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Abstract. Unsteady hydromagnetic Couette flow of a viscous incompressible elec-
trically conducting fluid in a rotating system is studied when the fluid flow within
the channel is induced due to the impulsive movement of the one of the plates of
the channel. The plates of the channel are considered porous and the magnetic field
is fixed relative to the moving plate. Exact solution of the governing equations is
obtained by Laplace transform technique. The expression for the shear stress at the
moving plate is also obtained. Asymptotic behaviour of the solution is analyzed for
small as well as large values of time t to highlight the transient approach to the final
steady state flow and the effects of rotation, magnetic field and suction/injection.
It is found that suction has retarding influence on the primary as well as secondary
flow where as injection and time have accelerating influence on the primary and
secondary flows.
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1 Introduction

Theoretical and/or experimental investigation of the problems of the flow of an elec-
trically conducting fluid in the presence of electromagnetic fields is carried out by
many researchers under different conditions and configurations to discuss various as-
pects of the problems and to find its application in science and engineering. There are
many natural phenomena and engineering problems susceptible to magnetohydrody-
namic analysis. It is useful in Astrophysics because much of the universe is filled with
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widely spaced charged particles and permeated by magnetic fields. Geophysicists en-
counter MHD phenomena in the interactions of conducting fluids and magnetic fields
that are present in and around heavenly bodies. Engineers employ MHD principles
in the design of heat exchangers, pumps and flow meters, in solving space vehicle
propulsion, control and reentry problems; in creating novel power generating systems
and in developing confinement schemes for controlled fusion.

In general, the governing equations of MHD flow problems are inherently non-
linear. Simplified models are, therefore, studied in literature with a view to analyze
different aspects of fluid flow features. Of these models, the one corresponding to
MHD Couette flow is known to lead to the equations for which analytical solution can
be obtained in principle [1–9]. The study of unsteady MHD Couette flow is important
from practical point of view because fluid transient may be expected at the start-up
time of MHD devices, namely, MHD generators, MHD pumps, MHD accelerators,
flow meters and nuclear reactors. Keeping in view this fact Katagiri [2] investigated
unsteady MHD Couette flow of a viscous incompressible electrically conducting fluid
in the presence of a uniform transverse magnetic field when the fluid flow within
the channel is induced due to the impulsive motion of one of the plates. Katagiri [2]
analyzed this problem when the magnetic field is fixed relative to fluid. Singh and
Kumar [9] considered the problem studied by Katagiri [2] when the magnetic field
is fixed relative to the moving plate. They also studied this problem when the fluid
motion within the channel is induced due to uniformly accelerated movement of one
of the plates.

The theory of rotating fluids [10] is highly important due to its occurrence in var-
ious natural phenomena and for its applications in various technological situations
which are directly governed by the action of Coriolis force. The broad subjects of
Oceanography, Meteorology, Atmospheric science and Limnology all contain some
important and essential features of rotating fluids. The fluid flow problems in rotat-
ing medium have attracted many scholars and there appeared a number of studies in
literature viz. Greenspan and Howard [11], Holton [12], Walin [13], Siegmann [14],
Puri [15], Puri and Kulshrestha [16], Mazumder [17], Ganapathy [18], Das et al. [19],
Hayat et al. [20] and Hayat and Hutter [21]. The study of simultaneous effects of ro-
tation and magnetic field on MHD flow problem may find applications in the areas
of Geophysics, Astrophysics and fluid engineering. Keeping in view this fact, sev-
eral researchers, namely, Hide and Roberts [22], Nanda and Mohanty [23], Gupta [24],
Sounalgekar and Pop [25], Gupta and Soundalgekar [26], Debnath [27, 28], Acheson
[29], Seth and Jana [30], Seth and Maiti [31], Prasad Rao et al. [32], Seth et al. [33, 34],
Chandran et al. [35], Singh et al. [36], Singh [37], Hayat et al. [38–44], Hayat and Abel-
man [45], Wang and Hayat [46] and Das et al. [47] investigated MHD flow problems
in rotating medium considering different aspects of the problems.

Unsteady hydromagnetic Couette flow of a viscous incompressible electrically con-
ducting fluid in a rotating channel is investigated by Seth et al. [33,34], Singh [37] and
Das et al. [47] when the magnetic field is fixed relative to the fluid where as Chandran
et al. [35] and Singh et al. [36] considered this problem when the magnetic field is fixed
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relative to the moving plate. In all these investigations, the channel walls are consid-
ered non-porous. However, the study of such fluid flow problem in porous channel
may find applications in petroleum, mineral and metallurgical industries, designing
of cooling systems with liquid metals, MHD generators, MHD pumps, MHD acceler-
ators and flow meters, geothermal reservoirs and underground energy transport etc.
Taking into account this fact Muhuri [4], Prasad Rao et al. [32], Bhaskara Reddy and
Bathaiah [48], Singh [49], Abbas et al. [50] and Hayat et al. [51, 52] considered MHD
flow within a parallel plate channel with porous boundaries under different condi-
tions, in rotating or non-rotating system.

The aim of the present paper is to study unsteady hydromagnetic Couette flow of
a viscous incompressible electrically conducting fluid in a rotating system in the pres-
ence of a uniform transverse magnetic field when the magnetic field is fixed relative to
the moving plate of the channel. The plates of the channel are considered porous and
fluid flow within the channel is induced due to the impulsive movement of the lower
plate. In fact, the problem is formulated for the general case of a moving plate with
velocity proportional to tm, t and m are, respectively, time variable and a positive in-
teger. Exact solution of the governing equations is obtained for m = 0 ( i.e., impulsive
movement of the plate) by Laplace transform technique. The expression for the shear
stress at the moving plate is also derived. The solution in dimensionless form con-
tains three pertinent flow parameters, namely, M2 (square of Hartmann number), K2

(rotation parameter which is reciprocal of Ekman number) and S (suction/injection
parameter). The asymptotic behaviour of the solution is analyzed for both small as
well as large values of time to highlight the transient approach to the final steady state
flow and the effects of rotation, magnetic field and suction/injection. For small val-
ues of time t, primary flow is independent of rotation while the secondary flow has
considerable effects of rotation, magnetic field and suction/injection. However, in a
slowly rotating system when the conductivity of the fluid is low and/or the applied
magnetic field is weak, the secondary flow is unaffected by magnetic field for small
values of time t. For large values of time t, the fluid flow is in quasi-steady state. The
steady state flow is confined within an Ekman-Hartmann boundary layer of thickness

O(
(α +

S
2
)−1),

which becomes thinner with the increase in either M2 or K2 or S or all the parameters.
Also steady state flow represents spatial oscillations in the flow-field. Unsteady state
flow exhibits inertial oscillations in the flow-field. It is noticed that, for large values
of time t, unsteady state flow is divided into two parts, namely, uit1 , vit1 and uit2 ,
vit2 . Inertial oscillations in uit1 and vit1 damp out effectively in dimensionless time of
O(

(M2 + S2/4)−1) whereas in uit2 and vit2 it damp out effectively in dimensionless
time of O(

(M2)−1) when final steady state is developed. In the absence of rotation
( i.e., K2 = 0) there is no inertial oscillations in the flow-field. To study the effects of
magnetic field, rotation, suction/injection and time on the flow-field the fluid velocity
is depicted graphically while the numerical values of the shear stress at the moving
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plate are presented in tabular form for various values of M2, K2, S and t.

2 Formulation of the problem

Consider unsteady flow of a viscous incompressible electrically conducting fluid be-
tween two parallel porous plates z′ = 0 and z′ = h of infinite length, in x′ and y′
directions, in the presence of a uniform transverse magnetic field H0 applied parallel
to z′– axis. The fluid and channel are in a state of rigid body rotation about z′– axis
with uniform angular velocity Ω. Initially ( i.e., when time t′ ≤ 0 ), fluid and the plates
of the channel are assumed to be at rest. When time t′ > 0 the lower plate (z′ = 0)
starts moving with time dependent velocity U0t′m (U0 being a constant and m a pos-
itive integer) in x′– direction while the upper plate (z′ = h) is kept fixed. The fluid
suction/ injection takes place through the porous walls of the channel with uniform
velocity W0 which is greater than zero for suction and is less than zero for injection.

It is assumed that no applied or polarization voltages exist ( i.e., ~E = 0, ~E being
electric field). This corresponds to the case where no energy is being added or ex-
tracted from the fluid by electrical means [53]. Since magnetic Reynolds number is
very small for metallic liquids and partially ionized fluids so the induced magnetic
field can be neglected in comparison to the applied one [54]. Therefore the fluid ve-
locity ~q and magnetic field ~H are given by

~q ≡ (u′, v′, W0), ~H = (0, 0, H0). (2.1)

Following the studies [33–39], the governing equations for the flow of a viscous in-
compressible electrically conducting fluid in a rotating frame of reference are

∂u′

∂t′
+ W0

∂u′

∂z′
− 2Ωv′ = υ

∂2u′

∂z′2
− σµ2

e H2
0

ρ
u′, (2.2)

∂v′

∂t′
+ W0

∂v′

∂z′
+ 2Ωu′ = υ

∂2v′

∂z′2
− σµ2

e H2
0

ρ
v′, (2.3)

0 = −1
ρ

∂p
∂z′

. (2.4)

Eq. (2.4) shows the constancy of pressure along axis of rotation. The absence of pres-
sure gradient term in Eq. (2.3) implies that there is a net cross flow in y′– direction.
The fluid motion is induced due to the movement of the lower plate in x′– direction,
so pressure gradient term is not taken into account in Eq. (2.2).

The initial and boundary conditions are

u′ = 0, v′ = 0, 0 6 z′ 6 h, t′ 6 0, (2.5a)
u′ = U0t′m, v′ = 0, at z′ = 0, t′ > 0, (2.5b)
u′ = 0, v′ = 0, at z′ = h, t′ > 0. (2.5c)
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Eq. (2.2) is valid when the magnetic field is fixed relative to the fluid. On the other
hand, when the magnetic field is fixed relative to the moving plate [55], the Eq. (2.2)
is replaced by

∂u′

∂t′
+ W0

∂u′

∂z′
− 2Ωv′ = υ

∂2u′

∂z′2
− σµ2

e H2
0

ρ

(
u′ −U0t′m

)
. (2.6)

It is now required to find the solution of Eqs. (2.3) and (2.6) subject to the initial and
boundary conditions (2.5).

Combining Eqs. (2.3) and (2.6), we obtain

∂q′

∂t′
+ W0

∂q′

∂z′
+ 2iΩq′ = υ

∂2q′

∂z′2
− σµ2

e H2
0

ρ

(
q′ −U0t′m

)
, (2.7)

where q′ = u′ + iv′.
The initial and boundary conditions (2.5) become

q′ = 0, 0 6 z′ 6 h, t′ 6 0, (2.8a)
q′ = U0t′m, at z′ = 0, t′ > 0, (2.8b)
q′ = 0, at z′ = h, t′ > 0. (2.8c)

3 Solution of the problem

The fluid flow process described by the Eq. (2.7) subject to initial and boundary condi-
tions (2.8) is quite general. In this case the initial velocity of the lower plate is in terms
of an arbitrary function of time variable. In order to discuss the specific flow process,
we consider the case when m = 0, which corresponds to impulsive movement of the
lower plate [2, 35, 55]. Introducing the non-dimensional variables

z =
z′

h
, q =

q′h
υ

, and t =
t′υ
h2 , (3.1)

the Eq. (2.7) after substitution of m = 0, in non-dimensional form, become

∂q
∂t

+ S
∂q
∂z

+ 2iK2q =
∂2q
∂z2 − M2 (q− Re) , (3.2)

where S = W0h/υ is suction/injection parameter (S > 0 for suction and S < 0 for
injection), M2 = σµ2

e H2
0 h2/ρυ is magnetic parameter which is the square of Hartmann

number, K2 = Ωh2/υ is rotation parameter which is reciprocal of Ekman number and
Re = U0h/υ is the Reynolds number.

The initial and boundary conditions (2.8) after substitution of m = 0, in non-
dimensional form, reduce to

q = 0, 0 6 z 6 1, t 6 0, (3.3a)
q = Re, at z = 0, t > 0, (3.3b)
q = 0, at z = 1, t > 0. (3.3c)
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Using Laplace transform technique, the Eq. (3.2) with the help of (3.3a) reduces to

d2q̄
dz2 − S

dq̄
dz
− (

p + M2 + 2iK2) q̄ = −M2Re

p
, (3.4)

where

q̄(z, p) =
∫ ∞

0
e−ptq(z, t)dt, p > 0,

p being Laplace transform parameter.
The boundary conditions (3.3b) and (3.3c) become

q̄ = Re/p, at z = 0, (3.5a)
q̄ = 0, at z = 1. (3.5b)

The solution of Eq. (3.4) subject to the boundary conditions (3.5) is given by

q̄i =
∞

∑
n=0

[
1
p

(
e−aλ1 − e−bλ1

)
− (−1)n M2

p(p + M2 + 2iK2)

(
e−cλ1+e−dλ1

)]

+
M2

p(p + M2 + 2iK2)
, (3.6)

where

q̄i = q̄(z, p)/Re, a = 2n + z, b = 2 + 2n− z,

c = n + z, d = 1 + n− z, λ1 = S/2 +
√

p + S2/4 + M2 + 2iK2.

Taking inverse Laplace transform of Eq. (3.6), the solution for velocity field is ex-
pressed in the following form (McLachlan [56])

qi =
1
2

∞

∑
n=0

{
e−a( S

2−λ)er f c
( a

2
√

t
+ λ

√
t
)

+ e−a( S
2 +λ)er f c

( a
2
√

t
− λ

√
t
)

− e−b( S
2−λ)er f c

( b
2
√

t
+ λ

√
t
)
− e−b( S

2 +λ)er f c
( b

2
√

t
− λ

√
t
)

− (−1)n M2

M2 + 2iK2

[
e−c( S

2−λ)er f c
( c

2
√

t
+ λ

√
t
)

+ e−c( S
2 +λ)er f c

( c
2
√

t
− λ

√
t
)

+ e−d( S
2−λ)er f c

( d
2
√

t
+ λ

√
t
)

+ e−d( S
2 +λ)er f c

( d
2
√

t
− λ

√
t
)

− e−
(

M2+2iK2
)

t
(

er f c
( c

2
√

t
+

S
2

√
t
)

+ e−cSer f c
( c

2
√

t
− S

2

√
t
)

+ er f c
( d

2
√

t
+

S
2

√
t
)

+ e −dSer f c
( d

2
√

t
− S

2

√
t
))]}

+
M2

M2 + 2iK2

(
1− e−(M2+2iK2)t

)
, (3.7)
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where

qi = ui + ivi =
q(z, t)

Re
, λ = α + iβ,

and

α, β =
1√
2

{[(S2

4
+ M2

)2
+ 4K4

] 1
2 ±

(S2

4
+ M2

)} 1
2

. (3.8)

Solution (3.7) is the general solution for impulsively started hydromagnetic Couette
flow in a porous channel in a rotating system. It demonstrates a unified representation
of the initial Couette flow, the final steady Ekman-Hartmann boundary layer and the
decaying oscillations excited by the interaction of the magnetic field, Coriolis force,
suction/injection and initial impulsive motion when the magnetic field is fixed rela-
tive to the moving plate. In the absence of suction/injection (S = 0) solution (3.7) is
in agreement with the solution obtained by Chandran et al. [35]. On the other hand,
in the absence of rotation (K2 = 0) and suction/injection (S = 0) it agrees with the
solution obtained by Singh and Kumar [9].

4 Shear stress at the moving plate

The non-dimensional shear stress components τxi and τyi at the moving plate (z = 0)
due to the primary and secondary flow respectively are given by

(
τxi + iτyi

)∣∣∣
z=0

=
1
2

∞

∑
n=0

{
−

(S
2
− λ

)
e−a′( S

2−λ)er f c
( a′

2
√

t
+ λ

√
t
)

−
(S

2
+ λ

)
e−a′( S

2 +λ)er f c
( a′

2
√

t
− λ

√
t
)

− 2√
πt

e−
(

a′2
4t + a′S

2 +λ2t
)
−

(S
2
− λ

)
e−b′( S

2−λ)er f c
( b′

2
√

t
+ λ

√
t
)

−
(S

2
+ λ

)
e−b′( S

2 +λ)er f c
( b′

2
√

t
− λ

√
t
)
− 2√

πt
e−

(
b′2
4t + b′S

2 +λ2t
)

− (−1)n M2

M2 + 2iK2

[
−

(S
2
− λ

)
e−n( S

2−λ)er f c
( n

2
√

t
+ λ

√
t
)

−
(S

2
+ λ

)
e−n( S

2 +λ)er f c
( n

2
√

t
− λ

√
t
)
− 2√

πt
e−

(
n2
4t + nS

2 +λ2t
)

+
(S

2
− λ

)
e−d′( S

2−λ)er f c
( d′

2
√

t
+ λ

√
t
)

+
(S

2
+ λ

)
e−d′( S

2 +λ)er f c
( d′

2
√

t
− λ

√
t
)

+
2√
πt

e−
(

d′2
4t + d′S

2 +λ2t
)
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− e−(M2+2iK2)t
(
− 2√

πt
e−

(
n2
4t + nS

2 + S2
4 t

)
− Se−nSer f c

( n
2
√

t
− S

2

√
t
)

+
2√
πt

e−
(

d′2
4t + d′S

2 + S2
4 t

)
+ Se−d′S er f c

( d′

2
√

t
− S

2

√
t
))]}

, (4.1)

where a′ = 2n, b′ = 2 + 2n, and d′ = 1 + n.

5 Asymptotic solutions

In order to gain further insight into the flow pattern, we shall now examine the solu-
tion (3.7) for small and large values of time t.

When time t is small, we obtain the velocity components from (3.7) as

ui =
∞

∑
n=0

{
e−

aS
2

[(
1 +

a2

2
m1

)
er f c

( a
2
√

t

)
− am1

√
t
π

e−
a2
4t

]

− e−
bS
2

[(
1 +

b2

2
m1

)
er f c

( b
2
√

t

)
− bm1

√
t
π

e−
b2
4t

]

− (−1)n M2
{

e−
cS
2

[(
t + (1 + m1t)

c2

2
+

m1c4

12

)
er f c

( c
2
√

t

)

−
(

2c
3
√

π
t

3
2 m1 + c

(
1 +

m1c2

6

)√
t
π

)
e−

c2
4t

]

+ e−
dS
2

[(
t + (1 + m1t)

d2

2
+

m1d4

12

)
er f c

( d
2
√

t

)

−
(

2d
3
√

π
t

3
2 m1 + d

(
1 +

m1d2

6

)√
t
π

)
e−

d2
4t

]}}
+ M2t, (5.1)

vi = K2
∞

∑
n=0

{
e−

aS
2

[
a2er f c

( a
2
√

t

)
− 2a

√
t
π

e−
a2
4t

]
− e−

bS
2

[
b2er f c

( b
2
√

t

)

− 2b

√
t
π

e−
b2
4t

]
− (−1)n M2

{
e−

cS
2

[(
c2t +

c4

6

)
er f c

( c
2
√

t

)

−
( 4c

3
√

π
t

3
2 +

c3

3

√
t
π

)
e−

c2
4t

]
+ e−

dS
2

[(
d2t +

d4

6

)
er f c

( d
2
√

t

)

−
( 4d

3
√

π
t

3
2 +

d3

3

√
t
π

)
e−

d2
4t

]}}
, (5.2)

where m1 = M2 + S2/4.
It is evident from the solutions (5.1) and (5.2) that there arises Rayleigh layer of

thicknessO(2
√

t) near the moving plate (z = 0) due to the initial impulsive movement
of the plate. This layer is unaffected by rotation, magnetic field and suction/injection.
It is also noticed from (5.1) and (5.2) that the primary flow ui(z, t) is independent of
rotation where as secondary flow vi(z, t) is affected by rotation as well as magnetic
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field. When magnetic parameter M2 and rotation parameter K2 are very small, the
solutions (5.1) and (5.2) reduce to

ui =
∞

∑
n=0

{
e−

aS
2

[(
1 +

a2

2
m1

)
er f c

( a
2
√

t

)
− am1

√
t
π

e−
a2
4t

]

− e−
bS
2

[(
1 +

b2

2
m1

)
er f c

( b
2
√

t

)
− bm1

√
t
π

e−
b2
4t

]

− (−1)n M2
(

e−
cS
2

{(
t +

(
1 +

S2

4
t
)

c2

2
+

S2c4

48

)
er f c

( c
2
√

t

)

−
(

cS2

6
√

π
t

3
2 + c

(
1 +

S2c2

24

)√
t
π

)
e−

c2
4t

}

+ e−
dS
2

{(
t +

(
1 +

S2

4
t
)

d2

2
+

S2d4

48

)
er f c

( d
2
√

t

)

−
(

dS2

6
√

π
t

3
2 + d

(
1 +

S2d2

24

)√
t
π

)
e−

d2
4t

})}
, (5.3)

vi =
∞

∑
n=0

K2

{
e−

aS
2

[
a2er f c

( a
2
√

t

)
− 2a

√
t
π

e−
a2
4t

]

−e−
bS
2

[
b2er f c

( b
2
√

t

)
− 2b

√
t
π

e−
b2
4t

]}
. (5.4)

Expressions (5.3) and (5.4) reveal that, in a slowly rotating system when the conduc-
tivity of the fluid is low and/or the applied magnetic field is weak, the primary flow
ui(z, t) is independent of rotation while secondary flow vi(z, t) is unaffected by mag-
netic field. Upto this stage there is no inertial oscillations in the flow field.

When time t is large, using the asymptotic expression of er f c(x), i.e.,

er f c (x) ≈ exp
(−x2)
√

πx
, as x → ∞,

together with
er f c(−x) = 2− er f c(x),

the solution (3.7) may be represented in the following form as

ui = uis + uit, (5.5)

where

uis =
∞

∑
n=0

{
e−a( S

2 +α) cos βa− e−b( S
2 +α) cos βb

− (−1)n M2

M4 + 4K4

[(
M2 cos βc + 2K2 sin βc

)
e−c( S

2 +α)

+
(

M2 cos βd + 2K2 sin βd
)

e−d( S
2 +α)

]}
+

M2

M4 + 4K4 , (5.6)
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uit = uit1 + uit2 , (5.7a)

uit1 =
1
2

∞

∑
n=0

e−m1t
{
−φ1 + φ3 +

(−1)n M2

M4 + 4K4

[
M2(φ5 + φ7)

+ 2K2(φ6 + φ8)− 2φ9

]}
, (5.7b)

uit2 =
M2e−M2t

M4 + 4K4

{
∞

∑
n=0

[
(−1)n

(
e−cS + e−dS

) (
M2 cos 2K2t

+2K2 sin 2K2t
)]
−

(
M2 cos 2K2t− 2K2 sin 2K2t

)}
, (5.7c)

vi = vis + vit. (5.8)

In (5.8), we have

vis =
∞

∑
n=0

{
−e−a( S

2 +α) sin βa + e−b( S
2 +α) sin βb

+
(−1)n M2

M4 + 4K4

[(
2K2 cos βc− M2 sin βc

)
e−c( S

2 +α)

+
(
2K2 cos βd− M2 sin βd

)
e−d( S

2 +α)
]}

− 2M2K2

M4 + 4K4 , (5.9)

vit = vit1 + vit2 , (5.10a)

vit1 =
1
2

∞

∑
n=0

e−m1t
{

φ2 − φ4 − (−1)n M2

M4 + 4K4

[
2K2(φ5 + φ7)− M2(φ6 + φ8)

− 2φ10

]}
, (5.10b)

vit2 =
M2e−M2t

M4 + 4K4

{ ∞

∑
n=0

[
(−1)n+1

(
e−cS + e−dS

)(
2K2 cos 2K2t

− M2 sin 2K2t
)]

+
(

2K2 cos 2K2t + M2 sin 2K2t
)}

, (5.10c)

φ1 =
a√
πt

1
ξ1

e−
(

a2
4t + aS

2

) [(
m1t− a2/4t

)
cos 2K2t− 2K2t sin 2K2t

]
,

φ2 =
a√
πt

1
ξ1

e−
(

a2
4t + aS

2

) [
2K2t cos 2K2t +

(
m1t− a2/4t

)
sin 2K2t

]
,

φ3 =
b√
πt

1
ξ2

e−
(

b2
4t + bS

2

) [(
m1t− b2/4t

)
cos 2K2t− 2K2t sin 2K2t

]
,

φ4 =
b√
πt

1
ξ2

e−
(

b2
4t + bS

2

) [
2K2t cos 2K2t +

(
m1t− b2/4t

)
sin 2K2t

]
,

φ5 =
c√
πt

1
ξ3

e−
(

c2
4t + cS

2

) [(
m1t− c2/4t

)
cos 2K2t− 2K2t sin 2K2t

]
,
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φ6 =
c√
πt

1
ξ3

e−
(

c2
4t +

cS
2

) [
2K2t cos 2K2t +

(
m1t− c2/4t

)
sin 2K2t

]
,

φ7 =
d√
πt

1
ξ4

e−
(

d2
4t + dS

2

) [(
m1t− d2/4t

)
cos 2K2t− 2K2t sin 2K2t

]
,

φ8 =
d√
πt

1
ξ4

e−
(

d2
4t + dS

2

) [
2K2t cos 2K2t +

(
m1t− d2/4t

)
sin 2K2t

]
,

φ9 = 2
(

M2 cos 2K2t + 2K2 sin 2K2t
) √

t
π

[
c

S2t2 − c2 e−
(

c2
4t + cS

2

)

+
d

S2t2 − d2 e−
(

d2
4t + dS

2

)]
,

φ10 = 2
(
2K2 cos 2K2t− M2 sin 2K2t

) √
t
π

[
c

S2t2 − c2 e−
(

c2
4t + cS

2

)

+
d

S2t2 − d2 e−
(

d2
4t + dS

2

)]
,

ξ1 =
(

m1t− a2/4t
)2

+ 4K4t2, ξ2 =
(

m1t− b2/4t
)2

+ 4K4t2,

ξ3 =
(

m1t− c2/4t
)2

+ 4K4t2, ξ4 =
(

m1t− d2/4t
)2

+ 4K4t2.

It is evident from the expressions (5.5) to (5.10) that the terms uis and vis represent
final steady state flow. The steady state flow is confined within an Ekman-Hartmann
boundary layer of thickness O(

(α + S/2)−1). From Eq. (3.8) it is observed that α
increases with increasing magnetic parameter M2, rotation parameter K2 and suc-
tion/injection parameter S. Thus we may conclude that the thickness of Ekman-
Hartmann boundary layer decreases with increasing either M2 or K2 or S or all the pa-
rameters. It is also noticed from (5.6) and (5.9) that steady state flow represents spatial
oscillations in the flow-field excited by magnetic field, rotation and suction/injection.
The unsteady part of the flow in (5.5) and (5.8), represented by uit and vit, exhibits
inertial oscillations in the flow-field excited by rotation. The unsteady state flow rep-
resented by uit and vit are divided into two parts viz. uit1 , vit1 and uit2 , vit2 . The inertial
oscillations in uit1 and vit1 damp out effectively in dimensionless time of O(

(M2 +
S2/4)−1) whereas in uit2 and vit2 , it damp out effectively in dimensionless time of
O(

(M2)−1) when final steady state is developed. This implies that the suction/ in-
jection reduces time of damping of inertial oscillations in the major part of unsteady
state flow. In the absence of rotation there are no inertial oscillations in flow-field.

6 Results and discussions

To study the effects of magnetic field, rotation, suction/injection and time on the flow-
field profiles of the primary and secondary velocities are drawn in Figs. 1 to 8 for
various values of magnetic parameter M2, rotation parameter K2, suction/injection
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Figure 1: Primary velocity profiles when K2 = 3,
S = 1 and t = 0.05.

Figure 2: Secondary velocity profiles when K2 =
3, S = 1 and t = 0.05.

Figure 3: Primary velocity profiles when M2 = 2,
S = 1 and t = 0.05.

Figure 4: Secondary velocity profiles when M2 =
2, S = 1 and t = 0.05.

parameter S and time t. It is evident from Figs. 1 to 4 that the primary velocity ui
increases with increasing M2 whereas it decreases with increasing K2. On increasing
M2, the secondary velocity vi decreases in the lower half of the channel and is of
oscillatory nature with M2 in the upper half of the channel whereas it increases with

Figure 5: Primary velocity profiles when M2 = 2,
K2 = 3 and t = 0.05.

Figure 6: Secondary velocity profiles when M2 = 2,
K2 = 3 and t = 0.05.
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Figure 7: Primary velocity profiles when M2 = 2,
K2 = 3 and S = 1.

Figure 8: Secondary velocity profiles when M2 =
2, K2 = 3 and S = 1.

increasing K2 throughout the channel. Figs. 5 and 6 reveal that the primary velocity
ui and secondary velocity vi decrease with increasing S(> 0) while it increase with
increasing S(< 0). Figs. 7 and 8 show that the primary and secondary velocities ui
and vi respectively increase with increasing time t.

The numerical values of the primary and secondary shear stress components τxi
and τyi at the moving plate z = 0 are presented in tabular form in Tables 1 to 3 for
various values of M2, K2, S and t. It is evident from Table 1 that the primary shear
stress τxi decreases where as secondary shear stress τyi increases with increasing M2.
The primary shear stress τxi and secondary shear stress τyi increase with increasing
K2. It is found from Table 2 that, on increasing S, the primary shear stress decreases
when S(< 0) and it increases when S(> 0). Also the primary shear stress τxi decreases
with increasing time t. It is observed from Table 3 that the secondary shear stress τyi
increases with increasing S(< 0) when t = 0.03 and t = 0.05 and it increases, attains
a maximum and then decreases with increasing S(< 0) when t = 0.07 and 0.09. Also
τyi increases with increasing S(> 0). The secondary shear stress τyi decreases with

Table 1: Primary and secondary shear stress at the lower plate when t = 0.05 and S = 1.

−τxi −τyi
M2 ↓ K2 → 3 5 7 3 5 7

2 3.6605 4.1614 4.4460 0.8820 1.0394 1.1477
4 3.1209 3.7001 4.0503 1.0912 1.3217 1.4625
6 2.6548 3.2526 3.6554 1.1633 1.5088 1.7090

Table 2: Primary shear stress −τxi at the lower plate when M2 = 2 and K2 = 3.

t ↓ S → -3 -2 -1 0 1 2 3
0.03 2.4416 2.8845 3.3782 3.8692 4.3202 4.7686 5.2676
0.05 1.9301 2.3251 2.7537 3.2015 3.6605 4.1379 4.6481
0.07 1.6332 2.0040 2.3955 2.8148 3.2721 3.7580 4.2645
0.09 1.3930 1.7577 2.1310 2.5317 2.9839 3.4706 3.9694
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Table 3: Secondary shear stress −τyi at the lower plate when M2 = 2 and K2 = 3.

t ↓ S → -3 -2 -1 0 1 2 3
0.03 1.3064 1.1472 0.8186 0.6316 0.8240 1.1585 1.3240
0.05 1.1270 1.0662 0.8620 0.7405 0.8820 1.1156 1.2146
0.07 0.9353 0.9698 0.8667 0.7979 0.9174 1.1020 1.1753
0.09 0.7387 0.8609 0.8482 0.8288 0.9414 1.1016 1.1697

increasing time t when S=−2 and −3 while it increases, attains a maximum and then
decreases with increasing time t when S=−1. On increasing time t, τyi increases when
S = 0 and 1 whereas it decreases when S = 2 and 3.

7 Conclusions

Magnetic field has accelerating influence on the primary flow where as it has retarding
influence on secondary flow in the lower half of the channel. Rotation has retarding
influence on the primary flow where as it has accelerating influence on secondary
flow. Suction has retarding influence on the primary as well as secondary flow where
as injection and time have accelerating influence on the primary and secondary flows.
Magnetic field has decreasing effect on the primary shear stress where as it has increas-
ing effect on secondary shear stress. Rotation tends to increase the primary as well as
secondary shear stress component. Suction has increasing influence on the primary
shear stress where as injection and time have decreasing influence on it. Suction tends
to increase secondary shear stress.
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