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Abstract. Game option is an American-type option with added feature that the
writer can exercise the option at any time before maturity. In this paper, we con-
sider the problem of hedging Game Contingent Claims (GCC) in two cases. For
the case that portfolio is unconstrained, we provide a single arbitrage-free price P0.
Whereas for the constrained case, the price is replaced by an interval [hlow, hup] of
arbitrage-free prices. And for the portfolio with some closed constraints, we give
the expressions of the upper-hedging price and lower-hedging price. Finally, for a
special type of game option, we provide explicit expressions of the price and opti-
mal portfolio for the writer and holder.
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1 Introduction

In [2], Kifer introduced Game option, and he also gave the expressions of the value
process and optimal stopping times for the holder and writer. Then many authors con-
tinue the research, in this direction, see, e.g., [4–6, 8–11] and so on. However, most of
the research focuses on the deduction of the expressions and properties of the price. In
this paper, we will mainly consider the problem of hedging Game Contingent Claims
(GCC).

In section 2 we briefly give some background information, including market model
and some definitions. In section 3 we discuss the portfolio without constrains and
point out that the upper– and lower–hedging prices both equal to a given arbitrage-
free price P0. Section 4 we begin to study portfolio constraints, where we mainly
investigate the hedging problem for the GCC under general portfolio constraints, and
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give an arbitrage-free interval [hlow, hup]. Section 5 is the main part of this paper. In this
section we consider the constraints on portfolio and obtain the expressions of upper-
and lower-hedging prices based on the introduction of an auxiliary family {Mν}ν∈D .
In addition, we also point out that there exists a hedging portfolio. In section 6, we
give some examples.

2 Market model

Consider the Black-Scholes market M. That is, there is only one risky asset S and a
riskless bond B. They satisfy

dBt = Btrtdt, B0 = 1, (2.1)
dSt = St[rtdt + σtdWt], S0 = x ∈ (0, ∞), (2.2)

respectively, with W a standard Brownian motion on the complete probability space
(Ω,F , P), and we will denote its natural filtration

FW
t = σ(Ws : 0 ≤ s ≤ t), 0 ≤ t ≤ T < ∞, by F = {Ft}0≤t≤T.

Here the process rt is interest rate, σt is volatility. We suppose that they are all F-
progressively measurable and bounded uniformly in [0, T]×Ω. Furthermore, σt(ω)
will be assumed to be invertible, with σ−1

t (w) bounded in [0, T]×Ω. Let

βt = 1/Bt = exp
{
−

∫ t

0
rs ds

}
.

Then
dβtSt = βtStσtdWt. (2.3)

That is, under P the discounted stock price βtSt , S̃t is a martingale, so we will call P
an equivalent martingale measure.

Definition 2.1. (1) An F-progressively measurable process π : [0, T]×Ω → R with

∫ t

0
π2

t dt < ∞ a.s.,

is called a portfolio process. (2) An F-adapted process C : [0, T]×Ω → R with increasing,
right continuous paths and

C0 = 0, CT < ∞, a.s.,

is called cumulative consumption process. We will call (π, C) portfolio consumption process.

Definition 2.2. For any given portfolio consumption process pair (π, C), x ∈ R, the solution

V ≡ Vx,π,C,
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of the linear stochastic equation

dVt = πt
dSt

St
+ (Vt − πt)

dBt

Bt
− dCt = rtVtdt + πtσtdWt − dCt, V0 = x, (2.4)

is called the wealth process corresponding to initial capital x, portfolio rule π and cumulative
consumption rule C.

Here πt represents the amount of the agent’s wealth that is invested in the stock at
time t, and this amount may be negative, which means that short-selling of the stock
is permitted. Corresponding, Vt − πt represents the amount that is put into the bank
account, and this amount can also take negative values, which means that borrowing
from the bank at the interest rate rt is permitted. If we define

pt ,
{

πt/Vt, Vt 6= 0,
0, Vt = 0,

, θi
t ,





πt/St = ptVt/St, i = 1,
Vt − πt

Bt
=

Vt(1− pt)
Bt

, i = 0.
(2.5)

Then pt represents the proportions of wealth that is invested in the stock at time t,
while θ1

t (θ0
t ) represents the number-of-shares held in the stock (account) at time t.

Thus we obtain
Vt = θ0

t Bt + θ1
t St, 0 ≤ t ≤ T. (2.6)

The solution of (2.4) is given by

βtVt +
∫ t

0
βs dCs = x +

∫ t

0
βs πs σs dWs = x +

∫ t

0
βs psVs σs dWs. (2.7)

Definition 2.3. We say that a portfolio consumption process pair (π, C) is admissible in M
for the initial wealth x, if there exists a constant c ≥ 0 such that

Vt ≡ Vx,π,C
t ≥ −c, 0 ≤ t ≤ T. (2.8)

We shall denote by A0(x) the class of all such pairs.

We call Ṽt , βtVt discount wealth process, from Def. 2.3 we can define its ad-
missibility similarly and it is obvious that they are equal to each other. If (π, C) is a
admissible strategy, then from (2.7) we know that Ṽt is a P–supermartingale.

For 0≤s≤t≤T, we shall denote by Ss,t the class of F-stopping times that values in
[s, t]. Specially we let

S ≡ S0,T.

For any given τ ∈ S , we denote byA0(x, τ) the class of portfolio consumption process
pair (π, C) for which the stopped process Vx,π,C

t∧τ satisfies the requirement (2.8). Clearly
we have

A0(x) = A0(x, T) ⊆ A0(x, τ).
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3 Game contingent claims in an unconstrained market

Suppose that X={Xt : t ≤ T} and Y={Yt : t ≤ T} be two continuous stochastic
process defined on (Ω,F , P) such that for all 0≤t≤T, Xt≤Yt a.s.. The game option
is a contract between a holder and writer at time t=0. It is a general American-type
option with the added property that the writer has the right to terminate the contract
at any time before expiry time T. If the holder exercises first, then (s)he may obtain
the value of X at the exercise time and if the writer exercise first, then (s)he is obliged
to pay to the holder the value of Y at the time of exercise. If neither has exercised at
time T and T<∞, then the writer pays the holder the value XT. If both decide to claim
at the same time then the lesser of the two claims is paid. In short, if the holder will
exercise with strategy τ and the writer with strategy γ, we can conclude that at any
moment during the life of the contract, the holder can expect to receive

Z(τ, γ) , Xτ1(τ≤γ) + Yγ1(γ<τ).

We will call Z(·, ·) game contingent claims. In addition, suppose that for some ε>0,
we have

E
(

sup
0≤t≤T

(βtYt)1+ε
)

< ∞. (3.1)

In order to obtain this commitment, the holder has to pay an amount x≥0 to the writer,
and this amount is the price of the contingent claim. Then what should this amount
be? In other words, what is the fair price? Here the so-called ”fair” is nothing but sat-
isfying the requirement of the writer and holder. So we should consider the problem
from the point of view of both sides. For the writer, after receiving the amount x≥0,
(s)he hope that (s)he can find a stopping time γ∈S and a portfolio consumption pair
(π, C)∈A0(x, γ), such that, whatever who terminates the contract first, he can fulfil
his obligation without risk. That is, for any 0≤t≤T, we have

Vx,π,C
t∧γ ≥ Z(t, γ) a.s. . (3.2)

We will call this triple (γ, π, C) the writer’s upper-hedging portfolio. The smallest
value of initial capital x≥0 that allows the writer to do this is called upper hedging
price for the GCC, that is

hup , inf
{

x ≥ 0 : ∃ γ ∈ S , (π, C) ∈ A0(x, γ), s.t. (3.2) holds
}

. (3.3)

We will call the triple (γ∗, π∗, C∗) the writer’s optimal upper hedging strategy if it
attains hup.

Now, from the point of view of the holder, after paying an amount x≥0 to the
writer, (s)he wants to find a stopping time τ∈S and a portfolio consumption (π′, C′)
∈A0(−x, τ), such that, whatever who terminates the contract first, (s)he can fill up the
deficit for purchasing this contingent claim. That is, for any 0≤t≤T, we have

V−x,π′,C′
τ∧t + Z(τ, t) ≥ 0 a.s. . (3.4)
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The largest amount x≥0 that enables the holder to do this is called lower hedging
price for the GCC, that is

hlow , sup
{

x ≥ 0 : ∃ τ ∈ S , (π′, C′) ∈ A0(−x, τ), s.t. (3.4) holds
}

. (3.5)

We will call the triple (τ, π′, C′) the holder’s hedging portfolio and (τ∗, π∗, C∗) the
holder’s optimal hedging portfolio if it attains hlow.

From definition, we can understand that hup is the smallest amount of initial capital
required by the writer in order to find a portfolio consumption process pair that would
guarantee his wealth at any time exceeds his liability. While for hlow, it is the largest
initial capital the holder needs to borrow in order to find a portfolio consumption
process pair that would guarantee his debt is covered at the time of execution of the
contract.

Theorem 3.1. Suppose that T<∞ is finite, then the value process P={Pt : t ∈ [0, T] } of the
game option is given by

Pt = ess sup
τ∈St,T

ess inf
γ∈St,T

1
βt

E0 [ βτ∧γZ(τ, γ)|Ft]

= ess inf
τ∈St,T

ess sup
γ∈St,T

1
βt

E0 [ βτ∧γZ(τ, γ)|Ft] .

The optimal stopping strategies for the holder and writer respectively are

τ∗ = inf{u ≥ t : Pu = Xu} ∧ T, γ∗ = inf{u ≥ t : Pu = Yu} ∧ T. (3.6)

For the upper-hedging price and lower-hedging price in this unconstrained mar-
ket, we have following theorem and the proof will be omitted.

Theorem 3.2. hlow = P0 = hup .

4 Portfolio with constraints

In the previous section, we primarily consider the problem of hedging GCC and do
not constrain the portfolio, that is, we can borrow from the bank and sell stock with-
out limit. In fact, it is not realistic, so we need some conditions to restrict the port-
folio. Karatzas consider the problem of hedging American contingent claim (ACC),
following him and Suppose that K+ and K− are two Borel subsets of R, each of which
contains the origin. We restrict attention to portfolio consumption rules (π, C) that
satisfy {

pt ∈ K+, if Vx,π,C
t > 0

pt ∈ K−, if Vx,π,C
t < 0

,
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then admissible portfolio consumption process pairs becomes

A(x) ,
{

(π, C) ∈ A0(x)

{
pt ∈ K+, on {Vx,π,C

t > 0}
pt ∈ K−, on {Vx,π,C

t < 0}

}
, ∀ 0 ≤ t ≤ T

}
. (4.1)

We shall also consider the subclasses

A+(x) ,
{
(π, C) ∈ A(x) : pt ∈ K+, Vx,π,C

t ≥ 0 a.s., ∀ 0 ≤ t ≤ T, x ≥ 0
}

, (4.2)

A−(x) ,
{
(π, C) ∈ A(x) : pt ∈ K−, Vx,π,C

t ≤ 0 a.s., ∀ 0 ≤ t ≤ T, x ≤ 0
}

. (4.3)

The definition of A(x, τ) and A±(x, τ) is similar as before. We shall denote by M(K)
the marketMwith constraints, then the upper-hedging price and lower-hedging price
become

hup(K) , inf{x ≥ 0 : ∃ γ ∈ S and (π, C) ∈ A+(x, γ), s.t. (3.2) holds}
, inf A, (4.4)

hlow(K) , sup{x ≥ 0 : ∃ τ ∈ S and (π′, C′) ∈ A−(−x, τ), s.t. (3.4) holds}
, sup B. (4.5)

Here we have
0 ≤ X0 ≤ hlow(K) ≤ P0 ≤ hup(K). (4.6)

However, hlow(K)=hup(K) does not hold for this case that the portfolio has constraint.
In fact, we have hlow(K)<hup(K). In order to depict these two prices, let us first give a
definition.

Definition 4.1. Suppose that p>0 is the price of GCC at time t=0, we say that the market
M(K) admits an arbitrage opportunity, if there exists either

(i) a stopping time γ∈S and a portfolio consumption pair (π, C)∈A+(x, γ), such that

Vx,π,C
t∧γ ≥ Z(t, γ), (4.7)

holds for some 0<x<p ; or
(ii) a stopping time τ∈S and a portfolio consumption pair (π′, C′)∈A−(−x, τ), such that

V−x,π′,C′
τ∧t + Z(τ, t) ≥ 0, (4.8)

holds for some x>p.

Where in the first case, after receiving the amount p (p > x), the writer can use
some(e.g. x) to hedge it without risk, then the difference of this two amount can be
the arbitrage obtained by the writer. For the second case, if the holder buy the contin-
gent claim with the amount x, then (s)he can find a portfolio consumption to hedge it
without risk. While in fact, the amount of capital used to buy the GCC is only p (p< x),
this difference can bring to the holder an arbitrage opportunity.
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Theorem 4.1. For every p>0, if p/∈[hlow(K), hup(K)], then there exists an arbitrage oppor-
tunity in this market. When p>hup(K), this opportunity belongs to the writer, and when
p<hlow(K), it belongs to the holder. However, when p∈[hlow(K), hup(K)], there is no arbi-
trage opportunity, so we will call this interval the arbitrage-free interval.

5 Portfolio with closed constraints

In the previous section we constrain the portfolio, now let us strengthen the condition.
Suppose that both K+ and K− are closed interval of R, that K+ ∩K− contains the origin.
In addition, for any p+ ∈ K+, p− ∈ K−, we have

λp+ + (1− λ)p− ∈
{

K+ if λ ≥ 1 ,
K− if λ < 0.

(5.1)

The support function of −K+ is given by

δ(y) , sup
p∈K+

(−p y) : R → [0, ∞], (5.2)

and its effective domain is

K̃ ,
{

y ∈ R : ∃ β ∈ R, s.t. − p y ≤ β, ∀ p ∈ K+

}

=
{

y ∈ R : δ(y) < ∞
}

. (5.3)

(5.1) guarantees that the sets −K+ and K− have the same effective domain, that is

K̃ = {y ∈ R : ∃ β ∈ R, s.t. p y ≤ β, ∀ p ∈ K−}, (5.4)

and

sup
p∈K−

(p y) =
{ −δ(y), y ∈ K̃,

∞, y /∈ K̃.
(5.5)

Finally we shall assume that δ(y) is continuous on K̃.
LetH be the space of F-progressively measurable processes ν: [0, T]×Ω→K̃ which

satisfies

E
∫ T

0

[
ν2(t) + δ(ν(t))

]
dt < ∞. (5.6)

And the auxiliary family {Mν} of random environment parametrized by processes
ν(·) contains the marketM, then for the choice ν≡0, we haveM0=M. Thus, for each
memberMν of this family, we can use the former method to solve the pricing problem
for the GCC. In the new market model, define

βν(t) , exp
{
−

∫ t

0
[r(s) + δ(v(s))]ds

}
, θν(t) , σ−1(t)ν(t), (5.7)

Zν(t) , exp
{
−

∫ t

0
θν(s)dW(s)− 1

2

∫ t

0
(θν(s))2ds

}
,

Wν(t) , W(t) +
∫ t

0
σ−1(s)ν(s)ds. (5.8)
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Let D denote the bounded processes in H, and define

Pν(A) = E[Zν(T)1A], A ∈ FT.

Then the process Zν(·) and Wν(·) are martingale and Brownian motion respectively
under this measure Pν, and in this new market model Mν, the price of the GCC is
given by

Pν(0) = sup
τ∈S

inf
γ∈S

Eν[βν(τ ∧ γ)Z(τ, γ)], (5.9)

as both the upper-hedging and lower-hedging price of GCC in this new market with
unconstrained portfolios. Combining (5.7) and (5.8), from (2.7) we obtain

βν(t)V(t) +
∫ t

0
βν(s)dCs +

∫ t

0
βν(s)V(s)[δ(ν(s)) + ν(s)p(s)]ds

= x +
∫ t

0
βν(s)V(s)p(s)σ(s)dWν(s). (5.10)

For every ν∈D, let

Vν(t) , 1
βν(t)

ess sup
τ∈St,T

ess inf
γ∈St,T

Eν[ βν(τ ∧ γ)Z(τ, γ)|Ft].

This is the value process of the GCC in Mν. It is obvious that

Vν(0) = Pν(0), Vν(T) = X(T).

In addition, we introduce the processes

V(t) = esssup
ν∈D

Vν(t), P , sup
ν∈D

Vν(0) = sup
ν∈D

sup
τ∈S

inf
γ∈S

Eν[ βν(τ ∧ γ)Z(τ, γ)],

and define stopping time

γt = inf{u ∈ [t, T) : V(u) = Y(u)} ∧ T. (5.11)

Lemma 5.1. For every fixed ν∈D and stopping times τ≤ρ≤γ0, we have

βν(τ)V(τ) ≥ Eν[βν(ρ)V(ρ)|Fτ] a.s. . (5.12)

V(t ∧ γ0) can be considered in its RCLL modification. So under the measure Pν, the process

Qν(t) , βν(t ∧ γ0)V(t ∧ γ0), 0 ≤ t ≤ T,

is a supermartingale.
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Theorem 5.1. The upper-hedging price hup(K) is given by

hup(K) = P , sup
ν∈D

Pν(0) = sup
ν∈D

sup
τ∈S

inf
γ∈S

Eν[βν(τ ∧ γ)Z(τ, γ)]. (5.13)

Furthermore, if P<∞, there exists a pair (π̂, Ĉ) ∈ A+(P, γ0), such that

VP,π̂,Ĉ(t ∧ γ0) = V(t ∧ γ0) ≥ Z(t, γ0) a.s., (5.14)

with γ0 the definition of (5.11).

Proof. First, let us prove the inequality P≤hup(K). It is obvious if hup(K)=∞. If
not, that is, hup(K)<∞, then the set A defined by (4.4) is nonempty. Let 0≤x∈A be
an arbitrary element of this set, γ̂∈S be a stopping time, and (π̂, Ĉ)∈A+(x, γ̂) be any
portfolio consumption process that satisfies (3.2). Under Pν, the process of (5.10) is
a nonnegative local martingale and then a supermartingale. Thus, for any τ∈S and
ν∈D, from (5.2) and (3.2) we have

x ≥ Eν
[

βν(τ ∧ γ̂)Vx,π̂,Ĉ(τ ∧ γ̂) +
∫ τ∧γ̂

0
βν(s)dCs +

∫ τ∧γ̂

0
βν(s)

(
δ(νs) + ν(s) p̂(s)

)
ds

]

≥ Eν
[

βν(τ ∧ γ̂)Vx,π̂,Ĉ(τ ∧ γ̂)
]
≥ Eν

[
βν(τ ∧ γ̂)Z(τ ∧ γ̂)

]
.

The second inequality follows from the fact that p̂(t)∈K+ and the definition of δ(x),
where p̂(t) is given by (2.5), that is

p̂ (t) =

{
π̂(t)/Vx,π̂,Ĉ(t), if Vx,π̂,Ĉ(t) > 0,
0, if Vx,π̂,Ĉ(t) = 0.

Thus,
x ≥ sup

ν∈D
sup
τ∈S

inf
γ∈S

= Eν[βν(τ ∧ γ)Z(τ, γ)] = P,

and hup(K)≥P follows from the arbitrariness of x.
Now we will prove hup(K)≤P. If P=∞, then the inequality is obvious. Suppose

that P<∞. If there exists a stopping time γ̂∈S and a pair (π̂, Ĉ)∈A+(P, γ̂) which
satisfies (5.14), we can obtain P∈A and hup(K)≤P. Lemma 5.1 implies that for any
ν∈D, Qν(t) is a Pν-supermartingale, then Doob-Meyer decomposition gives

Qν(t) = P + Mν(t)− Aν(t), (5.15)

where

Mν(t) =
∫ t

0
ψν(s)dWν(s), 0 ≤ t ≤ T,

is a Pν-martingale,
ψν : [ 0, T]×Ω → R,
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is an F-progressively measurable process with
∫ T

0 ψ2
ν(t)dt<∞ a.s., Aν(·) is an F-

adapted increasing process with right-continuous paths and Aν(0)=0, Eν Aν(T)<∞.
Because (5.15) holds for any ν∈D, so we may take ψν(·)≡0, a.e. on stochastic interval
[|γ0, T|] and Aν(T)=Aν(γ0) a.s.. For any µ∈D, from (5.15) we obtain

Qµ(t) = P +
∫ t

0

βµ(s)
βν(s)

ψν(s)dWµ(s)−
∫ t

0

βµ(s)
βν(s)

dAν(s)

−
∫ t

0

βµ(s)
βν(s)

[
ψν(s)σ−1(s)

(
µ(s)− ν(s)

)
+ βν(s)V(s)

(
δ(µs)− δ(νs)

)]
ds, (5.16)

and

Qµ(t) = P +
∫ t

0
ψµ(s)dWµ(s)− Aµ(t). (5.17)

Comparing (5.16) and (5.17) we obtain that the processes

ψν(t)
βν(t)

=
ψµ(t)
βµ(t)

, h(t), (5.18)

∫ t

0

dAµ(s)
βµ(s)

−
∫ t

0

(
V(s)δ(µs) + h(s)σ−1(s)µ(s)

)
ds

=
∫ t

0

dAν(s)
βν(s)

−
∫ t

0

(
V(s)δ(νs) + h(s)σ−1(s)ν(s)

)
ds , Ĉ(t), (5.19)

do not depend on ν∈D. Specially, if we take ν(·)≡0, then

Ĉ(t) =
∫ t

0

dA0(s)
β0(s)

.

In addition, we have
∫ T

0
1{V(t)=0}h2(t)dt =

∫ T

0
1{V(t)=0}(βν(t))−2d < Mν > (t) = 0 a.s. .

Following Karatzas and Kou [1], we obtain that the processes defined by

π̂(t) , σ−1(t)h(t), p̂(t) , π̂(t)
V(t)

· 1{V(t)>0}, (5.20)

are F-progressively measurable and satisfy
∫ T

0 π̂2(t)dt < ∞, a.s.. While (5.18) implies
that

h(t) =
ψν(t)
βν(t)

= V(t) p̂(t)σ(t), 0 ≤ t ≤ T. (5.21)

Following [1], we also have

p̂(t) ∈ K+, 0 ≤ t ≤ T. (5.22)
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Substitution of (5.21) back into (5.19) and (5.15) leads to

Qν(t) = P +
∫ t

0
βν(s)V(s) p̂(s)σ(s)dWν(s)−

∫ t

0
βν(s)dĈ(s)

−
∫ t

0
V(s)βν(s)

(
δ(νs) + ν(s) p̂(s)

)
ds. (5.23)

Comparing with (5.10) we obtain

βν(t)VP,π̂,Ĉ(t) = Qν(t) = βν(t ∧ γ0)V(t ∧ γ0),

that is

VP,π̂,Ĉ(t) =

{
V(t), 0 ≤ t < γ0,
V(γ0)

βν(γ0)
βν(t) , γ0 ≤ t ≤ T.

So for any 0≤t≤T, we have

VP,π̂,Ĉ(t ∧ γ0) ≥ Z(t, γ0),

thus we obtain (π̂, Ĉ)∈A+(P, γ0). ¤
Now let us consider the lower-hedging price of the GCC, let

V(t) = essinf
ν∈D

Vν(t), τt , inf{u ∈ [t, T), V(u) = X(u)} ∧ T.

p , inf
ν∈D

Vν(0) = inf
ν∈D

sup
τ∈S

inf
γ∈S

Eν[βν(τ ∧ γ)Z(τ, γ)], (5.24)

Similarly, we can obtain the following results and the proof will be omitted.

Lemma 5.2. Suppose that P<∞, then F-adapted process βν(τ0 ∧ t)V(τ0 ∧ t) can be con-
sidered in its RCLL modification and the process {βν(τ0 ∧ t)V(τ0 ∧ t)}0≤t≤T is a Pν-
submartingale.

Theorem 5.2. The lower-hedging price hlow(K) satisfies

hlow(K) ≤ p = inf
ν∈D

sup
τ∈S

inf
γ∈S

Eν[ βν(τ ∧ γ)Z(τ, γ)], (5.25)

with equality if P<∞ or p=0. In the case that P<∞, there exists a pair (π̌, Č)∈A−(−p, τ0),
such that

V−p,π̌,Č(τ0 ∧ t) + Z(τ0, t) ≥ 0, 0 ≤ t ≤ T. (5.26)

We give a simple example as follows. Consider Israeli δ-penalty put options, that
is

X(t) = (S(t)− q)+, Y(t) = (S(t)− q)+ + δ,

where δ>0 is a constant. For the sake of plainness, we let Vν(0),Vν(x)=Vν(x, 0). De-
noting the price of the GCC starts from S(0)=x in the market Mν, we have
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Proposition 5.1. Suppose that r(·)≥0, and that 0≤`<∞ satisfies

−` ≤ δ(y) + y ≤ 0, ∀ y ∈ K̃. (5.27)

If Vν(q)≤δ, then

hup(K) = sup
ν∈D

VE
ν (x), hlow(K) = inf

ν∈D
VE

ν (x),

where
VE

ν (x) = VE
ν (x, 0) = Eν[βν(T)(S(T)− q)+].

If Vν(q)>δ, then
hup(K) ≤ sup

ν∈D
VE

ν (x), hlow(K) ≤ inf
ν∈D

VE
ν (x).

Proof. As pointed out in [1] that from (5.27) we can obtain P<∞. Then from Propo-
sition 5.20 of [1], Theorem 2.2 (set s=0) of [4], and Theorems 5.1 and 5.2 we can com-
plete the proof of the proposition. ¤

Proposition 5.2. Suppose that the interest-rate r(·) satisfies r(·)≤r for some constant r≥0,
and that the function

δ(y) + y ≥ 0, ∀ y ∈ K̃. (5.28)

Then we have
hup(K) ≤ S(0), hlow(K) = X(0) = (S(0)− q)+.

Proof. If δ≥Vν(q), then it is not optimal for the writer to terminate the contract in
advance. From (5.28) we know that βν(τ)S(τ) is a Pν-supermartingale, so

Vν(x) = VA
ν (x) , sup

τ∈S
Eν[βν(τ)X(τ)]

= Eν[βν(τ)(Sτ − q)+] ≤ Eν[βν(τ)S(τ)] ≤ βν(0)S(0) = S(0).

Consequently,
hup(K) = sup

ν∈D
Vν(x) ≤ S(0).

Since Vν(x)=VA
ν (x), from [1] we can easily obtain

hlow(K) ≤ (S0 − q)+ = X(0).

Moreover, hlow(K)≥X(0) has been mentioned earlier (X(0)∈B). So we have hlow(K)=X(0).
If δ<Vν(q), then we have Vν(x)≤VA

ν (x). The desired result can be obtained in a
similar way. ¤
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6 Perpetual Israeli δ−penalty put option with dividends

In this section, we will consider perpetual Israeli δ-penalty call options with constant
coefficients r>0, σ>0, q>0, and one stock which pays dividends at a certain fixed rate
d∈(0, r). Here 0≤t<∞. Denoting by x=S(0)∈(0, ∞) the initial stock-price, we have

S(t) = x · exp{(r− d− 1
2

σ2)t + σW(t)}
= x · exp{σ(W(t)− ρt)}, 0 ≤ t < ∞, (6.1)

where ρ , (d− r)/σ + (σ)/2. From [1], for 0<ε<2β/σ2, we have

E0
[

sup
0≤t<∞

(
e−rtY(t)

)1+ε]
< ∞, and lim

t→∞
e−rtY(t) = 0, a.s., (6.2)

which implies that Theorem 3.1 holds.
First, we will consider the unconstrained case. Game option is introduced by kifer,

Kyprianou and Ekström extend the research, for some special game options, obtain
closed-form expressions of the prices through martingale tools and excessive func-
tions. Here we shall sketch the main steps of solving this problem by means of varia-
tional arguments. First, let

G(x) , sup
τ∈S0,∞

inf
γ∈S0,∞

E0
[
e−r(τ∧γ)Z(τ, γ)

]
, 0 < x < ∞. (6.3)

Consequently,

V0(t) = ess sup
τ∈St,∞

ess inf
γ∈St,∞

E0
[
e−r(τ∧γ−t)Z(τ, γ)|Ft

]
= G(St). (6.4)

Clearly, qua penalty, the size of δ determines the choice of stopping time for the writer.
Beyond a certain value of δ it would not seem optimal for the writer to exercise at all.
In order to depict this measurement, we introduce reward function as

g(x) , sup
τ∈S0,∞

E0 [
e−rτ(Sτ − q)+]

, 0 < x < ∞. (6.5)

That is, the price of standard American call options, and the result is referred to
Karatzas. Then when δ≥g(q), it is not optimal for the writer to terminate the con-
tract in advance, and we have g(x)=G(x). When δ<g(q), experience indicates that
the optimal stopping time for the writer is given by

γq = inf{t ≥ 0 : S(t) = q}. (6.6)

While the optimal stopping time for the holder should be searched in the form of

τa = inf{t ≥ 0 : S(t) ≥ a}, a ∈ (q, ∞). (6.7)
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In order to compute the optimal reward function of (6.3), we consider the problem

{
G(x) = x− q, x ∈ [a, ∞),
(L− r)G(x) = 0, x ∈ (0, q) ∪ (q, a),

(6.8)

where

L = (r− d)x
∂

∂x
+

1
2

σ2x2 ∂2

∂x2 , (6.9)

is the infinitesimal generator of the process S under measure P. In addition, we intro-
duce boundary conditions as

lim
x→q

G(x) = δ, lim
x↑a

G(x) = a− q, lim
x↑a

G′(x) = 1, lim
x↓0

G(x) = 0. (6.10)

We will omit the process of solving this equation and finally have

G(x) =





Axβ1 , 0 < x ≤ q,
Bxβ1 + Cxβ2

, q < x < a,
x− q, a ≤ x < ∞,

(6.11)

where

A = δq−β1 , B =
(a− q)qβ2 − δaβ2

qβ2 aβ1 − qβ1 aβ2
, C =

δaβ1 − (a− q)qβ1

qβ2 aβ1 − qβ1 aβ2
. (6.12)

While q=ay, y is the solution in (0, 1) to the equation

yβ2 − yβ1 +
δ

q
(β1 − β2)y− (1− y)(β1yβ2 − β2yβ1) = 0, (6.13)

where

β1 =
ρ +

√
ρ2 + 2r
σ

∈ (1,
r

r− d
), β2 =

ρ−√
ρ2 + 2r
σ

< 0, (6.14)

are the roots of the equation
σ

2
β2 − ρβ− r

σ
= 0.

Finally, we need the convexity of G(x) to validate that it is the price of this game
option. From its expression, we only need to point out that it is convex at the point q,
that is, G′(q+)≥G′(q−), which is equivalent to prove y≥(β1 − 1)/β1. Note that if

δ = g(q), y = (β1 − 1)/β1,

when δ=0, y=1. Thus, from (6.12) and (6.13) we can obtain the desired result. In
addition, we get that optimal stopping times for the writer and holder are given by
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τ∗,τa, γ∗,γq respectively. Now let us consider the choice of the portfolio for both
sides. For that, let Y(t) = e−rtG(St), and Ito formula gives

Y(t) = Y(0) +
∫ t

0
e−ru(L− r)G(Su)du +

∫ t

0
σY(u)

SuG′(Su)
G(Su)

dW0(u)

+
∫ t

0
e−ru

(
G′(q+)− G′(q−)

)
dL(u)

= P0 +
∫ t

0
e−ru(−d · Su + rq)1(Su>a)du +

∫ t

0
σY(u)

SuG′(Su)
G(Su)

dW0(u)

+
∫ t

0
e−ru

(
G′(q+)− G′(q−)

)
dL(u), (6.15)

where L(t) is the local time of S(t) at q. Set t=t ∧ γ∗, then the last term of the above is
0 since the local time L(t) increases only at t such that S(t)=q. Therefore we have

Y(t ∧ γ∗) = P0 +
∫ t∧γ∗

0
e−ru(−d · Su + rq)1(Su>a)du

+
∫ t∧γ∗

0
σY(u)

SuG′(Su)
G(Su)

dW0(u). (6.16)

If let

Ĉ(t) ,
∫ t∧γ∗

0
(d · Su − rq)1(Su>a)du, p̂(t) , StG′(St)

G(St)
,

then the comparison with (5.10) (set ν ≡ 0) gives

VP0,π̂,Ĉ(t ∧ γ∗) = G(St∧γ∗) ≥ Z(t, γ∗).

Similarly, for (6.15), set t = τ∗∧ t, then we have

Y(τ∗ ∧ t) = P0 +
∫ τ∗∧t

0
σY(u)

SuG′(Su)
G(Su)

dW0(u) +
∫ τ∗∧t

0
e−ru

(
G′(q+)− G′(q−)

)
dL(u).

Let

Č(t) ,
∫ τ∗∧t

0
[G′(q+)− G′(q−)]dL(u), p̌ (t) , −StG′(St)

G(St)
.

Consequently,
−V−P0,π̌,Č(τ∗∧ t) = G(Sτ∗∧t) ≤ Z(τ∗, t).

For the sake of plainness, we summarize the above result as the following theorem.

Theorem 6.1. The expression of the optimal reward function G(x) is given by (6.11), and the
optimal portfolio (γ̂, π̂, Ĉ) of the writer is given by

γ̂ = inf{t ≥ 0 : S(t) = q}, p̂(t) =
StG′(St)

G(St)
,

Ĉ(t) =
∫ t∧γ∗

0
(d · Su − rq)1(Su>a)du. (6.17)
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From the definition of p̂(t) we can obtain π̂(t), while the optimal hedging portfolio (τ̌, π̌, Č)
of the holder is given by

τ̌ = inf{t ≥ 0 : S(t) ≥ a}, π̌(t) = −π̂(t),

Č(t) =
∫ τ∗∧t

0
[G′(q+)− G′(q−)]dL(u). (6.18)

Now, let us deal with closed constraints on portfolio. Clearly, under the case with
dividend we have

dS(t) = S(t) [(r− d− ν(t))dt + σdWν(t)] , 0 ≤ t < ∞,

βν(t)S(t) = exp
{
−

∫ t

0
[δ(νs) + ν(s) + d]ds + σWν(t)− 1

2
σ2t

}
. (6.19)

From the proof of Proposition 5.2, we know that it remains valid in this infinite-
horizon case.

Example 6.1. Prohibition of short-selling of stock. That is, the capital invested in the
stock can not be negative. Then we have

K+ = [0, ∞), K− = (−∞, 0], δ(y) = 0, K̃ = [0, ∞).

Thus, for any y∈K̃, δ(y) + y=y, it satisfies the condition of Proposition 5.2, so we have

hlow(K) = X(0) = (S(0)− q)+, hup(K) = P(0) = G(S(0)) ≤ S(0). (6.20)

Indeed, the first claim can be obtained by Proposition 5.2 directly. For the second
claim, as mentioned in section 4 that hup(K)≥P(0) holds, we only need to give the
reverse inequality. From (6.17) we know p̂(·)∈K+, and the triple (γ̂, π̂, Ĉ) given by
Theorem 6.1 satisfies

VP0,π̂,Ĉ(t ∧ γ̂) ≥ Z(t, γ̂). (6.21)

So P(0)∈A. It follows from the definition of hup(K) that hup(K)≤P(0).

Example 6.2. Constraints on the short-selling of stock. That is, the wealth invested in
the stock can be negative; however, there must have some limit. Then in this case we
have

K+ = [−k, ∞), K− = (−∞,−k], δ(y) = ky, K̃ = [0, ∞),

where k>0 is a constant. Thus, for any y∈K̃, δ(y) + y=(1 + k)y, which satisfies the
condition of Proposition 5.2. Similar to Example 6.1, we can also show that (6.20)
holds.
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