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Abstract. The paper introduces the gas-kinetic scheme for three-dimensional (3D)
flow simulation. First, under a unified coordinate transformation, the 3D gas-
kinetic BGK equation is transformed into a computational space with arbitrary
mesh moving velocity. Second, based on the Chapman-Enskog expansion of the
kinetic equation, a local solution of gas distribution function is constructed and
used in a finite volume scheme. As a result, a Navier-Stokes flow solver is devel-
oped for the low speed flow computation with dynamical mesh movement. Several
test cases are used to validate the 3D gas-kinetic method. The first example is a 3D
cavity flow with up-moving boundary at Reynolds number 3200, where the peri-
odic solutions are compared with the experimental measurements. Then, the flow
evolution inside a rotating 3D cavity is simulated with the moving mesh method,
where the solution differences between 2D and 3D simulation are explicitly pre-
sented. Finally, the scheme is applied to the falling plate study, where the unsteady
plate tumbling motion inside water tank has been studied and compared with the
experimental measurements.

AMS subject classifications: 76D05
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1 Introduction

There are two different coordinate system for description of fluid motion: the Eule-
rian one describes fluid motion at fixed locations, and the Lagrangian one follows
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fluid elements. Considerable progress has been made over the past two decades on
developing computational fluid dynamics (CFD) methods based on the above two
coordinates system. As the unsteady flow calculations with moving boundaries and
interfaces become important, such as found in the flutter simulation of wings, turbo-
machinery blades, and multiphase flow, the development of fast and reliable methods
for dynamically deforming computational domain is required [16].

There are many moving mesh methods in the literature. One example is the static
mesh movement method, where the new mesh is generated at each time step accord-
ing to certain monitor function and the flow variables are interpolated into the newly
generated mesh. Then, the flow update through the cell interface fluxes is done on a
static mesh. In order to increase the accuracy, the mesh can be properly adapted [5,8].
Another example is the dynamical one, where the mesh is moving according to cer-
tain velocity. At the same time, the fluid variables are updated inside each moving
control volume within a time step. The second method is mostly used to track the
interface location [14], to account for changes in the interface topology, and to resolve
small-scale structure at singular point. The most famous one for this dynamical mesh
moving method is the Lagrangian method. Through the research in the past decades,
it has been well recognized that the Lagrangian method is always associated with the
mesh tangling once the fluid velocity is used as the mesh moving velocity. In order to
avoid severe mesh distortion in the Lagrangian method, many techniques have been
developed. The widely used one at present time is the Arbitrary Lagrangian-Eulerian
(ALE) technique, which uses continuous re-zoning and re-mapping from Lagrangian
to the Eulerian grid. This process requires interpolations of geometry and flow vari-
ables once the computational grid is getting too distorted [13].

Recently, a successful moving mesh method for inviscid Euler equations has been
developed by Hui et al. on the target of crisp capturing of slip line [9]. In this uni-
fied coordinate method, with a prescribed grid velocity, the inviscid flow equations
are written in a conservative form in the computational domain (λ, ξ, η), as well as
the geometric conservation laws which control the mesh deformation. The most dis-
tinguishable merit in the unified coordinate method [9] is that the fluid equations and
geometric evolution equations are written in a combined system, which is different
from the fluid equations alone [5, 10]. Furthermore, due to the coupling of the fluid
and geometric system, for the first time the multidimensional Lagrangian gas dynamic
equations have been written in a conservative form. As a consequence, theoretically it
has been shown that the multidimensional Lagrangian system is only weakly hyper-
bolic. The distinguishable achievement of the unified coordinate method is that the
numerical diffusion across the slip line can be reduced to a minimum level with the
crisp capturing of contact discontinuity. However, in the complicated flow movement,
in order to avoid the severe mesh distortion, the constraints, such as keeping mesh or-
thogonality and grid angles, have to be used in the unified coordinate system. As
a result, in most cases, the constraint automatically enforces the mesh velocity being
zero, such as in the case of gas implosion inside a square. Otherwise, for flow prob-
lems with circulations, any mesh movement method, once the grid speed is coupled
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with the fluid velocity, will distort the mesh eventually and stop the computation.
Based on the gas-kinetic Boltzmann equation, the Navier-Stokes equations can be

derived using the Chapman-Enskog expansion [4]. In the gas-kinetic representation,
all macroscopic flow variables are the moments of a single particle distribution func-
tion and the particle movement is basically the linear transport and collision. The
gas-kinetic BGK scheme has been well developed for the compressible Navier-Stokes
solutions [19], and the scheme is especially accurate for the supersonic viscous and
heat conducting flow [18, 20]. In the gas-kinetic approach, the gas distribution func-
tion is a scalar function, and the particles are moving straightly in all inertia moving
reference of frame. Therefore, with the unified coordinate transformation with mesh
velocity, the kinetic equation can still keep a simple form. As a continuation of our pre-
vious work for the 2D unified coordinate method [12], in this paper a 3D gas-kinetic
moving mesh method will be developed. Since the inviscid and viscous fluxes are
included simultaneously in the gas-kinetic formulation, the Navier-Stokes fluxes are
obtained automatically across the moving cell interface. The focus of this paper is
not on the design of mesh moving velocity, but about the construction of gas-kinetic
scheme once the mesh moving velocity is given.

This paper is organized as the following. Section 2 is about the mathematical for-
mulation of the 3D gas-kinetic BGK model under the unified coordinate transforma-
tion and the construction of the gas-kinetic scheme. Section 3 is about the numerical
experiments. The last section is the conclusions.

2 A 3D gas-kinetic BGK scheme with moving mesh

2.1 Gas-kinetic BGK model under unified coordinate transformation

The BGK model of the approximate Boltzmann equation in three- dimensional space
can be written as [3]

ft + u fx + v fy + w fz =
g − f

τ
, (2.1)

where f is the gas distribution function and g is the equilibrium state approached
by f . Both f and g are functions of space (x, y, z), time t, particle velocity (u, v, w)
and internal variable ς. The particle collision time τ is related to the viscosity and
heat conduction coefficients. The unified coordinate transformation, i.e., presented
in [10, 11], connects the physical domain (t, x, y, z) with the computational domain
(λ, ξ, η, ζ) through 

dt = dλ,
dx = Ugdλ + Adξ + Ldη + Odζ,
dy = Vgdλ + Bdξ + Mdη + Pdζ,
dz = Wgdλ + Cdξ + Ndη + Qdζ,

(2.2)



C. Q. Jin, K. Xu and S. Z. Chen / Adv. Appl. Math. Mech., 6 (2010), pp. 746-762 749

where (Ug, Vg, Wg) is the grid velocity and (A, B, C, L, M, N, O, P, Q), which is defined
by  A L P

B M Q
C N R

 =

 xξ xη xζ

yξ yη yζ

zξ zη zζ

 .

With the above transformation (2.2), the 3D gas-kinetic BGK Eq. (2.1) becomes

∂

∂λ
(∆ f ) +

∂

∂ξ

{[
(u − Ug)(MR − QN) + (v − Vg)(PN − LR)

+ (w − Wg)(LQ − PM)
]

f
}
+

∂

∂η

{[
(u − Ug)(QC − BR)

+ (v − Vg)(AR − PC) + (w − Wg)(PB − AQ)
]

f
}

+
∂

∂ζ

{[
(u − Ug)(BN − MC) + (v − Vg)(LC − AN)

+ (w − Wg)(AM − LB)
]

f
}
=

g − f
τ

∆, (2.3)

where ∆ is the Jacobian of the transformation (2.2) and is defined by

∆ = det

 A L P
B M Q
C N R

 = AMR − AQN − BLR + BPN + CLQ − CPM.

The inverse transformation is given by
dλ
dξ
dη
dζ

 =


1 0 0 0
ξt ξx ξy ξz
ηt ηx ηy ηz
ζt ζx ζy ζz




dt
dx
dy
dz

 , (2.4)

where
1 0 0 0
ξt ξx ξy ξz
ηt ηx ηy ηz
ζt ζx ζy ζz

 =
1
∆


∆

−[Ug(MR − QN) + Vg(PN − LR) + Wg(LQ − PM)]
−[Ug(QC − BR) + Vg(AR − PC) + Wg(PB − AQ)]
−[Ug(MC − BN) + Vg(AN − LC) + Wg(LB − AM)]

0 0 0
MR − QN PN − LR LQ − PM
QC − BR AR − PC PB − AQ
BN − MC LC − AN AM − LB

 .

For an equilibrium flow with distribution f = g, by taking the conservative moments

ϕ =
(

1, u, v, w,
1
2
(
u2 + v2 + w2 + ζ2))T

,
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to Eq. (2.3) and using the above inverse matrix, the corresponding Euler equations
under the unified transformation in the Eulerian space can be obtained

∂E
∂λ

+
∂F
∂ξ

+
∂G
∂η

+
∂H
∂ζ

= 0, (2.5)

where

E =


ρ∆

ρ∆U
ρ∆V
ρ∆W
ρ∆E

 , F =


ρ(I − Ig)

ρU(I − Ig) + p(MR − QN)
ρV(I − Ig) + p(PN − LR)
ρW(I − Ig) + p(LQ − PM)

ρE(I − Ig) + p[Ug(MR − QN)
+Vg(PN − LR) + Wg(LQ − PM)

 ,

G =


ρ(J − Jg)

ρU(J − Jg) + p(QC − BR)
ρV(J − Jg) + p(AR − PC)
ρW(J − Jg) + p(PB − AQ)

ρE(J − Jg) + p[Ug(QC − BR)
+Vg(AR − PC) + Wg(PB − AQ)]

 ,

H =


ρ(K − Kg)

ρU(K − Kg) + p(BN − MC)
ρV(K − Kg) + p(LC − AN)
ρW(K − Kg) + p(AM − LB)

ρE(K − Kg) + p[Ug(MC − BN)
+Vg(AN − LC) + Wg(LB − AM)]

 ,

where U, V and W are fluid velocity in the x-, y- and z-directions, and

I = U(MR − QN) + V(PN − LR) + W(LQ − PM),
J = U(QC − BR) + V(AR − PC) + W(PB − AQ),
K = U(MC − BN) + V(AN − LC) + W(LB − AM),
Ig = Ug(MR − QN) + Vg(PN − LR) + Wg(LQ − PM),
Jg = Ug(QC − BR) + Vg(AR − PC) + Wg(PB − AQ),
Kg = Ug(MC − BN) + Vg(AN − LC) + Wg(LB − AM).

For the viscous and heat conducting flow, the Chapman-Enskog expansion of Eq. (2.3)
gives

f = g − τ

∆

{∂∆g
∂λ

+
∂

∂ξ

{[
(u − Ug)(MR − QN) + (v − Vg)(PN − LR)

+ (w − Wg)(LQ − PM)
]
g
}
+

∂

∂η

{[
(u − Ug)(QC − BR)

+ (v − Vg)(AR − PC) + (w − Wg)(PB − AQ)
]
g
}

+
∂

∂ζ

{[
(u − Ug)(BN − MC) + (v − Vg)(LC − AN)

+ (w − Wg)(AM − LB)
]
g
}}

.
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Taking moments ϕ again to Eq. (2.3) with the above gas distribution function, the
Navier-Stokes equations with moving meshes can be obtained. Numerically, instead
of solving the complicated viscous governing equations, which are similar to those
presented in [5], we are going to develop a gas-kinetic scheme based on Eq. (2.3).

2.2 A 3D BGK-NS scheme in a moving mesh system

In this section, we are going to present a 3D gas-kinetic BGK scheme for the viscous
solution. For simplification, Eq. (2.3) can be rewritten as

∂

∂λ
(∆ f ) +

∂

∂ξ
(Sξ ū f ) +

∂

∂η
(Sη v̄ f ) +

∂

∂ζ
(Sζw̄ f ) =

g − f
τ

∆, (2.6)

where ∆ is basically a 3D cell volume, Sξ , Sη and Sζ are the areas of the faces of the
small volume with coordinates ξ = C1, η = C2 and ζ = C3 respectively, which have
the following forms

Sξ =
(
(MR − QN)2 + (PN − LR)2 + (LQ − PM)2) 1

2 ,

Sη =
(
(QC − BR)2 + (AR − PC)2 + (PB − AQ)2) 1

2 ,

Sζ =
(
(BN − MC)2 + (LC − AN)2 + (AM − LB)2) 1

2 .

Based on the geometrical variables, we can define the normal direction of each inter-
faces of the control volume, nξ , nη and nζ by

nξ =
∇ξ

|∇ξ| =
(MR − QN, PN − LR, LQ − PM)

Sξ
,

nη =
∇η

|∇η| =
(QC − BR, AR − PC, PB − AQ)

Sη
,

nζ =
∇ζ

|∇ζ| =
(BN − MC, LC − AN, AM − LB)

Sζ
.

Therefore, the particle velocity ū, v̄, w̄ in the local coordinates can be expressed as

ū = nξ · (u − Ug, v − Vg, w − Wg),
v̄ = nη · (u − Ug, v − Vg, w − Wg),
w̄ = nζ · (u − Ug, v − Vg, w − Wg).

Obviously, nξ , nη , and nζ are perpendicular to the moving planes ξ = C1, η = C2 and
ζ = C3, respectively. Then, Eq. (2.6) becomes

∂

∂λ
( f ) +

∂

∂x̃
(ū f ) +

∂

∂ỹ
(v̄ f ) +

∂

∂z̃
(w̄ f ) =

g − f
τ

, (2.7)
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where x̃, ỹ, and z̃ are the physical length in the directions along ξ = C1, η = C2 and
ζ = C3. This is the basic equation to be solved in the construction of the local solution f
at the point ξ = C1, η = C2 and ζ = C3. Based on the local solution, the corresponding
fluxes F , G, and H in different directions can be obtained. In the following, we will
present the numerical procedure for computing F. At the same time, both G and H
can be obtained similarly.

In order to evaluate the numerical fluxes F across a moving plane ξ = C1 with grid
velocity being q = (Ug, Vg, Wg), we project velocity vector q on the directions normal
to the plane ξ = C1, and tangential to it. Then, we can define orthogonal unit vectors
i, j, k, with i being normal to the moving coordinate plane ξ = C1, i.e.,

i ≡ (i1, i2, i3) =
∇ξ

|∇ξ| = nξ ,

and j and k tangential to it. For example, j can be chosen arbitrarily on the plane
ξ = constant, namely,

j ≡ (j1, j2, j3).

Therefore, k can be defined by

k ≡ (k1, k2, k3) = i × j.

Then, the particle velocity (u − Ug, v − Vg, w − Wg) relative to a moving plane can be
decomposed into the normal ũ, and tangential ṽ and w̃ velocities as well, namely

ũ = (u − Ug)i1 + (v − Vg)i2 + (w − Wg)i3,
ṽ = (u − Ug)j1 + (v − Vg)j2 + (w − Wg)j3,
w̃ = (u − Ug)k1 + (v − Vg)k2 + (w − Wg)k3.

(2.8)

The averaged macroscopic fluid velocity components (Ũ, Ṽ, W̃) in (i, j, k) directions
relative to the moving interface can be obtained from the fluid velocity (U, V, W) of
the inertia common (x, y, z) coordinates through the same transformation

Ũ = (U − Ug)i1 + (V − Vg)i2 + (W − Wg)i3,
Ṽ = (U − Ug)j1 + (V − Vg)j2 + (W − Wg)j3,
W̃ = (U − Ug)k1 + (V − Vg)k2 + (W − Wg)k3.

In the local moving frame of reference on the surface ξ = C1, the Maxwellian distri-
bution has the form

g = ρ
( λ

π

) K+3
2

exp
{
− λ

[
(ũ − Ũ)2 + (ṽ − Ṽ)2 + (w̃ − W̃)2 + ς2]}.

The general solution f of the Eq. (2.7) at a moving plane ξ = ξi+1/2 and time t is

f (ξi+ 1
2
, ηj, ζk, t, ũ, ṽ, w̃, ς) =

1
τ

∫ t

0
g(x̃′, ỹ′, z̃′, t′, ũ, ṽ, w̃, ζ)e−

t−t′
τ dt′

+ e−
t
τ f0(x̃i+ 1

2
− ũt, ỹj − ṽt, z̃k − w̃t), (2.9)
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where
(x̃′, ỹ′, z̃′) = (x̃i+ 1

2
, ỹj, z̃k)− (ũ, ṽ, w̃)(t − t′),

is the trajectory of a particle motion relative to the moving plane and f0 is the ini-
tial gas distribution function f at the beginning of each time step (t = 0). With the
assumption of the discontinuous distribution function f0, the scheme based on the
above solution will be identical to the multi-dimensional BGK-NS method [20], even
though the coordinate (λ, x̃, ỹ, z̃) is moving relative to the stationary system (t, x, y, z).
In the absence of discontinuities and shocks, f can be simplified to

f = g0[1 − τ(au + bv + cw) + (t − τ)A], (2.10)

where g0 is a local Maxwellian distribution function located at (ξi+1/2, ηj, ζk) and
a, b, c, A are related to the derivatives of a Maxwellian in space and time, which can be
determined in the same way as that in [21].

Numerically, Eq. (2.7) is basically the same equation as the one we have solved
before, where ũ, ṽ, w̃ are the particle velocity, and Ũ, Ṽ, W̃ are the macroscopic ve-
locity in the i, j, and k directions. The standard BGK-NS method [20] can be
used here to solve Eq. (2.7) to evaluate the time-dependent gas distribution function
f (ξi+1/2, ηj, ζk, t, ũ, ṽ, w̃) at the cell interface ξ = ξi+1/2. The detailed formulation of
the multi-dimensional gas-kinetic BGK-NS scheme for the Navier-Stokes solutions is
given in [20]. In this paper, we are only interested in low speed flow computations,
such as the incompressible ones. For these flows, we can ignore the energy equations.
Therefore, standing on the moving plane the mass and momentum fluxes can be ex-
plicitly obtained

Fρ

Fρũ
Fρṽ
Fρw̃


i+ 1

2 ,j,k

=
∫

ũ


1
ũ
ṽ
w̃

 f (ξi+ 1
2
, ηj, ζk, t, ũ, ṽ, w̃)dũdṽdw̃. (2.11)

Since different numerical cells can move with different mesh velocity, in order to up-
date the flow variables inside each time-dependent computational cell we need to
update the conservative variables relative to the common inertia frame of reference,
i.e., the so-called Eulerian space. Therefore, we need to transfer the fluxes in Eq. (2.11)
in the moving cell interface into the fluxes for the mass and momentum transport in
the common inertia frame of reference. In other words, the above obtained gas distri-
bution function f (ξi+1/2, ηj, t, ũ, ṽ, w̃) and its mass flux across the moving cell interface
ũ f (ξi+1/2, ηj, t, ũ, ṽ, w̃) will carry the mass and momentum (1, u, v, w) defined in the in-
ertia frame of reference. So, the time-dependent numerical flux in the Eulerian space
in the n⃗ direction across the moving cell interface ξ = C1 should be calculated as

Fρ

Fρu
Fρv
Fρw


i+ 1

2 ,j,k

=
∫

Sξ ũ


1
u
v
w

 f (ξi+, ηj, ζk, t, ũ, ṽ, w̃)dΞ. (2.12)
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In order to evaluate the above integrals, we need to use the transformation between
the particle velocities (ũ, ṽ, w̃) and (u, v, w) defined in different frame of reference.
Based on the transformation (2.8), the relation between (u, v, w) and (ũ, ṽ, w̃) are

u = Ug + ũ(j2k3 − k2 j3)− ṽ(i2k3 − k2i3) + w̃(i2 j3 − j2i3),
v = Vg − ũ(j1k3 − k1 j3) + ṽ(i1k3 − k1i3)− w̃(i1 j3 − j1i3),
w = Wg + ũ(j1k2 − k1 j2)− ṽ(i1k2 − k1i2) + w̃(i1 j2 − j1i2).

(2.13)

Therefore, Eq. (2.11) becomes
Fρ

Fρu
Fρv
Fρw


i+ 1

2 ,j,k

= Sξ


Fρ

(j2k3 − k2 j3)Fρũ − (i2k3 − k2i3)Fρṽ + (i2 j3 − j2i3)Fρw̃ + UgFρ

−(j1k3 − k1 j3)Fρũ + (i1k3 − k1i3)Fρṽ − (i1 j3 − j1i3)Fρw̃ + VgFρ

(j1k2 − k1 j2)Fρũ − (i1k2 − k1i2)Fρṽ + (i1 j2 − j1i2)Fρw̃ + WgFρ

 ,

(2.14)

where (Fρ,Fρũ,Fρṽ,Fρw̃) are given in Eq. (2.11). So, the fluxes across the moving
cell interface in the Eulerian space are just linear combinations of the fluxes in the
moving frame of reference due to their linear transformations. Similarly, the fluxes at
the moving interfaces η = C2 and ζ = C3, i.e., G and H can be constructed similarly.

With the above fluxes, the flow variables inside each moving control volume can
be updated by

Qn+1
i,j,k = Qn

i,j,k+
1

∆ξ

∫ tn+1

tn

(
Fi− 1

2 ,j,k − Fi+ 1
2 ,j,k

)
dt +

1
∆η

∫ tn+1

tn

(
Gi,j− 1

2 ,k − Gi,j+ 1
2 ,k
)
dt

+
1

∆ζ

∫ tn+1

tn

(
Hi,j,k− 1

2
− Hi,j,k+ 1

2

)
dt, (2.15)

where
Q = (ρ∆, ρ∆U, ρ∆V, ρ∆W)T, F = (Fρ,Fρu,Fρv,Fρw)T,

are given in Eq. (2.14), G fluxes in the η-direction and H in the ζ-direction.

3 Numerical experiments

In this section, we are going to test the 3D gas-kinetic scheme in a few well-defined
cases, from the rotating cavity flow to freely falling plate inside a water tank. In some
cases, the experiment measurements are available.

Case 1: Three-dimensional cavity flow

For two-dimensional cavity flows, extensive research has been conducted using
traditional different schemes. The fundamental characteristic of the 2-D cavity flow is
the emergence of a large primary vortex in the center and two secondary vortices in
the lower corners. The values of the stream function and the locations of the centers
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Figure 1: Geometry of the three-dimensional cavity.

of these vortices as a function of Reynolds numbers have been well studied. The gas-
kinetic scheme and the lattice Boltzmann simulation of the 2-D driven cavity have
been studied [7, 21] for a wide range of Reynolds numbers.

In [7], the 3D spatial distributions of the velocity, pressure and vorticity fields were
carefully studied. An error analysis of the compressibility effect from the model was
carried out. Here, for the first time using the gas-kinetic scheme, a 3D cubic cav-
ity flow is simulated at Re=3, 200 with 40 × 40 × 40 stretched structure grids. Fig. 1
shows the schematic configuration for the simulation. Flows at this Reynolds number
had been extensively studied earlier, including the lattice Boltzmann method [6], the
finite-difference simulation and the experimental work [15]. Flow structures, includ-
ing the velocity fields in different planes, were analyzed using the current method.
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Figure 2: The mean velocity profiles (left), U and V, in the symmetry plane along the vertical and the
horizontal centerlines at Re=3200. The solid line is the current 3D simulation, the dotted line is the 2D
simulation, and the circles represent experimental results [15]. The root-mean-square (rms) velocity profiles
(right), i.e., Urms and Vrms, are obtained in the symmetry plane along vertical and horizontal centerlines.
The solid lines are the current 3D simulation, and upward triangles and downward triangles are experimental
measurements [15].
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Fig. 2 displays the mean velocity (left) and the root-mean-square (rms) velocity (right)
profiles in the symmetry plane along the vertical and the horizontal centerlines, from
the current 3D calculation. For a comparison, a 3-D gas-kinetic scheme simulations
and the experimental measurements are also presented. The agreement between them
shows that the 3D gas-kinetic scheme is capable of simulating complex 3D unsteady
flows.

Case 2: The rotating flow inside a 3D cavity
This is the study of the flow inside a cubic box which rotates along an axis in the z-

direction. The schematic of the 3D rotating cavity is shown in Fig. 3. The uniform grid
is adopted. Initially, the flow inside the box is stationary and has zero fluid velocity.
With the start of the rotation of the box at t = 0 with an angular velocity ω = 1.0,
the fluid starts to move first from the six boundary surfaces due to the viscous stress

Figure 3: The schematic of three dimensional rotating cavity along z-axis ω = ωxx + ωyy + ωzz, where
ωx = ωy = 0 and ωz = 1.

force from the moving boundary. At times t = 2π and 4π, the x−velocity profile at
the symmetric plane z = 0 along y-axis is shown in Fig. 4. In the same figure, in order
to compare the differences between the 2D and 3D solutions due to the additional
top and bottom walls in the 3D case, the velocity profile for the 2D calculations is also
presented in this figure. As shown in the figure, due to the top and bottom walls of the
box, the velocity change in 3D case is larger than that in the 2D case. The streamlines
for the (U, V) velocity components inside the symmetric plane z = 0 are shown in
Fig. 5 for the two times t = 2π and 4π. Inside the plane y = 0, the corresponding
streamlines for the velocity components (U, W) are shown in Fig. 6. The unsteady
complicated flow structures are presented.

Case 3: Falling plate simulation
In order to test the accuracy of the 3D code in the capturing of unsteady solu-

tion, we are going to simulate the experiment conducted by Andersen, Persavento
and Wang [1], where a small rectangular aluminum plate was falling freely in a wa-
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Figure 4: Velocity profile U at Time=2π (left) and Time=4π (right), in the symmetry plane along the
vertical centerline, with rotating speed ω = ωxx + ωyy + ωzz, where ωx = ωy = 0 and ωz = 1. The solid
line is the current 3D simulation, and the dotted line is the current 2D simulation.

ter tank. In the experiments, for the rectangular plate many physical quantities were
measured, such as the plate trajectory and falling speed. The fluid force and torque
on the plate were calculated according to the experimental data. Due to the limitation
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Figure 5: Streamline of velocity (U,V) at Time=2π (left) and Time=4π (right), in the symmetry plane,
with rotating speed ω = ωxx + ωyy + ωzz, where ωx = ωy = 0 and ωz = 1.
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Figure 7: Plate trajectory in the whole simulation.

of the numerical method used in [1], only a 2D simulation for an elliptic plate was
presented. Since the experiment is basically a 2D flow, in our study we are going to
use the 3D code with a periodic homogeneous flow condition in the 3rd direction in
order to recover the 2D experiment.

In our computation, a rectangular cross-section is chosen according to the experi-
mental data [1]. A stretched structure mesh with the mesh size 217 × 51 is generated
around the rectangular plate and an additional 3 mesh points are used in the 3rd direc-
tion. The inner boundary of the computational domain is the falling plate surface, and
the outer boundary is a cylindrical circle with a radius of 10 times of long axis of the
plate. According to the experiments, the thickness-to-length ratio of the cross-section
is β = 1/8, with the plate thickness h = 8.1 × 10−4 m and length l = 6.48 × 10−3

m. The density of fluid is ρ f = 1000 kg/m3 with a dynamical viscosity coefficient
µ = 8.9× 10−4 kg/m· s. The density of aluminum used in our calculation is ρs = 2735
kg/m3, which is slightly different from the stated value ρs = 2700 kg/m3 used in [1].
With the above parameters, the dimensionless moment of inertia of the plate becomes

I∗ =
8

3π
F2

r

[
1 +

(h
l

) 1
2
]
= 0.2974,

Figure 8: Plate trajectory in the tumbling parts, where two periodic motion can be clearly observed.
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Figure 9: Plate trajectory with tumbling motion only for the plates with densities ρs = 8900 kg/m3 and

ρs = 8800 kg/m3.
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Figure 10: Vortex distribution around the
moving plate.
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Figure 11: Detailed vortex field around the
moving plate.

where the Froude number is defined [2]

Fr =
(ρsh

ρ f l

) 1
2
.

The plate is released from rest at an angle of 45o with respect to the horizontal level.
In the simulation, the mesh around the plate is moving with the plate together. In

X Y

Z

DENS

1004
1002
1000
998
996
994
992
990
988
986
984
982
980
978
976

Figure 12: Detailed pressure distributions around the moving plate.
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Table 1: Experimental and numerical falling plate averaged translational and angular velocities.

ρs[kg· m−3] I∗ Uy [m/s] Uz [m/s] ω[rad/s]
Experiment 2700 0.29 0.159 ± 0.003 −0.115 ± 0.005 14.5 ± 0.3

Computation 2735 0.2947 0.1596 −0.1158 14.26

the inertia reference of frame, the Cartesian x-axis is defined as the plate span-wise
direction, the y-axis is on the horizontal direction and the z-axis is on the vertical
direction.

As showed in Fig. 7, the trajectory is not a very stable one. The reason for this
phenomenon is that the experiment set-up makes the current plate motion in the tran-
sitional regime, where both fluttering and tumbling motion exist. For a rectangular
cross-section, the transition regime is determined by the critical value of the parame-
ter I∗. Based on the earlier investigation, the critical value is between 0.2 and 0.3 [17],
or 0.39 [2]. The experimental measurement taken by Andersen et al. [1] seems settled
in this transitional regime. In addition, the four trajectories presented in [1] confirm
the above conjecture. As the parameter I∗ changes from 0.16 to 0.48, the plates un-
dergo fluttering, tumbling with double periods structure [1], chaotic, and tumbling
motion. Based on a section of the trajectory, see Fig. 8, the averaged quantities derived
the computation data match with the experimental data very well, see Table 1. The
vorticity and pressure distributions around the plate are shown in Figs. 10, 11 and 12,
where a smooth flow distributions can be clearly observed. If we change the plate
densities to ρs = 8900 kg/m3 and ρs = 8800 kg/m3, the parameters I∗ become 0.9591
and 0.9483, where in this regime only tumbling motion exists. Fig. 9 presents the two
trajectories which will last forever. The detailed numerical results are listed in Table 2.

In the above computations, we only consider one moving object and the mesh
is rigidly attached to the object. As a result, the mesh is moving together with the
movement of the single object. At this time, we have difficulties to extend the present
formulation to simulate movement of multiple bodies. Theoretically, once the mesh
moving velocity is given, the kinetic formulation of the flux evaluation and the up-
date of flow variables in a moving control volume should be the same as the method
presented in this paper. Practically, multiple bodies with relative movement will in-
troduce additional difficulties in the mesh generation and the assigning of mesh veloc-
ities. Especially, with the structured mesh and fixed mesh points it seems impossible
to simulate two freely moving bodies. In order to simulate multiple body movements
inside a fluid, instead of physical modeling and the flux evaluation, the computer pro-
gramming skill and the ability of handling data structure with variable mesh points
plays a more important role here.

Table 2: Averaged translational and angular velocities of two periodic stable trajectories.

ρs[kg· m−3] I∗ Uy [m/s] Uz [m/s] ω[rad/s]
Trace88 8800 0.9483 −0.1906 −0.0649 −56.05
Trace89 8900 0.9591 −0.2062 −0.0673 −75.36
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4 Conclusions

In this paper, a three-dimensional gas kinetic scheme with moving mesh is presented
for the low-speed viscous flow computation. The scheme is validated in a few test
cases, where the computational solutions match with the experimental measurements
very well. The simplicity of the gas-kinetic scheme with moving mesh is solely based
on the simple physical mechanism of particle transport and collisions, which is the
same in both x-y-z coordinate system and the local moving ones. Also, due to the
kinetic formulation, a low-speed viscous flow solver can be constructed easily. Other-
wise, the macroscopic Navier-Stokes equations under the general coordinate transfor-
mation are extremely complicated [5] and its direct numerical discretization becomes
very difficult. The main purpose of this paper is not to present any idea about how to
construct an optimal mesh velocity in the flow simulation. Instead, for a given mesh
velocity, an accurate gas-kinetic scheme for the Navier-Stokes equations is presented
for three-dimensional flow simulation.
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