 + 4ξ2β2 F∗

F
+ (β2 + ξ2)2 G

F

]
, (8.1)

where

F∗ = V1(S2 − S3) + V2(S3 − S1) + V3(S1 − S2),

F = m′2
1 V1(S2 − S3) + m′2

2 V2(S3 − S1) + m′2
3 V3(S1 − S2),

G = (m′2
2 + m′2

3 )S1(V2 −V3) + (m′2
3 + m′2

1 )S2(V3 −V1)

+ (m′2
1 + m′2

2 )S3(V1 −V2).

Thus on discarding the terms of higher order than (c/δ)4, we obtain

c =
2ξδd√

3

[
1 + δ2

( F̄ + Ḡ
F̄∗

)] 1
2

, (8.2)

where

F̄∗ = V̄1(S̄2 − S̄3) + V̄2(S̄3 − S̄1) + V̄3(S̄1 − S̄2), (8.3a)

F̄ = a2
1V̄1(S̄2 − S̄3) + a2

2V̄2(S̄3 − S̄1) + a2
3V̄3(S̄1 − S̄2), (8.3b)

Ḡ = (a2
2 + a2

3)S̄1(V̄2 − V̄3) + (a2
3 + a2

1)S̄2(V̄3 − V̄1) + (a2
1 + a2

2)S̄3(V̄1 − V̄2), (8.3c)
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S̄j = 1− a2
j − βVj, V̄j =

b̄a2
j

[
1− (1+ ∈a)a2

j

]

1 + βba2
j − τ1ω̄b

, j = 1, 2, 3. (8.3d)

Using representation (7.1) in Eq. (8.2) and on separating real and imaginary complex
parts, we find that the real phase speed and attenuation coefficient of thin plate waves
in this case given by

V =
2Rδd√

r

√
1− δ2

3
sec2 θ

4
, Q = R tan

θ

4
, (8.4)

where

r =
√

(1 + δ∗R)2 + (δ∗I )2, θ = tan−1
(
− δ∗I

1 + δ∗R

)
, (8.5a)

δ∗ =
δ2

1− δ2

(
1 +

F̄ + Ḡ
F̄∗

)
, δ∗R = Re(δ∗), δ∗I = Im(δ∗). (8.5b)

In the absence of mass diffusion (ā = 0 = β̄), the Eq. (8.4) reduces to

V = 2Rδd

√
1− δ2

3
, Q = 0.

This result with linear dependence of V on R agrees with the one derived from classi-
cal theory in elastokinetics (see Graff [16]) and of course pertains to the flexural vibra-
tions and represents only a single vibration mode of limited frequency range in over
all frequency spectrums.

In Region II, the skew-symmetric case has no roots. The secular Eq. (5.2) for sym-
metric case provides us with

m′2
1 S1(V2 −V3) + m′2

2 S2(V3 −V1) + m′2
3 S3(V1 −V2)

=− 4ξ2

(β2 − ξ2)2

[
m′2

2 m′2
3 V1(S2 − S3) + m′2

3 m′2
1 V2(S3 − S1)

+m′2
1 m′2

2 V3(S1 − S2)
]

. (8.6)

The Eq. (8.3) on simplification reduces to a quadratic equation in c2 and gives us two
pairs of values of the complex phase velocity as

c1 = ±λ1, c2 = ±λ2, (8.7)

where

λ2
1, λ2

2 =
A1 ±

√
A2

1 − 4A2

2
, (8.8a)

A1 = ∑ (1 + 4δ2a2
1)S̄1(V̄2 − V̄3) + 4δ4 ∑ V̄1(S̄2 − S̄3)a2

2a2
3

∑ S̄1(V̄2 − V̄3)a2
1

, (8.8b)

A2 =
4δ2

[
∑ S̄1(V̄2 − V̄3) + δ2 ∑ (V̄2S̄3 − V̄3S̄2)a2

1

]

∑ S̄1(V̄2 − V̄3)a2
1

. (8.8c)
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Each pair of values in Eq. (8.7) corresponds to incoming and outgoing wave at any
point and instant of time.

Using representation (7.1) in Eq. (8.7) lead to real values of phase velocity and
attenuation coefficient as given below:

Vi =
1

Re( 1
λi

)
, Q = ω Im

( 1
λi

)
, i = 1, 2. (8.9)

The results in the case of coupled thermo diffusive waves can be derived from (8.9) by
setting t0 = 0 = t1. In the absence of mass diffusion (ā = 0 = β̄), from (8.5) and (8.6)
we have

A1 =
1 + 4δ2τ0(1 + εT − δ2)

τ0(1 + εT)
, A2 =

4δ2(1− δ2)
τ0(1 + εT)

. (8.10)

In the case of uncoupled theory of thermo elasticity (UCT), thermomechanical cou-
pling parameter vanishes (εT = 0) and consequently for non-Fourier solid, we obtain

V1 = 2δ
√

1− δ2, Q1 = 0, (8.11a)

V2 =
1√
r1

sec
θ1

2
, Q2 = ω

√
r sin

θ1

2
, (8.11b)

where

r1 =

√
1 + τ2

0 ω2

ω
, θ1 = tan−1

( 1
τ0ω

)
.

In case heat conduction process follows Fourier’s law (t0 = 0), the phase velocity (V1)
and attenuation coefficient (Q1) remains unaltered whereas V2 and Q2 are given by

V2 =
√

2ω, Q2 =
√

ω

2
. (8.12)

8.2 Short-wavelength waves

Let us consider the case when the transverse wavelength with respect to thickness is
quite small, so that ξd À 1. In this case the characteristic roots lie in Region I and
some information on asymptotic behavior is obtainable by putting ξ → ∞. For

ξ → ∞,
tanh(m′

jd)

tanh(β jd)
→ 1, j = 1, 2, 3,

the frequency Eqs. (5.1) and (5.2), respectively reduce to

m′
1(V2S3 −V3S2) + m′

2(V3S1 −V1S3) + m′
3(V1S2 −V2S1)
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=
(β′2 + ξ2)2

4ξ2β′
[
V1(S2 − S3) + V2(S3 − S1) + V3(S1 − S2)

]
, (8.13)

m′
2m′

3V1(S2 − S3) + m′
3m′

1V2(S3 − S1) + m′
1m′

2V3(S1 − S2)

=− (β′2 + ξ2)2

4ξ2β′
[
m′

1S1(V2 −V3) + m′
2S2(V3 −V1) + m′

3S3(V1 −V2)
]
. (8.14)

These are the secular equations which govern the propagation of Rayleigh type surface
waves in a thick plate. Because the thick plate under such conditions behaves like a
half space and hence the transmission propagation of energy takes place mainly along
the surface. Eqs. (8.13) and (8.14) are the same as obtained by Sharma et al. [13] and
discussed in detail there in.

9 Displacement, temperature and concentration fields

The amplitudes of displacements, temperature and mass concentration for symmetric
and skew-symmetric modes of the plate waves have also been computed for stress-
free, thermo diffusive elastic plate under the propagation conditions of the considered
modes of wave propagation.

(u)sy =
[
iξ(cos m1z + L1 cos m2z + L2 cos m3z)

+ βL3 cos βz
]

B1 exp
{

iξ(x− ct)
}

, (9.1)

(u)asy =
[
iξ(sin m1z + M1 sin m2z + M2 sin m3z)

− βM3 sin βz
]

A1 exp
{

iξ(x− ct)
}

, (9.2)

(w)sy = −
[
(m1 sin m1z + m2L1 sin m2z + m3L2 sin m3z)

+ iξL3 sin βz
]

B1 exp
{

iξ(x− ct)
}

, (9.3)

(w)asy =
[
(m1 cos m1z + m2M1 cos m2z + m3M2 cos m3z)

− iξM3 cos βz
]

A1 exp
{

iξ(x− ct)
}

, (9.4)

(T)sy = (S1 cos m1z + S2L1 cos m2z + S3L2 cos m3z)B1 exp
{

iξ(x− ct)
}

, (9.5)

(T)asy = (S1 sin m1z + S2M1 sin m2z + S3M2 sin m3z)A1 exp
{

iξ(x− ct)
}

, (9.6)

(C)sy = (V1 cos m1z + V2L1 cos m2z + V3L2 cos m3z)B1 exp
{

iξ(x− ct)
}

, (9.7)

(C)asy = (V1 sin m1z + V2M1 sin m2z + V3M2 sin m3z)A1 exp
{

iξ(x− ct)
}

, (9.8)

where Li, Mi (i = 1, 2, 3) are given in Appendix.
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10 Numerical result and discussion

In order to illustrate and verify the analytical results obtained in the previous sections,
we present some numerical simulation results. The material chosen for this purpose
is brass

[
copper(70%) and zinc(30%)

]
, whose physical data is given below [9, 17, 18]:

λ = 7.69× 1010Nm−2, ρ = 8.522× 103Kgm−3,

µ = 3.62× 1010Nm−2, T0 = 2930K,

αc = 1.8× 10−5K−1, D = 0.24× 10−4ms−1(Zn− Cu),

αT = 2.0× 10−6K−1, Ce = 385J/Kg/0K,

K = 1.11× 1010W/m0K, a = 0.1521× 102ms−1,

β1 = 60.62× 104Nm−2K−1, b = 0.02× 104ms−1,

β2 = 54.56× 105Nm−5K−1, ∈T= 0.0002198,

ω∗ = 5.178× 1011s−1.

The value of thermal relaxation time t0 is estimated from the relation t0 = 3K/ρCecL
(see Chandrasekharaiah [19]) and that of t1 is taken proportional to that of t0. The
secular Eqs. (7.2)-(7.5) have been solved numerically by employing the procedure de-
scribed in Section 7 above to compute phase velocity, attenuation coefficient, specific
loss factor of energy dissipation and relative frequency shift to explore the effect of
various interacting fields and coupling parameters on these wave characteristics. The
FORTRAN code has been developed for computer simulations and the sequence of
iteration is allowed to iterate for sufficient number of times in order to achieve desired
level of accuracy viz. four decimal places here. An infinite number of roots exist for
a given value of frequency, which can be obtained by giving a value of wave number,
from the secular equations. Note that case must be taken in the root finding procedure,

Figure 2: Phase velocity versus wave number for stress free, isoconcentrated and thermally insulated bound-
ary.
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Figure 3: Phase velocity versus wave number for stress free, isoconcentrated and isothermal boundary.

Figure 4: Phase velocity versus wave number for rigidly fixed isoconcentrated and isothermal boundary.

for the transcendental functions change their values rapidly. The computer simulated
results have been presented in Figs. 2-8.

From Figs. 2 and 10 it is observed that the phase velocity of lowest (acoustic) asym-
metric mode increases from a zero value at vanishing wave number in the range
0 ≤ R ≤ 3 before it becomes steady and non-dispersive for R ≥ 3. The phase ve-
locity of acoustic symmetric mode decreases from a value greater than unity in the
wave number range 0 ≤ R ≤ 3 and almost varies linearly for R ≥ 3. Figs. 4 and 5
reveal that the phase velocity profiles of acoustic modes, both asymmetric and sym-
metric, are subjected to dispersion in the wave number range 0 ≤ R ≤ 2 in case of
rigidly fixed plate in contrast to stress free plate in which case the effective range is
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Figure 5: Phase velocity versus wave number for rigidly fixed isoconcentrated and thermally insulated
boundary.

0 ≤ R ≤ 3. Beyond R ≥ 2 the profiles of phase velocity becomes stable and steady
with their asymptotic convergence to surface wave velocity under prevailing bound-
ary conditions. It is pertinent to mention here that the phase velocity profiles of acous-
tic modes are subjected to significant dispersion at long wave lengths and ultimately
become non-dispersive at short wave lengths with asymptotic convergence to elasto-
thermodiffusive Rayleigh wave velocity. This is attributed to the fact that long wave
length waves have deep penetrating capacity into the medium thereby creating sig-
nificant disturbance in it due to which coupling between various interacting fields
becomes operative. However, the short-wave length waves closely follow the surface
as a wave guide without causing much disturbance to the plate which behaves like
a half-space under such situations. The free surfaces admit a Rayleigh-type surface
wave with complex wave number and hence phase velocity. Consequently, the sur-
face wave propagates with attenuation due to the radiation of the energy from the
surroundings into the medium. This radiated energy will be reflected back to the cen-
ter of the plate by lower and upper surfaces. Thus the attenuated surface wave on the
free surface is enhanced by this reflected energy to form a propagation wave. In fact,
the multiple reflections between the upper and lower surfaces of the plate form caus-
tics at one of the free surfaces and a strong stress concentration arises due to which
the wave field becomes unbounded in the limit d → ∞. The unbounded displacement
field is characterized by the singularities of hyperbolic/ circular tangent functions.

It is also observed that as the thickness of the plate increases, the phase velocity
decreases. This can be explained by the fact that as the thickness of the plate increases,
the coupling effect of various interacting fields also increases, resulting in lower phase
velocity. It can also be observed that the Rayleigh wave velocity is reached at lower
wave number as the thickness increases, because the transportation of energy mainly
takes place in the neighbourhood of the free surfaces of the thick plate in this case.
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The phase velocity of higher (optical) modes of wave propagation, symmetric and
asymmetric, attains quite large values at vanishing wave number, which decreases to
become asymptotically close to the elastodiffusive shear wave velocity in all of Figs.
2-5. The magnitudes of phase velocities of optical symmetric and asymmetric, modes
(n > 1) are observed to be developed at a rate of approximately n times the magnitude
of the phase velocity of first harmonic (n = 1).

The phase velocity profiles of different optical modes, symmetric and asymmet-
ric, behave identically for all values of the wave number except in case of n = 1 for
1.5 ≤ R ≤ 3.5 and in the range 3 ≤ R ≤ 5.5, n = 3 where these are subjected to
some departure in stress free thermally insulated plate. However, this departure in
the phase velocity profiles of symmetric and asymmetric modes occur in the wave
number ranges 1 ≤ R ≤ 4 and 4 ≤ R ≤ 6 for the modes n = 1 and n = 3 respectively.
The effect of different physical and mathematical conditions satisfied by mechanical,
thermal or mass concentration fields at the surfaces of the plate is clearly visible from
plots of Figs. 2-5. The profiles of various Lamb modes are subjected to many sign
reversal throughout the thickness of the plate. The different optical modes appear at
different cut-off frequencies with their increasing order as can be seen from the plots
in these figures.

Fig. 6 represents the profiles of attenuation coefficient of acoustic modes with wave
number in case of stress free, isoconcentrated and thermally insulated/ isothermal
surfaces of the plate. It is noticed that the profiles of attenuation coefficient have a
monotonic increase from zero value at vanishing wave number, in the wave number
range 0 ≤ R ≤ 1, to attain their maximum values at R = 1, before these start decreas-
ing monotonically for R ≥ 1 in order to vanish at extremely high wave numbers. It is
also observed that equilibrium of heat flux at the surfaces of the plate results in more

Figure 6: Attenuation of acoustic mode versus wave number for stress free boundary.



J. N. Sharma and P. K. Sharma / Adv. Appl. Math. Mech., 2 (2010), pp. 238-258 255

Figure 7: Specific loss factor of acoustic mode versus wave number for stress free boundary.

Figure 8: Relative frequency shift versus wave number for stress free boundary.

attenuation of the waves than that when the flow of heat flux is prevented across the
surfaces of the plate. Moreover, symmetric modes are subjected to large attenuations
as compared to asymmetric one in both the considered cases of boundary conditions.

Fig. 7 shows the variation of specific loss factor of energy dissipation, a measure
of internal friction of the material, of acoustic modes with wave number in the case of
stress free, isoconcentrated and thermally insulated/ isothermal surfaces of the plate.
The specific loss factor of symmetric and asymmetric modes increases in the wave
number range 0 ≤ R ≤ 1.2 from zero value at vanishing wave number. The energy
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dissipation for asymmetric modes is more than that of symmetric modes in both the
considered cases of boundary conditions. It is also noted that in case thermal equilib-
rium is prevailing at the surfaces of the plate, the energy dissipation is quite small as
compared to that when the heat flux is prevented across the surfaces of the plate.

In Fig. 8 the respective relative frequency shifts (Ω1) and (Ω2) of acoustic symmet-
ric and asymmetric modes respectively have been plotted versus wave number. The
profile of relative frequency shift (Ω1) decreases monotonically in the wave number
range 0 ≤ R ≤ 3.2 while that of (Ω2) increases in the wave number range 0 ≤ R ≤ 1.2
from zero value at vanishing wave number, decreases monotonically for 1.2 ≤ R ≤ 3.2
and it vanishes afterwards.

11 Conclusions

Mass diffusion leads to significant attenuation in thin plate waves in Region I, while
both mass concentration and thermal fields contribute to produce attenuating me-
chanical and thermal waves in Region II. However, the mechanical wave becomes
non-attenuating in the absence of these fields but the thermal wave is still attenuating
and becomes diffusive in the absence of thermal relaxation at high frequencies. At
short wave lengths, the various modes of wave propagation closely follow Rayleigh
surface wave motion. Thermal equilibrium at the surfaces of the plate results in more
attenuation of acoustic mode of vibrations than that when the heat flux is prevented
across the stress-free isoconcentrated surfaces of plate. Moreover, symmetric modes
are subjected to large attenuations as compared to asymmetric one in both the consid-
ered cases of boundary conditions. However, the above trend will get reversed in the
case of specific loss factor of energy dissipation.

Appendix

The quantities ∆i (i = 1, 2, 3, 4, 5, 6) used in Eqs. (7.2)-(7.5) are defined as

∆1 =
G′1D1

D2

T1T2

T2
4

+
(G′1X′′

1 − G′2X′′
2 )D1D4

D2D3

T2T3

T2
4

+
(G′1Y′′1 − G′2Y′′2 )D4

D3

T3T1

T2
4

,

∆2 = G′2
( D4

D∗
2

T1T′2
T2

4
+

D1D4

D2D∗
1

T2T′1
T2

4

)
+ (G′1X′′

2 + G′2X′′
1 )

( D1D4

D2D∗
2

T2T′3
T2

4
+

D1D4

D3D∗
2

T3T′2
T2

4

)

+ (G′1Y′′2 + G′2Y′′1 )
( D1D4

D3D∗
1

T3T′1
T2

4
+

D1D4

D1D∗
3

T1T′3
T2

4

)
− D1D4

D∗
4

( X′
2

D2

T2T′4
T2

4
+

Y′2
D3

T3T′4
T2

4

)
,

∆3 =
G′1D1D4

D∗
1 D∗

2

T′1T′2
T2

4
+

(G′1Y′′1 − G′2Y′′2 )D1D4

D∗
1 D∗

3

T′1T′3
T2

4
− D1D4

D∗
1 D∗

4

T′1T′4
T2

4

+
(G′1X′′

1 − G′2X′′
2 )D1D4

D∗
2 D∗

3

T′2T′3
T2

4
− X′

1D1D4

D∗
2 D∗

4

T′2T′4
T2

4
− Y′1D1D4

D∗
3 D∗

4

T′3T′4
T2

4
,
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∆4 =
X′

2D4D∗
1

D∗
2 D∗

4

T′2
T4

+
Y′2D4D∗

1
D∗

3 D∗
4

T′3
T4
− G′2D4

D∗
2

T′1T′2
T4T′4

− (G′1X′′
2 + G′2X′′

1 )D4

D∗
2 D∗

3

T′2T′3
T4T′4

− (G′1Y′′2 + G′2Y′′1 )D4

D∗
3

T′1T′3
T4T′4

,

∆5 =
D4D∗

1
D1D∗

4

T1

T4
+

X′
1D4D∗

1
D2D∗

4

T2

T4
+

Y′1D4D∗
1

D3D∗
4

T3

T4
− G′2D4D∗

1
D1D2

T1T2

T4T′4

− (G′1X′′
2 + G′2X′′

1 )D4D∗
1

D2D3

T2T3

T4T′4
− (G′1Y′′2 + G′2Y′′1 )D4D∗

1
D1D3

T1T3

T4T′4
,

∆6 = G′1
( D4D∗

1
D1D∗

2

T1T′2
T4T′4

+
D4

D2

T2T′1
T4T′4

)
+ (G′1X′′

2 − G′2X′′
1 )

( D4D∗
1

D2D∗
3

T2T′3
T4T′4

+
D4D∗

1
D3D∗

2

T3T′2
T4T′4

)

+ (G′1Y′′2 − G′2Y′′1 )
( D4

D3

T3T′1
T4T′4

+
D4D∗

1
D1D∗

3

T1T′3
T4T′4

)
.

The coefficients Li, Mi (i = 1, 2, 3) used in Eqs. (9.1)-(9.4) are defined as

L1 =

[
(β2 − ξ2)2T∗4 (V3 −V1)− 4βξ2(m3V1T∗3 −m1V3T∗1 )

]
c1

[
(β2 − ξ2)2T∗4 (V2 −V3)− 4βξ2(m2V3T∗2 −m3V2T∗3 )

]
c2

,

L2 =

[
(β2 − ξ2)2T∗4 (V1 −V2)− 4βξ2(m1V2T∗1 −m2V1T∗2 )

]
c1

[
(β2 − ξ2)2T∗4 (V2 −V3)− 4βξ2(m2V3T∗2 −m3V2T∗3 )

]
c3

,

L3 =
2iξ(β2 − ξ2)

[
(m1T∗1 −m2T∗2 )(V3 −V1)− (m3T∗3 −m1T∗1 )(V1 −V2)

]
c1

[
(β2 − ξ2)2T∗4 (V2 −V3)− 4βξ2(m2V3T∗2 −m3V2T∗3 )

]
c4

,

M1 =

{
(β2 − ξ2)2(T∗4 )−1(V3 −V1)− 4βξ2

[
m3V1(T∗3 )−1 −m1V3(T∗1 )−1

]}
s1

{
(β2 − ξ2)2(T∗4 )−1(V2 −V3)− 4βξ2

[
m2V3(T∗2 )−1 −m3V2(T∗3 )−1

]}
s2

,

M2 =

{
(β2 − ξ2)2(T∗4 )−1(V1 −V2)− 4βξ2

[
m1V2(T∗1 )−1 −m2V1(T∗2 )−1

]}
s1

{
(β2 − ξ2)2(T∗4 )−1(V2 −V3)− 4βξ2

[
m2V3(T∗2 )−1 −m3V2(T∗3 )−1

]}
s3

,

M3 =
−2iξ(β2 − ξ2)s1(V3 −V1)

[
m1(T∗1 )−1 −m2(T∗2 )−1

]
{
(β2 − ξ2)2(T∗4 )−1(V2 −V3)− 4βξ2

[
m2V3(T∗2 )−1 −m3V2(T∗3 )−1

]}
s4

+
2iξ(β2 − ξ2)s1(V1 −V2)

[
m3(T∗3 )−1 −m1(T∗1 )−1

]
{
(β2 − ξ2)2(T∗4 )−1(V2 −V3)− 4βξ2

[
m2V3(T∗2 )−1 −m3V2(T∗3 )−1

]}
s4

,

where

cj = cos mjd, sj = sin mjd, T∗j = tan mjd, j = 1, 2, 3,

c4 = cos βd, s4 = sin βd, T∗4 = tan βd.
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