
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 2, No. 4, pp. 451-466

DOI: 10.4208/aamm.09-m0972
August 2010

Large Eddy Simulation of Flow over a Cylinder
Using High-Order Spectral Difference Method

Abrar H. Mohammad1, Z. J. Wang1,∗and Chunlei Liang2

1 Department of Aerospace Engineering, Iowa State University, Ames,
IA 50011, U.S.A.
2 Department of Aeronautics and Astronautics, Stanford University, Stanford,
CA 94305, U.S.A.

Received 24 July 2009; Accepted (in revised version) 9 October 2009
Available online 28 May 2010

Abstract. Large eddy simulation of the flow over a circular cylinder at Reynolds
number ReD = 2580 has been studied with a high-order unstructured spectral dif-
ference method. Grid and polynomial refinement studies were carried out to as-
sess numerical errors. The mean and fluctuating velocity fields in the wake of a
circular cylinder were compared with PIV experimental measurements. The nu-
merical results are in excellent agreement with the experimental data for both the
mean velocity and Reynolds stresses using the high-order SD scheme. Other wake
characteristics such as the recirculation bubble length, vortex formation length and
maximum intensity of the velocity fluctuations have also been predicted accurately.
The numerical simulations demonstrated the potential of the high-order SD method
in accurate large eddy simulation of physically complex problems.
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1 Introduction

The flow around bluff bodies at sub-critical Reynolds number is very complex and
can involve regions of laminar, transitional and turbulent flows, unsteady separation
and reattachment, and the formation of coherent structures, particularly in the wake
region of the flow. The understanding of bluff body vortex shedding is of great prac-
tical importance and the uniform flow over a circular cylinder is a classical example
of bluff body flow. In this paper, we try to show the importance of using high order
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methods to study the numerical and physical aspect of unsteady wake flow involving
separation, recirculation, unsteady vortex shedding and large complex flow structures
at a sub-critical Reynolds number of ReD = 2580. At this Reynolds number, we have
experimental data to compare with. The near wake structure behind a bluff body
plays an important role in the overall vortex formation and shedding processes and
determines the magnitude of mean and fluctuating forces exerted on the body. Di-
rect numerical simulations (DNS) of the Navier-Stokes equations, in which all eddy
scales have to be captured, is almost impossible for problems with moderately high
Reynolds number because of the huge computational requirement in resolving all tur-
bulence scales. Hence a less expensive and accurate method is required. In Reynolds
averaged Navier-Stokes (RANS) approach, all eddies are time-averaged over to give
equations for variables representing the mean flow. But RANS has proved to be gener-
ally inadequate in predicting the effects of turbulent separating and reattaching flows,
because the large eddies responsible for the primary transport are geometry depen-
dent. For any turbulent flow, the largest scale is of the order of the domain size and
the small scales are related to the dissipative eddies where the viscous effects become
predominant. Large eddy simulation (LES) is a method where the three-dimensional
and unsteady motion of the large eddies is computed explicitly and the non-linear in-
teractions with the smaller eddies, which are assumed to be isotropic and universal,
are modeled. LES is an active area of research and the numerical simulation of com-
plex flows is essential in the development of the method as a tool to predict flows of
engineering interest.

In this paper, implicit LES computations were performed without any sub-grid
scale model in order to investigate the effectiveness of the spectral difference method.
These simulations were deliberately not called direct numerical simulations because
they did not comply with the resolution requirements of DNS. Turbulent flow past
a circular cylinder has been the subject of a large number of experimental and nu-
merical investigations. Examples can be found in the review papers by Williamson
and Govardhan [44] and Sarpkaya [33]. In recent years a good understanding of the
physics of flow at low Reynolds number of below a few hundred, has been obtained.
But at higher Reynolds number, still subcritical though, considerably less is known. A
comprehensive review of the flow characteristics for a wide range of Reynolds num-
bers was studied by Williamson [43]. In addition, a number of simulations at vari-
ous Reynolds numbers, mostly LES, have been carried out, such as Travin et al. [37],
Breuer [2, 3], Liang and Papadakis [22] and Catalano et al. [4]. The cylinder flow at
Reynolds number ReD = 3900 has become a common test case for LES primarily be-
cause of the availability of the experimental results of Lourenco and Shih [20] and
Ong and Wallace [31]. The calculations were performed on structured [1–3, 18, 28]
and unstructured meshes [10, 12, 22, 26]. Beaudan and Moin [1], Breuer [2, 3], Mittal
and Moin [28], Kravchenko and Moin [18] were among the first to perform LES stud-
ies at ReD = 3900. Motivated by the direct simulation results of Rai and Moin [32],
Beaudan and Moin [1] used high-order upwind-biased schemes for the numerical sim-
ulations of the compressible Navier-Stokes equations. The profiles of mean velocity
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and Reynolds stresses obtained in these simulations were in reasonable agreement
with the experimental data. However, inside the recirculation region, the streamwise
velocity profiles differed in shape from those observed in the experiment [20]. These
differences were attributed to the experimental errors as manifested in the large asym-
metry of the experimental data [1]. A new experiment at the same Reynolds number
was carried out by Ong and Wallace [31] and provided the mean flow data at sev-
eral locations in the near wake of the cylinder downstream of the recirculation region.
Even though fair agreement between the simulations of Beaudan and Moin [1] and the
experiment was observed in the mean velocity profiles, turbulence intensities at sev-
eral downstream locations did not match the experimental data. Also the Reynolds
stresses were not predicted correctly when compared to experimental data. Similar
problems were observed in Mittal and Moin [10]. In these two mentioned simulations,
they showed a shape of the streamwise velocity profile inside the recirculation region
different from that observed in the experiment of Laurenco and Shih [20]. A new
experiment at the same Reynolds number was carried out by Ong and Wallace [31]
and provided the mean flow data at several locations in the near wake of the cylin-
der downstream of the recirculation region. Even though fair agreement between the
simulations of Beaudan and Moin [1] and the experiment was observed in the mean
velocity profiles, turbulence intensities at several downstream locations did not match
the experimental data. Several other researchers have examined a variety of aspects
that affect the quality of LES solutions at ReD = 3900. The numerical and modeling
aspects which influence the quality of LES solutions were studied by Breuer [3]. He
had also carried out LES computations without any sub-grid scale model.

DNS of the cylinder flow at ReD = 3900 was performed by Ma et al. [26]. The mean
velocity profiles and the power spectra are in good agreement with the experimental
data in the near wake as well as far downstream. In particular, the velocity profiles
agree well with those from the experiments in the vicinity of the cylinder. Compared
with LES reported in [18, 19], the pressure coefficient in DNS is a little lower, while
the recirculation bubble length is larger. Franke and Frank [9] found out that this is
an effect of the averaging time in computing statistics. In DNS by Ma et al. [26], the
statistics was accumulated over 600 convective time units (D/U), while in LES [18],
the statistics was accumulated over only 35 convective time units. The discrepancies
raised in the previous large eddy simulations prompted us to attempt simulations of
the flow over a circular cylinder using a high order method. Second-order simula-
tions for unperturbed inlet flow conditions at ReD = 2580 were performed by Liang
and Papadakis [22]. The length of the recirculation bubble was under-predicted be-
cause of under-resolution and numerical dissipation. The primary motivation of this
paper is to study the same steady approaching flow case by employing a high order
spectral difference method in order to accurately predict the wake flow dynamics at
the Reynolds number ReD = 2580. Our numerical results were compared with the
PIV experiment performed by Konstantinidis et al. [15, 16].
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2 Numerical approach: the spectral difference method

High-order methods capable of handling unstructured grids are highly sought after
in many practical applications with complex geometries in LES, DNS of turbulence,
computational aero-acoustics, to name a few. The spectral difference (SD) method
[13, 23, 24, 40] is a high order, conservative and efficient method for conservation laws
on unstructured grids. The SD method is similar to the finite-difference method and it
utilizes the concept of discontinuous and high order local representations to achieve
conservation and high accuracy in a manner similar to discontinuous Galerkin (DG)
method [7, 8] or spectral volume (SV) method [25, 34, 41, 42]. For quadrilateral and
hexahedral grids, the SD method [21, 34, 35] is identical to the staggered-grid multi-
domain spectral method proposed by Kopriva [17]. The method is very simple to
implement since it involves one-dimensional operations only, and does not involve
any surface or volume integrals. The SD method is based on the differential form. The
basic idea is presented next for the Navier-Stokes equations.

Consider the unsteady compressible 3D Navier-Stokes equations in conservative
form written as

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0, (2.1)

where Q is the vector of conserved variables, and F, G, H are the total fluxes including
both the inviscid and viscous flux vectors, i.e.,

F = Fi − Fv, G = Gi − Gv, H = Hi − Hv.

We employ non-overlapping unstructured hexahedral cells or elements to fill the com-
putational domain. In order to handle curved boundaries, both linear and quadratic
iso-parametric elements are employed, with linear elements used in the interior do-
main and quadratic elements near high-order curved boundaries. In order to achieve
an efficient implementation, all elements are transformed from the physical domain
(x, y, z) into a standard element

(ξ, η, ς) ∈ [0, 1]× [0, 1]× [0, 1].

The governing equations in the physical domain are then transformed into the compu-
tational domain (standard element), and the transformed equations take the following
form:

∂Q̃
∂t

+
∂F̃
∂ξ

+
∂G̃
∂η

+
∂H̃
∂ς

= 0. (2.2)

In the standard element, two sets of points are defined, namely the solution points and
the flux points. The solution unknowns or degrees-of-freedom (DOFs) are the con-
served variables at the solution points, while fluxes are computed at the flux points.
In order to construct a degree (N − 1) polynomial in each coordinate direction, solu-
tions at N points are required. In a recent study, Van den Abeele et al. [38] found that
the SD method does not depend on where the solution points are located, while the
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Figure 1: Distribution of solution points (circles) and flux points (squares) in a standard element for a 3rd

order SD scheme.

location of the flux points determines the method. Therefore, the solution points can
be chosen to maximize efficiency. It was also found that the use of Chebyshev-Gauss-
Lobatto points as the flux points results in a weak instability by Van den Abeele et
al. [38] and Huynh [14]. In the present simulation, the solution points are chosen to be
the Chebyshev-Gauss points defined by

Xs =
1
2

[
1− cos

(2s− 1
2N

· π
)]

, s = 1, 2, · · · , N. (2.3)

The flux points are selected to be the Legendre-Gauss-quadrature points plus the two
end points, 0 and 1, as suggested by Huynh [14]. Using the N solutions at the solution
points, a degree N − 1 polynomial can be built using the following Lagrange basis
defined as

hi(X) =
N

∏
s=1,s 6=i

( X− Xs

Xi − Xs

)
. (2.4a)

Similarly, using the N + 1 fluxes at the flux points, a degree N polynomial can be built
for the flux using a similar Lagrange basis defined as

li+ 1
2
(X) =

N

∏
s=0,s 6=i

(
X− Xs+ 1

2

Xi+ 1
2
− Xs+ 1

2

)
. (2.4b)

The reconstructed solution for the conserved variables in the standard element is just
the tensor products of the three one-dimensional polynomials, i.e.,
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Q(ξ, η, ς) =
N

∑
k=1

N

∑
j=1

N

∑
i=1

Q̃i,j,k∣∣Ji,j,k
∣∣hi(ξ) · hj(η) · hk(ς). (2.5)

Similarly, the reconstructed flux polynomials take the following forms:

F̃(ξ, η, ς) =
N

∑
k=1

N

∑
j=1

N

∑
i=0

F̃i+ 1
2 ,j,kli+ 1

2
(ξ) · hj(η) · hk(ς), (2.6a)

G̃(ξ, η, ς) =
N

∑
k=1

N

∑
j=0

N

∑
i=1

G̃i,j+ 1
2 ,khi(ξ) · l j+ 1

2
(η) · hk(ς), (2.6b)

H̃(ξ, η, ς) =
N

∑
k=0

N

∑
j=1

N

∑
i=1

H̃i,j,k+ 1
2
hi(ξ) · hj(η) · lk+ 1

2
(ς). (2.6c)

The reconstructed fluxes are only element-wise continuous, but discontinuous across
cell interfaces. For the inviscid flux, a Riemann solver, such as the Rusanov or Roe flux,
is employed to compute a common flux at interfaces to ensure conservation and sta-
bility. An additional benefit is that these approximate Riemann solvers are providing
some numerical dissipation of turbulent kinetic energy when Large Eddy Simulation
is concerned. In summary, the algorithm to compute the inviscid flux derivatives con-
sists of the following steps:

1. Given the conserved variables at the solution points {Q̃i,j,k}, compute the conserved variables
at the flux points,

2. Compute the inviscid fluxes at the interior flux points using the solutions computed at Step
1,

3. Compute the inviscid flux at element interfaces using a Riemann solver, in terms of the left
and right conserved variables of the interface,

4. Compute the derivatives of the fluxes at all the solution points according to

(
∂F̃
∂ξ

)

i,j,k
=

N

∑
r=0

F̃r+ 1
2 ,j,k · l′r+ 1

2
(ξi), (2.7a)

(
∂G̃
∂η

)

i,j,k
=

N

∑
r=0

G̃i,r+ 1
2 ,k · l′r+ 1

2
(ηj), (2.7b)

(
∂H̃
∂ς

)

i,j,k
=

N

∑
r=0

H̃i,j,r+ 1
2
· l′r+ 1

2
(ςk). (2.7c)

The viscous flux is a function of both the conserved variables and their gradients,
e.g.,

F̃v
i+ 1

2 ,j,k
= F̃v

(
Qi+ 1

2 ,j,k,∇Qi+ 1
2 ,j,k

)
.

Therefore the key is how to compute the solution gradients at the flux points. The
following steps are taken to compute the viscous fluxes:
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1. Same as Step 1 for the inviscid flux computations,

2. When computing the derivatives, the solution Q at the cell interface is not uniquely defined.
The solution at the interface is simply the average of the left and right solutions,

Q̂ =
QL + QR

2
,

3. Compute the gradients of the solution at the solution points using the solutions at the flux
points. Then the gradients are interpolated from the solution points to the flux points using
the same Lagrangian interpolation approach given in,

4. Compute the viscous flux at the flux points using the solutions and their gradients at the flux
points. Again at cell interfaces, the gradients have two values, one from the left and one
from the right. The gradients used in the viscous fluxes at the cell interface are simply the
averaged ones, i.e.,

F̃v = F̃v
( QL + QR

2
,
∇QL +∇QR

2

)
.

More details of the SD method can be found in Sun et al. [35,36]. Interested readers
are suggested to read the recent efforts of developing the method for unstructured
grids with mixed elements by Liang et al. [21] and Wang and Gao [39].

3 Problem definition and computational details

The simulation was performed to match the geometry of the experiment performed by
Konstantinidis et al. [15]. The experiments were performed using the PIV technique
in a stainless steel water tunnel with a cross-section of 72mm × 72mm. The origin
and size of the computational domain are shown in Fig. 2. The x-axis is along the
streamwise flow direction and the z-axis is along the cylinder axis, i.e., the spanwise
direction. The cylinder has a non-dimensional unit diameter. The upstream velocity
is fixed at U = 0.1m/s and is assumed to be uniform across the inlet. The Reynolds
number based on the cylinder diameter and upstream velocity is 2580.

The size of the computational domain in the y-direction is equal to 7.2 cylinder
diameters, which is equal to the one used in the experiment. The required size in the
spanwise direction is estimated from the prior knowledge of the sizes of the stream-
wise vortex structures. It has been reported in the experimental studies by Mansy et
al. [27] and Williamson et al. [45] that the wavelength of the streamwise structures in
the near wake of a circular cylinder scale as

λz

D
∼ 25Re−0.5

D . (3.1)

For the present case of ReD = 2580, the wavelength is approximately 0.5D. Further
downstream, large scale structures were observed by Williamson et al. [37] with wave-
lengths λz/D ∼ 1. Wissink and Rodi [46] pointed out that the spanwise length is im-
portant on the auto-correction of streamwise velocity. They concluded that a spanwise
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Figure 2: The geometry of the flow over cylinder.

length of 8D might not be enough to capture the largest spanwise length-scales at a
similar Reynolds number of 3300. Our simulations are designed to match the experi-
mental data provided by Konstantinidis et al. [15,16]. Unfortunately, no experimental
information was available about the size of streamwise structures although we know
that the spanwise length is 7.2D with two end walls in the experiment. Therefore, the
length of the domain in the spanwise direction is taken to be πD which is the same
as the one employed by Kravchenko and Moin [18, 19], and Breuer [2, 3] for a higher
Reynolds number of 3900.

High-order spectral difference method is employed to solve the problem. Implicit
scheme with 2nd order accuracy in time was used. Both 2nd and 3rd orders of spa-
tial accuracy were tested with quadratic boundary for the cylinder surface. Although
the explicit scheme is easy to implement and has high-order accuracy in time, it suf-
fered from too small time step, especially for viscous grids which are clustered in the
viscous boundary layer. It is well-known that high-order methods are restricted to a
smaller CFL number than low order ones. In addition, they also possess much less
numerical dissipation. The computation cost of high-order explicit methods for many
steady-state problems is so high that they become less efficient than low-order im-
plicit methods in terms of the total CPU time given the same level of solution error.
Therefore an efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) [36, 47]
solution algorithm is used to solve viscous compressible flows for the high order spec-
tral difference method on unstructured hexahedral grids.

As shown in Figs. 3 and 4, two meshes are used. The coarse mesh has 86,680 cells
and the fine mesh has 189, 448 cells. For the third order spatial accuracy, the coarse
mesh has 2.34 million degrees-of-freedom (DOFs) per equation while the fine mesh
has 5.12 million DOFs per equation. The fine mesh is produced by refining the coarse
mesh by about 1.5 times in the wake region of the cylinder.

As mentioned earlier, the length of the domain in the spanwise direction is πD
and 12 layers are used for coarse mesh while 18 layers are used for the fine mesh. A
constant expansion of 1.1 was used in the radial direction away from the cylinder. The
smallest cell spacing in the radial direction is ∆rmin/D = 1.75× 10−3 for the fine mesh
and 3.5× 10−3 for the coarse mesh. Beaudan and Moin [1] had used a slightly lower
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Figure 3: Coarse mesh in X-Y plane.

Figure 4: Fine mesh in X-Y plane.

value of ∆rmin/D = 1.25× 10−3 for their finest mesh at ReD = 3900. Therefore the
mesh used in this paper is coarser than the finest mesh used by Beaudan and Moin [1].
In every layer in the spanwise direction, 120 cells were placed along the circumference
of the cylinder for coarse mesh while 160 for fine mesh which is lower than the ones
used by Liang and Papadakis [22] at ReD = 2580.

The time step (normalized ∆T = tU/D) used is 0.005 for the coarse mesh while for
the fine mesh it is half of the one used for the coarse mesh. It takes roughly 4 to 5
sub-iterations for the unsteady residual to drop by two orders. A far-field boundary
condition is used at the inlet with an unperturbed inlet flow velocity. At the outlet, a
fixed pressure boundary condition is used. Periodic boundary condition is applied in
the spanwise direction while symmetry is imposed for the top and bottom surfaces.
Zero velocity boundary condition is used for the cylinder wall.

The flow over the cylinder is first allowed to reach a statistically steady state so as
to allow all transients to exit the computational domain and then the statistics, mean
and r.m.s. values, were obtained. The transients are convected out using 12 shedding
periods and then 20 shedding periods are used to collect the statistics of mean and
r.m.s. values.

4 Numerical results and discussions

The instantaneous streamwise, transverse and spanwise velocities in the wake of the
circular cylinder obtained by the third-order SD method on the fine mesh are shown
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Figure 5: Instantaneous streamwise velocity in x-z plane (y = 0) in the wake of the cylinder. There are 40
contours from -0.1 to 0.1.

Figure 6: Instantaneous transverse velocity in x-z plane (y = 0) in the wake of the cylinder. There are 40
contours from -0.1 to 0.1.

Figure 7: Instantaneous spanwise velocity in x-z plane (y = 0) in the wake of the cylinder. There are 52
contours from -0.1 to 0.1.

in Figs. 5, 6 and 7. Fig. 5 clearly shows the unsteady recirculation region. Despite the
randomness in spanwise direction, negative streamwise velocity generally indicates
the reverse flow within the recirculation region. The alternating regions of positive
and negative transverse velocity corresponding to the Karman vortices can also be
observed in Fig. 6. At ReD = 2580, the flow becomes turbulent and three-dimensional
which is evident of the presence of both the small and large scale structures shown in
Fig. 7. It also shows that the flow structures increase in size as we go downstream of
the cylinder. It is noted that small scale structures are still present very far away from
the cylinder which were not observed by Beaudan and Moin [1]. Moser et al. [29]
performed a DNS and captured the small scale and large scale turbulent structures at
ReD = 2000.

Fig. 8 shows contours of instantaneous vorticity magnitude. Two long shear layers
can be seen separating from the cylinder. The Karman vortex street can also be seen in
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Figure 8: Instantaneous vorticity magnitude showing 16 contours from ωD/U = −0.1 to ωD/U = 0.1.

Fig. 8. The vortices arising from the instabilities of the shear layers mix in the primary
Karman vortices before propagating downstream and similar observations were made
by Chyu and Rockwell [6] in their PIV experiments.

A study on grid independency is made for the coarse and fine mesh since in-
sufficient grid resolution can lead to inaccurate predictions of the wake characteris-
tics [18, 22]. Fig. 9 shows that the second order method cannot capture the statistics
accurately. The coarse mesh with third order accuracy is in fairly good agreement with
the experiment results. Figs. 10 and 11 show that both fine mesh and coarse mesh give
excellent agreement with the experiment (PIV) measurements for the mean stream-
wise and transverse velocity at various locations in the wake of the cylinder. The fine

Figure 9: Mean normalized streamwise veloc-
ity in the wake of the circular cylinder, (oooo)

- experiment; (Dashed line) - 2nd order results;

(Solid line) - 3rd order results. The dotted line
(......) represents the zero location of the shifted
curves.

Figure 10: Mean normalized streamwise ve-
locity in the wake of the circular cylinder,
(oooo) - experiment; (Dashed line) - coarse
mesh; (Solid line) - fine mesh. The dotted
line (......) represents the zero location of the
shifted curves.



462 A. H. Mohammad, Z.J. Wang and C. Liang / Adv. Appl. Math. Mech., 4 (2010), pp. 451-466

Figure 11: Mean normalized transverse velocity
in the wake of the circular cylinder, (oooo) - ex-
periment; (Dashed line) - coarse mesh; (Solid
line) - fine mesh. The dotted line (......) repre-
sents the zero location of the shifted curves.

Figure 12: Distribution of the streamwise mean
velocity along the wake center-line.

mesh and coarse mesh results are pretty similar but the fine mesh gives slightly better
results.

At x/D=1.5, 2 and 2.5, both the mean streamwise and transverse velocities are
slightly over predicted for the coarse mesh. But the fine mesh results give a good
agreement with the experiment values.

Fig. 12 shows the normalized streamwise mean velocity along the wake center-
line. A small region of reversed flow occurs very near to the cylinder which is often
defined as recirculation bubble. The velocity decreases and reaches a maximum nega-
tive value close to the cylinder and rises rapidly to positive values and finally reaching
an asymptotic behavior far downstream. The length of the recirculation bubble is gen-

Figure 13: Normalized <u’u’>/U2 in the wake
of the circular cylinder, (oooo) - experiment;
(Dashed line) - coarse mesh; (Solid line) - fine
mesh. The dotted line (......) represents the zero
location of the shifted curves.

Figure 14: Normalized <v’v’>/U2 in the wake
of the circular cylinder, (oooo) - experiment;
(Dashed line) - coarse mesh; (Solid line) - fine
mesh. The dotted line (......) represents the zero
location of the shifted curves.
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Figure 15: Normalized <u’v’>/U2 in the
wake of the circular cylinder, (oooo) - ex-
periment; (Dashed line) - coarse mesh;
(Solid line) - fine mesh. The dotted line
(......) represents the zero location of the
shifted curves.

erally defined as the position downstream of the cylinder where the mean velocity
becomes zero. The fine mesh gives an excellent agreement of the length of the recir-
culation bubble with the PIV measurements of Konstantinidis et al. [16]. Though the
coarse mesh does not predict the length of the recirculation bubble accurately, it gives
a very good agreement of mean velocity at the wake center line further downstream.

Figs. 13 and 14 show respectively the normalized time-averaged streamwise and
cross-wake Reynolds stresses. The peaks in the streamwise Reynolds stress are pre-
dicted very well. But the cross-stream Reynolds stress is a little under predicted at
x/D= 1.5. The shear stress predictions are shown in Fig. 15. Both the coarse mesh
and fine mesh are in good agreement with the experiment.

The distribution of the normalized streamwise and transverse r.m.s. velocities along
the wake center line is shown in Figs. 16(a) and (b). Fig. 16(a) shows a peak at a
position which is a measure of vortex formation length as suggested by Griffin [11].
Similar peak is observed in the case of transverse r.m.s. velocity distribution along
the wake center line. It can be noted from Figs. 16(a) and (b) that the magnitude of
the transverse fluctuations is roughly two times that of the streamwise fluctuations at

(a) (b)
Figure 16: (a) Distribution of the streamwise r.m.s. velocities along the wake centerline, (b) Distribution of
the transverse r.m.s. velocities along the wake centerline.
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almost every position due to the way that vortices are formed, typical of bluff body
wakes. The maximum r.m.s. fluctuations along the wake center line for the fine mesh
is in good agreement with the experiment results. The maximum streamwise r.m.s. ve-
locity (u’/U)max for the coarse mesh is slightly less than the experiment results. The
maximum values were over predicted by Konstantinidis et al. [15]. The results agree
very well with the ones published by Norberg [30] at a slightly higher Reynolds num-
ber ReD = 3000.

5 Conclusions

Uniform flow past a circular cylinder at a Reynolds number of ReD = 2580 was sim-
ulated using the spectral difference method. The predictions for the mean velocities
and Reynolds stresses agree well with the experiment results obtained by Konstanidis
et al. [15, 16]. The second order results are inaccurate but higher order (=3) of spa-
tial accuracy gives excellent results. The length of the recirculation bubble and vortex
formation length were very well predicted. The effect of mesh refinement was also
studied by considering both coarse and fine meshes. Higher order results on a finer
mesh showed the best agreement with experimental data. The wake characteristics
were very well captured with the third order SD method, demonstrating its effective-
ness and potential in handling bluff body problems and vortex dominated flows.
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