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Abstract. One of the main difficulties in the application of the method of funda-
mental solutions (MFS) is the determination of the position of the pseudo-boundary
on which are placed the singularities in terms of which the approximation is ex-
pressed. In this work, we propose a simple practical algorithm for determining
an estimate of the pseudo-boundary which yields the most accurate MFS approx-
imation when the method is applied to certain boundary value problems. Several
numerical examples are provided.
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1 Introduction

The method of fundamental solutions (MFS) [7, 8, 12] is a relatively new meshless
method for the solution of certain boundary value problems. In recent years, it has
become increasingly popular because of the ease with which it can be implemented
for problems in complicated geometries. The MFS is applicable to problems in which
a fundamental solution of the operator of the governing equation is known. The solu-
tion is then approximated by linear combinations of fundamental solutions in terms of
singularities which are placed on a pseudo-boundary lying outside the domain under
consideration. A significant step was achieved in the 90’s by Golberg and Chen who
extended the applicability of the method to boundary value problems governed by in-
homogeneous partial differential equations [11]. Since then the MFS has been applied
to a wide variety of physical problems ranging from computer-aided design [31] to
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electrocardiography [32]. Further, the method has proved to be particularly effective
for the solution of free boundary problems [17,27] and inverse problems [2,18,22–24].

One disadvantage of the MFS is that it relies on choosing a pseudo-boundary sur-
rounding the boundary of the domain under consideration on which the singularities
are placed. The position of this pseudo-boundary is crucial as the accuracy of the
method depends on it. In early applications of the method, the positions of the sin-
gularities were taken to be among the unknowns [6, 14, 15, 25]. Collocation on a set
of boundary points yielded a nonlinear system of equations which had to solved by
means of nonlinear minimization routines. Although effective, this approach is com-
putationally expensive. Despite several further attempts [3,29], the optimal placement
of the singularities (i.e., the pseudo-boundary) in the MFS is still an open question. In
this work, we propose a simple algorithm for determining an estimate of the optimal
pseudo-boundary for certain elliptic boundary value problems.

In Section 2, we present in general terms, the type of problems that we examine.
In Section 3, we identify the central problem to be addressed, namely the approximate
location of the optimal pseudo-boundary, and subsequently describe the algorithm
to be used. Several numerical examples are presented in Section 4 which show the
efficacy of the proposed algorithm. In Section 5, the algorithm is applied to a bihar-
monic problem and shown to yield satisfactory results. Finally, some comments and
conclusions are given in Section 6.

2 The method

We consider the boundary value problem

{

∆u = 0, in Ω,
u = f , on ∂Ω ,

(2.1)

where Ω⊂R
D, D=2, 3 is a bounded domain with boundary ∂Ω, and f is a given func-

tion.
In the MFS [7, 8, 12], the solution u is approximated by

uN(c, Q; P) =
N

∑
n=1

cn KD(P, Qn), P∈Ω, (2.2)

where c=[c1, c2, . . . , cN ]T, Q is a N−vector containing the coordinates of the singular-
ities Qn, n = 1, . . . , N, which lie outside Ω, and KD(P, Q) is a fundamental solution of
the Laplace operator given by

KD(P, Q) =



















− 1

2π
log | P − Q |, D = 2,

1

4π | P − Q | , D = 3,

(2.3)
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with |P − Q| denoting the distance between the points P and Q. The singularities Qn

are fixed on a pseudo-boundary ∂Ω̃ similar to ∂Ω in the following sense [13]. At each
point of the boundary we draw the outward normal to it and fix a point at a distance
d from it. The pseudo-boundary is the curve joining all these points.
A set of collocation points {Pm}M

m=1 is placed on ∂Ω and the coefficients c are deter-
mined so that the boundary condition is satisfied at these points; that is,

uN(c, Q; Pm) = f (Pm), m = 1, . . . , M. (2.4)

This yields a linear system of M equations in N unknowns which has the form

GDc = f , (2.5)

where

f = [ f (P1), f (P2), . . . , f (PM)]T ,

and the elements of the M × N matrix GD, D=2, 3, are given by

GDm,n = KD(Pm, Qn).

When M=N, the system is solved using a standard Gaussian elimination package. If
M>N, we have an over–determined linear system which is solved using linear least
squares routines. Once the vector c is known, the approximation uN can be readily
calculated at any point in Ω from (2.2). In another variant of the MFS, the locations
of the singularities is unknown and thus their coordinates need to be found as part of
the solution as well as the coefficients c. This approach, which as mentioned in the
Introduction was popular in early applications of the MFS, leads to a non-linear mini-
mization problem which is considerably more expensive than the current approach.

3 The algorithm

One of the drawbacks of the MFS is the question of where to place the pseudo-boundary
∂Ω̃. Regarding its shape, as already mentioned in Section 2, a natural choice is to take
it to be similar to the boundary ∂Ω and at a fixed distance d from it. In [13], it is demon-
strated that this choice is superior to the approach in which the pseudo-boundary is
taken to be a circle (or a spherical surface) surrounding ∂Ω. In the case of problem
(2.1) when Ω⊂R

2 is a disk, it can be shown that, theoretically, as the distance between
the (circular) pseudo-boundary and the boundary ∂Ω increases, the error in the MFS
approximation tends exponentially to zero [20, 21, 30]. However, in practice this be-
haviour can only be observed for moderate values of d. When the distance d becomes
large then the MFS system (2.5) becomes exceedingly ill-conditioned leading to loss
of accuracy. These phenomena have also been observed for problems in general two-
and three-dimensional domains. Thus there is a value of d which leads to optimal
accuracy.
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A practical way of finding the optimal d=dopt which has been used in the past for
the solution of (2.1) is the following; see, for example, [31]:

Algorithm A

Step 1: For a fixed number of boundary collocation points M and singularities N, choose a step
δd.
Step 2: For each j = 1, · · · ,N :

(1) Solve the MFS system (2.5) for d = j δd.

(2) Evaluate the approximate solution (2.2) on a set of M boundary points {Sℓ}Mℓ=1, different

from the collocation points {Pm}M
m=1.

(3) Evaluate the absolute maximum error ej = max
ℓ=1,··· ,M

|uN(c, Q; Sℓ)− f (Sℓ)| on this set.

Step 3: Select the minimum ej, say ej∗ . Thus dopt = j∗δd.

The reason for evaluating the error only on the boundary is the following. Since
both the solution u of problem (2.1) and the MFS approximation uN are harmonic
so is the error eN=uN − u. Therefore, from the maximum principle, the maximum of
|eN | will be achieved on the boundary ∂Ω, so it is sufficient to examine the absolute
maximum error on the boundary.

It should be noted that this algorithm is also applicable in the case where the
pseudo-boundary is taken to be a circle (in R

2) or a spherical surface (in R
3). In these

cases, the parameter to be optimized is the radius of the pseudo-boundary.
Algorithm A is, however, potentially expensive since it requires the solution of N

systems (2.5), as well as the evaluation of the solution at the M boundary points, N
times.

One way of reducing this cost is to treat the evaluation of the maximum error ej

for each j, for fixed M and N, as a continuous function of d. Thus, one may use an
algorithm for the minimization of a function of a single variable.

In MATLAB, this is achieved by using the function fminbnb which uses an algorithm
based on the golden section search and parabolic interpolation [9]. The golden section
search [16, Section 9.2], [28, Section 10.1] corresponds to the bisection method for locat-
ing the root of a function. If the function to be minimized is F, one starts with a triplet
of points a<b<c, such that F(b)<F(a) and F(b)<F(c). The idea is to choose a new
point d in either (a, b) or (b, c). If d is chosen in the interval (b, c) then, if F(b)<F(d)
the new triplet is a<b<d whereas if F(d)>F(b), the new triplet is b<d<c. The question
is how to choose d in the first place. It can be shown, that if h1=|b − a|, and h2=|c − b|,
the optimal location of d is in the larger of the two intervals (a, b) and (b, c) and at a
distance

3 −
√

5

2
max{h1, h2},

from b into the larger interval. The name of this method comes from the presence of
the number (1 +

√
5)/2, known as the golden ratio. Once the new triplet is found,

the process is repeated until the distance between the points of the triplet reaches a
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prescribed tolerance. In parabolic interpolation [28, Section 10.2], a parabola is fitted
through the three points (a, F(a)), (b, F(b)) and (c, F(c)) and then d is taken to be the
x-coordinate of the minimum of the parabola. The process is then repeated as in the
golden section search. For parabolic interpolation to be effective it needs to be used in
combination with another method, such as the golden section search.

If for fixed M and N and for a particular choice of M the function that evaluates
the maximum error ej is mfs(x), then the following call yields the minimum of the
maximum error for d in the interval (x1, x2):

[x, fval, exitflag, output] = fminbnd(′mfs(x)′, x1, x2).

The number of iterations and function evaluations in fminbnb can be substantially
reduced without significantly affecting the position of the optimal pseudo-boundary.
As is shown in the examples, this can be achieved by imposing a termination tolerance
TolX on x of 1.e-2 instead of the default termination tolerance TolX=1.e-4. This is
carried out by the call:

[x, fval, exitflag, output] = fminbnd(′mfs(x)′, x1, x2, optimset(′TolX′, 1e− 2)).

An obvious question concerns the choice of the bounds x1 and x2. Clearly, x1 needs
to be close to the boundary so a small value needs to be chosen and in the examples
this was taken to be x1= 0.01. The choice of x2 is not as easy, as for an insufficiently
large value there is the danger of missing the minimum. One may apply Algorithm A
with a large step δd and a small N to see where the value of the function increases. In
our numerical experiments we found that for two-dimensional problems, taking x2=4
and for three-dimensional problems taking x2=10, yielded satisfactory results. Taking
larger values did not significantly affect the position of the minimum. Alternatively,
one may use a simple routine for initially bracketing a minimum see, e.g., [28, Section
10.1].

Also, as is observed in the examples, in many cases there is a relatively wide range
of choices of dopt which yield very similar accuracy. Our goal is therefore to obtain a
value of dopt in that range, which explains the relaxation of the tolerance on x.

Note. In Fortran one may use the NAG Library routines E04ABF–E04ABA [26]
which find the minimum of a function of a single variable by a method based on
quadratic interpolation [10]. Alternatively, one may use the golden section search in
one dimension [28, Section 10.1] or parabolic interpolation and Brent’s method in one
dimension [28, Section 10.2].

4 Numerical examples

4.1 Example 1

We first consider problem (2.1) with exact solution

u = e4x cos 4y,
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in the case when the domain Ω⊂R
2 is the unit disk. The pseudo-boundary ∂Ω̃ is taken

to be a concentric circle of radius R=1 + d, d>0. We first applied Algorithm A with
δd=0.01, N=400 and M=N=32, 48, 64 and 80. Both the boundary points and singu-
larities are uniformly distributed on ∂Ω and ∂Ω̃, respectively. It should be noted that
for this particular example, the MFS coefficient matrix is circulant [4], and thus the so-
lution of the MFS systems can be carried out efficiently using fast Fourier transforms;
see, for example, [30].

In Fig. 1, we present the maximum error calculated at M=100 uniformly dis-
tributed points on ∂Ω. In Table 1, we present the corresponding results when using
the function fminbnb with x1=0.01, and x2=4. The results obtained using a relaxed
tolerance on x of TolX=1e-2 are presented in Table 2. As can be observed from these
tables, the relaxation on the tolerance leads to no significant difference in the value
of dopt, while reducing significantly both the number of iterations and function eval-
uations. The values of dopt presented in Tables 1 and 2 and which are obtained with
few iterations and function evaluations, clearly agree well with the corresponding val-
ues observed in Fig. 1. In Fig. 2 we present the CPU times required for the location
of the optimal pseudo-boundary using Algorithm A, minimization using the default
tolerance on x and minimization using a relaxed tolerance of TolX=1e-2. As can be
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Figure 1: Results with δd = 0.01, N = 400 for Example 1.
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Table 1: Results for Example 1 using minimization with default tolerance. FE represents function evaluations.

M=N dopt Max error Iterations FE

32 2.8699 2.2431(-7) 17 19

48 2.2494 4.6850(-10) 12 14

64 1.0340 7.5615(-13) 18 20

80 0.6978 1.0658(-13) 16 18

Table 2: Results for Example 1 using minimization with relaxed tolerance. FE represents function evaluations.

M=N dopt Max error Iterations FE

32 2.8714 2.9719(-7) 10 12

48 2.2494 4.6850(-10) 10 12

64 1.0076 7.5419(-13) 11 13

80 0.6950 1.3500(-13) 13 15

observed from this figure, the use of minimization, especially with reduced tolerance,
leads to substantial savings over Algorithm A in the CPU time required to locate dopt.

4.2 Example 2

We next considered problem (2.1) with exact solution

u = e4x cos 4y,
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Figure 2: CPU times for Example 1: (a) Algorithm A; (b) Minimization with default tolerance; (c) Mini-
mization with relaxed tolerance.
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Figure 3: Results with δd = 0.01, N = 400 for Example 2.

in the case when the domain Ω⊂R
2 is the square (−1, 1) × (−1, 1). The pseudo-

boundary ∂Ω̃ is taken to be a concentric square (−R, R) × (−R, R) where R=1 + d,
d>0. We first applied Algorithm A with δd=0.01, N=400 and M=N=48, 64, 80 and
96. Both the boundary points and singularities are uniformly distributed on ∂Ω and
∂Ω̃, respectively.

In Fig. 3, we present the maximum error calculated at M=100 uniformly spread
points on ∂Ω. In Table 3 we present the corresponding results when using the function
fminbnb with x1=0.01, and x2=4. The results obtained using a relaxed tolerance on x

of TolX=1e-2 are presented in Table 4. The same conclusions as the ones observed

Table 3: Results for Example 2 using minimization with default tolerance.

M=N dopt Max error Iterations FE

48 2.9375 6.3065(-6) 20 22

64 2.4760 5.3999(-9) 22 24

80 1.6847 9.7000(-11) 22 24

96 1.1480 4.8033(-12) 22 24
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Table 4: Results for Example 2 using minimization with relaxed tolerance.

M=N dopt Max error Iterations FE

48 2.7025 7.6444(-6) 12 14

64 2.4760 5.3999(-9) 10 12

80 1.6891 2.0784(-10) 10 12

96 1.1479 5.3362(-12) 12 14

in Example 1 also apply in this case. As in Example 1, the values of dopt presented
in Tables 3 and 4 are in very good agreement with the corresponding values from
Fig. 3. In Fig. 4, we present the CPU times required for the location of the optimal
pseudo-boundary using Algorithm A, minimization using the default tolerance on x

and minimization using a relaxed tolerance of TolX=1e-2. As in Example 1, this shows
that the use of minimization, leads to substantial savings in CPU time.
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Figure 4: CPU times for Example 2: (a) Algorithm A; (b) Minimization with default tolerance; (c) Mini-
mization with relaxed tolerance.

4.3 Example 3

We next consider problem (2.1) with exact solution

u = cosh 5x cos 4y sin 3z,

in the case when the domain Ω⊂R
3 is the unit sphere. The pseudo-boundary ∂Ω̃ is

taken to be the concentric sphere of radius R=1 + d, d>0. We first applied Algorithm
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Figure 5: Results with δd = 0.025, N = 400 for Example 3.

A with δd=0.025, N=400 and M=N=256, 1024, 2304 and 4096. Both the boundary
points and singularities are uniformly distributed on ∂Ω and ∂Ω̃, respectively. In Fig.
5, we present the maximum error calculated at M=5625 uniformly distributed points
on ∂Ω. It should be noted that for this particular example, the MFS systems possess a
block circulant structure. Thus, the solution of these systems is carried out efficiently
using a matrix decomposition algorithm and fast Fourier transforms; see, for example,
[19].

In Table 5, we present the results when using the function fminbnb with x1=0.01
and x2=10, while in Table 6 we present the corresponding results with a relaxed toler-

Table 5: Results for Example 3 using minimization with default tolerance.

M=N dopt Max error Iterations FE

256 0.9331 1.1786(-2) 21 24

1024 2.8318 7.8943(-7) 18 21

2304 1.9445 2.0606(-9) 24 27

4096 1.5636 3.3011(-11) 22 25
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Table 6: Results for Example 3 using minimization with relaxed tolerance.

M=N dopt Max error Iterations FE

256 0.9322 1.2858(-2) 13 16

1024 2.8319 8.1189(-7) 11 14

2304 1.9445 2.0606(-9) 15 18

4096 1.5642 4.0627(-11) 14 14

ance of TolX=1e-2. As in the two previous examples, the values of dopt presented in Ta-
bles 5 and 6 are in good agreement with the corresponding values from Fig. 5. In Fig.
6, we present the CPU times required for the location of the optimal pseudo-boundary
using Algorithm A, minimization using the default tolerance on x and minimization
using a relaxed tolerance of TolX=1e-2. In a way considerably more pronounced than
in Examples 1 and 2, we observe that the use of minimization, especially with relaxed
tolerance, leads to substantial savings in CPU time.
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Figure 6: CPU times for Example 3: (a) Algorithm A; (b) Minimization with default tolerance; (c) Mini-
mization with relaxed tolerance.

4.4 Example 4

Finally, we consider problem (2.1) in the case when the domain Ω⊂R
3 is the cube

(−1, 1) × (−1, 1) × (−1, 1). The pseudo-boundary ∂Ω̃ is taken to be the concentric
cube (−R, R)× (−R, R)× (−R, R) where R=1 + d, d>0. In order to test the algorithm
further, we consider the problem with a non-harmonic boundary condition, namely
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Figure 7: Results with δd = 0.025, N = 400 for Example 4.

with
f (x, y, z) = x2y3z4.

Although the exact solution is not known, the maximum principle is still valid and
thus one can evaluate the maximum error. The behaviour of the MFS approximation
to such problems was studied extensively in [5]. We first applied Algorithm A with
δd=0.025, N=400 and M=N=216, 384, 600 and 864. Both the boundary points and
singularities are uniformly distributed on ∂Ω and ∂Ω̃, respectively.

In Fig. 7, we present the maximum error calculated at M=1176 uniformly dis-
tributed points on ∂Ω. In Table 7 we present the results when using the function

Table 7: Results for Example 4 using minimization with default tolerance.

M=N dopt Max error Iterations FE

216 7.5655 4.6096(-2) 19 22

384 3.8125 1.2566(-2) 25 28

600 2.4701 3.6278(-3) 17 20

864 0.8973 7.7214(-4) 17 20
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Table 8: Results for Example 4 using minimization with relaxed tolerance.

M=N dopt Max error Iterations FE

216 7.5653 4.6105(-2) 7 10

384 3.8122 1.2577(-2) 15 18

600 2.5013 3.5912(-3) 14 17

864 0.8973 7.7214(-4) 13 16

fminbnb with x1=0.01 and x2=9.9, while in Table 8 we present the corresponding re-
sults with a relaxed tolerance of TolX=1e-2. As in the three previous examples, the
values of dopt presented in Tables 7 and 8 are in good agreement with the correspond-
ing values from Fig. 7. In Fig. 8 we present the CPU times required for the location
of the optimal pseudo-boundary using Algorithm A, minimization using the default
tolerance on x and minimization using a relaxed tolerance of TolX=1e-2. As was ob-
served in Example 3, the use of minimization, especially with relaxed tolerance, leads
to substantial savings in CPU time.
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Figure 8: CPU times for Example 4: (a) Algorithm A; (b) Minimization with default tolerance; (c) Mini-
mization with relaxed tolerance.

5 Extensions

In this section, we apply the ideas presented in Section 3 to a problem in which the
differential equation does not satisfy a maximum principle. Although there is no the-
oretical justification, it appears natural to choose a pseudo-boundary for which the
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boundary conditions are satisfied as accurately as possible.
As an example, we consider the biharmonic Dirichlet problem











∆2u = 0, in Ω,
u = f , on ∂Ω ,
∂u

∂n
= g, on ∂Ω ,

(5.1)

where Ω⊂R
2 is a bounded domain with boundary ∂Ω, ∂/∂n is the derivative in the

outward normal direction to the boundary and f and g are given functions.
In the MFS, we take [7]

uN(c, d, Q; P) =
N

∑
n=1

cn K2(P, Qn) +
N

∑
n=1

dn L2(P, Qn), P∈Ω, (5.2)

where d=[d1, d2, . . . , dN ]T and c, Q and K2(P, Q) are defined as in the harmonic case.
Also, L2(P, Q) is a fundamental solution of the biharmonic operator given by

L2(P, Q) = − 1

8π
|P − Q|2 log |P − Q|. (5.3)

As before, a set of collocation points {Pm}M
m=1 is placed on ∂Ω and the coefficients c

and d are determined so that the boundary conditions are satisfied at these points; that
is,

uN(c, Q; Pm) = f (Pm), and ∂uN(c, Q; Pm)/∂n = g(Pm), m = 1, . . . , M. (5.4)

This yields a linear system of 2M equations in 2N unknowns which has the form

(

G11 G12

G21 G22

) (

c

d

)

=

(

f

g

)

, (5.5)

where

f = [ f (P1), f (P2), . . . , f (PM)]T
, g = [g(P1), g(P2), . . . , g(PM)]T

,

and the elements of the four M × N matrices G11, G12, G21, G22 are given by

(G11)m,n = K2(Pm, Qn), (G12)m,n = L2(Pm, Qn),

(G21)m,n = ∂K2(Pm, Qn)/∂n, (G22)m,n = ∂L2(Pm, Qn)/∂n.

As in the harmonic case, we take the pseudo-boundary to be similar to the boundary
∂Ω and at a fixed distance d from it. A practical way of finding a value of d=da which
yields an accurate MFS approximation is to apply Algorithm A to the problem. Sub-
sequently, we use an algorithm for the minimization of a function of a single variable
to determine da. This is illustrated in the following example.
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5.1 Example 5

We consider problem (5.1) with exact solution

u = (x2 + y2) e4x cos 4y + e2x cos 2y,

in the case when the domain Ω⊂R
2 is the square (−1, 1) × (−1, 1). As in Example 2,

the pseudo-boundary ∂Ω̃ is taken to be the square (−R, R)× (−R, R) where R=1 + d,
d>0. We applied the MFS for d=j δd, j=1, · · · ,N where δd=0.01, N=400 and evalu-
ated the maximum absolute error in uN on a 25 × 25 uniform grid of interior points.
The results are presented in Fig. 9. We then applied Algorithm A with the same pa-
rameters and the maximum error in uN and ∂uN/∂n calculated at M=100 uniformly
spread points on ∂Ω. The results are presented in Fig. 10. From Figs. 9 and 10 it is ev-
ident that the errors behave in a similar way. In Table 9 we present the corresponding
results when using the function fminbnb with a relaxed tolerance of TolX=1e-2. As in
the harmonic examples considered we observe that the values of da presented in Table
9 agree well with the corresponding values observed in Figs. 9 and 10.
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Figure 9: Maximum error in uN on interior grid with δd = 0.025, N = 400 for Example 5.
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Table 9: Results for Example 5 using minimization with relaxed tolerance.

M=N da Max error Iterations FE

48 3.0581 1.1086(-4) 9 11

64 1.9479 2.5894(-7) 13 15

80 1.4083 3.2858(-8) 13 15

96 1.2032 3.6007(-9) 9 11
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Figure 10: Maximum errors in uN and ∂uN/∂n on boundary with δd = 0.025, N = 400 for Example 5.

Note. In Step 2 (3) of Algorithm A, one could have chosen

ej = max

{

max
ℓ=1,··· ,M

|uN(c, Q; Sℓ) − f (Sℓ)|, max
ℓ=1,··· ,M

|∂uN

∂n
(c, Q; Sℓ) − g(Sℓ)|

}

.

Such a choice was found not to significantly alter the value of da.

6 Conclusions

In this work we propose a simple and efficient algorithm for obtaining an approxi-
mation to the optimal location of the pseudo-boundary when the MFS is applied to
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harmonic boundary value problems. The algorithm, which relies on the maximum
principle for harmonic functions, is based on considering the routine evaluating the
maximum error in the Dirichlet boundary conditions, for fixed numbers of degrees of
freedom, as a function of the distance of the pseudo-boundary from the boundary. The
idea is to minimize this function by using existing software to yield an optimal value
for this distance. Numerical experiments indicate that by applying this algorithm we
obtain satisfactory estimates for the optimal position of the pseudo-boundary at lit-
tle computational cost. The savings in CPU time are more pronounced in the case of
three-dimensional problems. It is also noteworthy that from Tables 1–8, it can be ob-
served that dopt decreases as M=N increase. It is shown that the same technique can
also be applied for the determination of a pseudo-boundary which yields accurate ap-
proximations when the MFS is applied to biharmonic problems where the governing
equation does not satisfy the maximum principle. The current algorithm is not re-
stricted to the case when the pseudo-boundary is taken to be similar to the boundary
of the region under consideration, but is also applicable in the case where the pseudo-
boundary is taken to be a circle surrounding the region (in R

2) or a spherical surface
(in R

3).

It should be mentioned that for problems governed by inhomogeneous equations
or time-dependent problems, the optimal location of source points is not as impor-
tant an issue as in the homogeneous case. This is because in these cases, usually the
dominant errors come from the approximation of the inhomogeneous terms or time
discretization schemes. As a result the accuracy of the homogeneous solution using
the MFS has little effect on the overall accuracy.

One interesting question related to this application of the MFS is the choice of
the pseudo-boundary in the case where the solution has (unknown) singularities at
the points Pk /∈Ω̄, k= . . . , K. Clearly, as the pseudo-boundary moves away from the
boundary, the accuracy of the MFS will improve until it either meets the singularity
located closest to the boundary or the ill-conditioning of the MFS system leads to loss
of accuracy; see, for example, [29, pages 12-13] or [30]. The applicability of the current
approach clearly depends on the location of the closest singularity to the boundary.
Using the current algorithm or a variation of it to determine the location of this singu-
larity could be the subject of future research.
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