
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 2, No. 5, pp. 677-684

DOI: 10.4208/aamm.10-10S10
October 2010

Lattice Boltzmann Method for Thermocapillary Flows

Lin Zheng1, Zhaoli Guo1,∗, Baochang Shi1 and Chuguang Zheng1

1 National Laboratory of Coal Combustion, Huazhong University of Science and
Technology, Wuhan 430074, China

Received 5 March 2010; Accepted (in revised version) 3 April 2010
Available online 13 July 2010

Abstract. In this paper, we apply a recently proposed thermal axisymmetric lat-
tice Boltzmann model to the thermocapillary driven flow in a cylindrical container.
The temperature profiles and isothermal lines at the free surface with Prandtl (Pr)
number fixed at 0.01 and Marangoni (Ma) number varying from 10 to 500 are mea-
sured and compared with the previous numerical results. In addition, we also give
the numerical results for different Ma numbers at Pr=1.0. It is shown that present
results greed well with those reported in previous studies.
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1 Introduction

Surface tension gradient at a free surface could induce a viscous driving flow [1–3].
This phenomena (usually called thermocapillary convection) is often encountered in
many industrial processes. The subject of thermocapillary convection has been an
interesting area for the science and engineering due to its complex flow filed and
practical applications such as crystal growth melts and the convective flows in the
microgravity environment.

In some special cases, e.g., thermocapillary convection in an axisymmetric con-
figuration, such flows can be regarded as a quasi-two-dimensional problems. Many
traditional methods such as finite difference method, finite volume method, vorticity-
stream method, SIMPLE method have been applied to this field. It should be men-
tioned that, in the last two decades, lattice Boltzmann equation (LBE) has been rapidly
developed as an effective and promising numerical algorithm for computational fluid
dynamics [4–6], which has also been applied to axisymmetric flows [7–12].

Thermocapillary flow induced by the temperature gradient in the rectangular cav-
ity has been widely studied by traditional methods and LBE. However, to the authors’
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acknowledge, there are many attempts to apply the traditional methods to the ther-
mocapillary flow in an axisymmetric cylindrical cavity, but it’s quite rare for LBE.
Therefore, in present paper, we will apply a recent thermal axisymmetric model [11]
to the thermocapillary driven flow in a cylindrical container by a motionless surface
with constant wall temperature and straight, undeformable lateral free surface bound-
ary with a steady heat flux. Numerical simulations have been conducted at different
Pr and Ma numbers and the numerical results indicate that present results agree well
with other existing work [1].

The outline of the paper is as follows: in Section 2 we give a brief description of
the physical problem. In Section 3 the axisymmetric thermal LBE model is introduced.
Then we demonstrate some numerical simulations to validate the results in Section 4
and the conclusions are drawn in Section 5.

2 Physical problem description
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Figure 1: Sketch of the cylinder flow.

The physical configuration in Fig. 1 is axisymmetric, limited by motionless surface
with constant wall temperature. The lateral boundary is the free surface which is
taken to be straight and undeformable. The ratio of the radius and the height is fixed
at 1/2, the gravity force and the azimuthal velocity is ignored in this case. Under
these conditions, the liquid motion and temperature distribution for this problem are
governed by the following dimensionless equations
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where ur and uz are radial and axial velocity components, p is the pressure and T is
temperature, Pr=ν/α is the Prandtl number with ν being viscosity coefficient and α
the thermal diffusion coefficient, and
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The boundary conditions for this problem are the same as [1], which given as




z = ±1 : ur = uz = 0, T = 0,

r = 1 : ur = 0, ∂uz
∂r = −Ma ∂T

∂z f (z), ∂T
∂r = q(z),

r = 0 : ur = 0, ∂uz
∂r = 0, ∂T

∂r = 0,

where Ma is the Marangoni number, f (z) is the regularizing function and q(z) is heat
flux. In the following study, these two function are given as

f (z) = (1− z2)2, and q(z) = f (z).

3 Thermal axisymmetric lattice Boltzmann model

In this paper, the two dimensional nine discrete velocities (D2Q9) and D2Q4 LBE
model are employed to simulating the velocity and temperature fields respectively.
The evolution equations for the axial, radial velocity, and the temperature field can be
respectively written as [9, 11]

fi(x + ciδt, t + δt)− fi(x, t) = − 1
τf

(
fi(x, t)− f (eq)

i (x, t)
)

+ δt
(

1− 1
2τf

)
Fi(x, t),

(3.1a)

gk(x + ckδt, t + δt)− gk(x, t) = − 1
τg

(
gk(x, t)− g(eq)

k (x, t)
)

+ δtGk(x, t), (3.1b)

where fi and gk are the density and temperature distribution functions, respectively. τf
and τg are respectively the relaxation times for the hydrodynamic and thermodynamic

fields. δt is the streaming time, the equilibrium functions f (eq)
i and g(eq)

k are given
as [9, 11]
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and the source terms are respectively given as

Fi =
(ci − u) · a

RT
f (eq)
i , Gk = ω̄k[ck · b], (3.3)

where ω0=4/9, ω1−4=1/9 and ω5−8=1/36 are the weight coefficients,

a =
(

ar =
(1− 2τf ur/r)RT

r
, az = 0

)

is the acceleration, ω̄k=1/4 is the corresponding weight coefficient,

b =
(
br = (1− 1/2τg)T, bz = 0

)
,

and csT=
√

3RT/2 is the model parameter.
The macroscopic density ρ, the axial velocity uz, radial velocity ur, and tempera-

ture T can be computed by the conservation laws of mass, momentum and energy,
which can be defined by the moments of the distribution functions as

ρ =
1
r ∑

i
fi, (3.4a)
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r

r2 + (τf − 0.5)δt2RTδαr
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2
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}
, (3.4b)

T =
1
r ∑

k
hk. (3.4c)

In this model, the energy equation is solved by a simple LBE without any velocity and
temperature gradients in the source term, which could be easily realized. Through
the Chapman-Enskog expansion, the correct axisymmetric hydrodynamic equations
can be recovered by Eqs. (3.1a)-(3.3). The detailed derivation of these macroscopic
equations can be found in [9, 11].

4 Numerical simulations

In this section, we applied the above mentioned axisymmetric thermal model to ther-
mocapillary driven flow. In our simulation, we employed a 100× 200 square meshes,
and the symmetry boundary condition and non-equilibrium-extrapolation boundary
treatment [13] are applied to symmetry axis and other boundaries respectively.

We first consider the case with Ma varying from 10 to 500 at Pr=0.01. To validate
the model, the isothermal lines for Ma=10 is included in Fig. 2 together with the results
of [1]. It is observed that two phenomena are in good agreement for this case. For the
quantitative comparison, we compared the temperature distribution at the free surface
in Fig. 3 with Ma=10, 100 and 500. It is found that the numerical results agreed well
with the work of [1].
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Figure 2: Isothermal lines at Pr=0.01, Ma=10. Left is from [1], right is the LBE results.
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Figure 3: Temperature profiles at Pr=0.01 with Ma=10, 100, 500. Symbols are from [1], lines are the LBE
results.

In Figs. 4 and 5, the streamlines and isothermal lines for Ma=10, 100 and 500 are
also included. It is shown that the temperature field is much more affected by the
velocity field as the Ma number increases. From Figs. 4 and 5, we observed that the
vortexes are confined to the free surface, and the temperature field starts from conduc-
tion to convection as Ma number becomes large. These phenomena are also captured
in [1].
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Figure 4: Streamlines at Pr=0.01. Left to right: Ma=10 ,100 and 500.
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Figure 5: Isothermal lines at Pr=0.01. Left to right: Ma=100 and 500.

Next, we increase the Prandtl number to 1 with Ma number varying from 500 to
10000. The streamlines and isothermal lines for Ma=500, 5000 and 10000 are shown
in Figs. 6 and 7. From the figures, It is shown that the contours of streamlines and
isotherms are symmetric with respect to the mid-height plane at z=0 as the same phe-
nomena as Pr=0.01 with Ma=10-500. In Figs. 5 and 7, the temperature field becomes
more deformable as Prandtl number increases. Similar phenomena appear as Pr=0.01,
the temperature field becomes more convective as the Ma number increases. In Fig. 8,
the velocity distribution at free surface are plotted at the Pr=0.01 and 1 with different
Ma numbers. As can be seen from Figs. 5 and 7, when the Ma number becomes large,
the temperature become more deformable which also effects the velocity field, and
the value of velocity is varying largely at the free surface as the Ma increased. These
phenomena are also observed in [1].
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Figure 6: Streamlines at Pr=1. Left to right: Ma=500, 5000 and 10000.
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Figure 7: Isothermal lines at Pr=1. Left to right: Ma=500, 5000 and 10000.
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Figure 8: Velocity distribution at the free surface. Left to right: Pr=0.01 and 1.

5 Conclusions

In this paper, we have applied a thermal axisymmetric LBE model for axisymmetric
thermocapillary driven flow with a lateral heated cylinder for different Prandtl and
Marangoni numbers. In these cases, the temperature field is simulated by a simple
D2Q4 LBE model without any velocity and temperature gradients in the source term.
The temperature profiles and isothermal lines at the free surface with Prandtl (Pr)
number fixed at 0.01 and Marangoni (Ma) number varying from 10 to 500 are mea-
sured, and the numerical results agree well with previous numerical results.

The contours of streamlines and isotherms are symmetric with respect to the mid-
height plane at z=0. In addition, we also give the numerical results for different Ma
numbers at Pr=1.0. It is shown that for low values of Ma, the isotherms are slightly
deformed, and become much more deformed as Ma increased. These similar phenom-
ena have also been observed in previous studies.
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