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Abstract. The solution of boundary value problems (BVP) for fourth order differ-
ential equations by their reduction to BVP for second order equations, with the aim
to use the available efficient algorithms for the latter ones, attracts attention from
many researchers. In this paper, using the technique developed by the authors in
recent works we construct iterative method for a problem with complicated mixed
boundary conditions for biharmonic equation which is originated from nanoflu-
idic physics. The convergence rate of the method is proved and some numerical
experiments are performed for testing its dependence on a parameter appearing
in boundary conditions and on the position of the point where a transmission of
boundary conditions occurs.
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1 Introduction

The solution of fourth order differential equations by their reduction to BVP for the
second order equations, with the aim of using available efficient algorithms for the lat-
ter ones, attracts attention from many researchers. Namely, for the biharmonic equa-
tion with the Dirichlet boundary condition, there has been intensive investigation on
the iterative method, which leads the problem to two problems for the Poisson equa-
tion at each iteration (see, e.g., [8,9,11]). In 1992, Abramov and Ulijanova [1] proposed
an iterative method for the Dirichlet problem for the biharmonic type equation, but
the convergence of the method is not proved. In our previous works [3, 4, 6, 7] with
the help of boundary or mixed boundary-domain operators introduced appropriately,
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we constructed iterative methods for biharmonic and biharmonic type equations as-
sociated with the Dirichlet, Neumann or simple type of mixed boundary conditions.
These iterative methods are originated from our earlier works [2, 5].

In this work we develop our technique for a problem with rather complicated
mixed conditions for biharmonic equation, namely, we consider the following prob-
lem

∆2u = f , in Ω, (1.1a)
∂u
∂x

= g1,
∂∆u
∂x

= g2, on Γ1 , (1.1b)

u = g3,
∂u
∂y

+ b∆u = g4, on Γ2, (1.1c)

∂u
∂x

= g5,
∂∆u
∂x

= g6, on Γ3, (1.1d)

u = g7, on Γ4 ∪ Γ5, (1.1e)
∂u
∂y
− b∆u = g8, on Γ4, (1.1f)

∆u = g9, on Γ5, (1.1g)

where Ω is the rectangle (0, l1)× (0, l2), and Γ1, · · · , Γ5 are parts of the boundary Γ=∂Ω
as shown in Fig. 1, ∆ is the Laplace operator, f and gi (i=1, · · · , 9) are functions given
in Ω and on parts of the boundary Γ, respectively, b =const≥ 0.

This problem with special right hand sides in equation and boundary conditions
describes the slip behaviour in liquid films on surfaces of partterned wettability (see
[12]). For the problem in general setting (1.1), we propose an iterative method which
reduces it to a sequence of problems for the Poisson equation. The convergence of the
method will be established and the numerical experiments will confirm the efficiency
of the method under investigation.
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Figure 1: Domain Ω and parts of its boundary.
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2 Reduction of the problem to an operator equation

As usual, we set
∆u = v, v |Γ2= g, v |Γ4= h. (2.1)

Then the problem (1.1) is decomposed into two consecutive problems

∆v = f , in Ω, (2.2a)
∂v
∂x

=
{

g2, on Γ1,
g6, on Γ3,

(2.2b)

v =





g, on Γ2,
h, on Γ4,
g9, on Γ5,

(2.2c)

and

∆u = v, in Ω, (2.3a)
∂u
∂x

=
{

g1, on Γ1,
g5, on Γ3,

(2.3b)

u =
{

g3, on Γ2,
g7, on Γ4 ∪ Γ5.

(2.3c)

It should be noticed that the solution v of Problem (2.2) and consequently the solution
u of Problem (2.3) depends on the temporarily unknown boundary functions g and h.
For determining these functions we shall use two remaining conditions in (1.1c) and
(1.1f), which may be rewritten in the form

∂u
∂ν

+ b∆u = ϕ, on Γ2 ∪ Γ4. (2.4)

Here, ν denotes the unit outward normal to the boundary Γ and

ϕ =
{

g4, on Γ2,
−g8, on Γ4.

(2.5)

Taking into account (2.1) and denoting the trace of the function v on Γ2 ∪ Γ4 by v0, that
is,

v0 =
{

g, on Γ2,
h, on Γ4,

we rewrite (2.4) in the form

∂u(v0)
∂ν

+ bv0 = ϕ, on Γ2 ∪ Γ4. (2.6)
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Now we shall represent the above equality in the form of an operator equation. For
this purpose let us introduce an operator S acting on the functions v0 defined on Γ2 ∪
Γ4 by the formula

Sv0 =
∂u
∂ν

∣∣∣
Γ2∪Γ4

, (2.7)

where u is the function found from the problems

∆v = 0, in Ω, (2.8a)
∂v
∂ν

= 0, on Γ1 ∪ Γ3, (2.8b)

v =
{

v0, on Γ2 ∪ Γ4,
0, on Γ5,

(2.8c)

and

∆u = v, in Ω, (2.9a)
∂u
∂ν

= 0, on Γ1 ∪ Γ3, (2.9b)

u = 0, on Γ2 ∪ Γ4 ∪ Γ5. (2.9c)

In order to investigate properties of the operator S we introduce the space H=L2(Γ2 ∪
Γ4) with the scalar product

(v0, ṽ0) =
∫

Γ2∪Γ4

v0.ṽ0dΓ, v0, ṽ0 ∈ H,

and the norm ||v0||=
√

(v0, v0).
Let ũ and ṽ be the solutions of Problem (2.8) and Problem (2.9) corresponding to

ṽ0, respectively.

Property 1. S is a symmetric and positive operator in H.
Proof. Let v0 and ṽ0 be two functions in H such that Sv0 and Sṽ0 belong H, too.

Consider
J = (Sv0, ṽ0) =

∫

Γ2∪Γ4

∂u
∂ν

.ṽdΓ. (2.10)

Since
∂u
∂ν

= 0, on Γ1 ∪ Γ3, (see (2.9)),

and
ṽ = 0, on Γ5, (see (2.8) corresponding to ṽ0),

from (2.10) we obtain

J =
∫

Γ

∂u
∂ν

.ṽdΓ.

Due to
u = 0, on Γ2 ∪ Γ4 ∪ Γ5, (see (2.9)),
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and
∂ṽ
∂ν

= 0, on Γ1 ∪ Γ3, (see (2.8) corresponding to ṽ0),

we have ∫

Γ
u

∂ṽ
∂ν

dΓ = 0.

Therefore, we can write

J =
∫

Γ

(
∂u
∂ν

ṽ− u
∂ṽ
∂ν

)
dΓ.

Using the Green formula we get

J =
∫

Ω
(ṽ∆u− u∆ṽ)dΩ.

Now, taking into account that ∆ṽ = 0 and ∆u = v, we have

J =
∫

Ω
ṽ.vdΩ.

Thus,

(Sv0, ṽ0) =
∫

Ω
v.ṽdΩ, (2.11)

and the symmetry of S is proved. Next, from (2.11) we have

(Sv0, v0) =
∫

Ω
v2.dΩ > 0. (2.12)

Let (Sv0, v0)=0. Then from (2.12), it follows v≡0 in Ω. Consequently, v|Γ=0 and in
particular v |Γ2∪Γ4=0, i.e, v0=0. This proves the positivity of S. ¤

Property 2. S is compact operator in H.
Proof. This property can follow from the theory of elliptic problems and embed-

ding theorems (see [10]). Namely, if v0∈Hs(Γ2 ∪ Γ4) (s≥0) then the solution of Prob-
lem (2.8) v∈Hs+1/2(Ω), and hence, Problem (2.9) has a solution u∈Hs+5/2(Ω). There-
fore, by the embedding theorem we have

∂u
∂ν

∣∣
Γ2∪Γ4

∈ Hs+1(Γ2 ∪ Γ4).

So, the operator S maps Hs(Γ2 ∪ Γ4) into Hs+1(Γ2 ∪ Γ4) and consequently, is compact
due to the compactness of the embedding of Hs(Γ2 ∪ Γ4) into Hs+1(Γ2 ∪ Γ4). ¤

Now, we return to Problems (2.2) and (2.3). Represent their solutions in the form

v = v + v̂, u = u + û ,
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where v, u are the solutions of Problems (2.8), (2.9), and v̂, û are the solutions of
Problems

∆v̂ = f , in Ω, (2.13a)
∂v̂
∂x

=
{

g2, on Γ1,
g6, on Γ3,

(2.13b)

v̂ =
{

0, on Γ2 ∪ Γ4,
g9, on Γ5,

(2.13c)

and

∆û = v̂, in Ω, (2.14a)
∂û
∂x

=
{

g1, on Γ1,
g5, on Γ3,

(2.14b)

û =
{

g3, on Γ2,
g7, on Γ4 ∪ Γ5.

(2.14c)

Then from the definition of S we have

Sv0 =
∂u
∂ν

∣∣∣
Γ2∪Γ4

.

Since
∂u
∂ν

=
∂u
∂ν

+
∂û
∂ν

= Sv0 +
∂û
∂ν

,

from (2.6) we obtain the equation

Sv0 + bv0 = ψ, (2.15)

where

ψ = ϕ− ∂û
∂ν

, on Γ2 ∪ Γ4. (2.16)

Thus, we have obtained Eq. (2.15) for determining the unknown boundary function
v0 on Γ2 ∪ Γ4.

3 Iterative method

Set
B = S + bI, (3.1)

where I is the identity operator. Then Eq. (2.15) can be rewritten in the form

Bv0 = ψ. (3.2)
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Since the operator S is proved to be symmetric, positive and compact in the space H,
operator B is also symmetric, positive and

bI < B ≤ (||S||+ b)I. (3.3)

Consider the following iterative scheme

v(k+1)
0 − v(k)

0
τ

+ Bv(k)
0 = ψ, k = 0, 1, ...

v0 is given.
(3.4)

Theorem 3.1. The iterative scheme (3.4) is realized by the following process:

i) Given v(0)
0 , for example, v(0)

0 =0 on Γ2 ∪ Γ4.

ii) Knowing v(k)
0 (k=0, 1, ...) solve consecutively two problems

∆v(k) = f , in Ω, (3.5a)

∂v(k)

∂x
=

{
g2, on Γ1,
g6, on Γ3,

(3.5b)

v(k) =

{
v(k)

0 , on Γ2 ∪ Γ4,
g9, on Γ5.

(3.5c)

and

∆u(k) = v(k), in Ω, (3.6a)
∂u(k)

∂x
=

{
g1, on Γ1,
g5, on Γ3,

(3.6b)

u(k) =
{

g3, on Γ2,
g7, on Γ4 ∪ Γ5.

(3.6c)

iii) Update the new approximation by

v(k+1)
0 = v(k)

0 + τ

(
ϕ− ∂u(k)

∂ν
− bv(k)

0

)
, on Γ2 ∪ Γ4. (3.7)

Proof. Putting v(k) = v̂ + v(k), u(k) = û + u(k), where v̂, and û are the solution of
(2.13) and (2.14), respectively, we obtain that v(k), u(k) satisfy the following problems

∆v(k) = 0, in Ω, (3.8a)

∂v(k)

∂ν
= 0, on Γ1 ∪ Γ3, (3.8b)

v(k) =

{
v(k)

0 , on Γ2 ∪ Γ4,
0, on Γ5.
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∆u(k) = v(k), in Ω, (3.9a)

∂u(k)

∂ν
= 0, on Γ1 ∪ Γ3, (3.9b)

u(k) = 0, on Γ2 ∪ Γ4 ∪ Γ5.

Consequently, it is easy to see that

Sv(k)
0 =

∂u(k)

∂ν

∣∣∣
Γ2∪Γ4

.

Since
∂u(k)

∂ν
=

∂û
∂ν

+
∂u(k)

∂ν
,

we have
∂u(k)

∂ν
= Sv(k)

0 +
∂û
∂ν

, on Γ2 ∪ Γ4.

Substituting this formula into (3.7) we obtain

v(k+1)
0 = v(k)

0 + τ

(
ϕ− ∂û

∂ν
− Sv(k)

0 − bv(k)
0

)
.

Taking into account (2.16) and (3.1) we have

v(k+1)
0 = v(k)

0 + τ
(
ψ− Bv(k)

0

)
.

This is an another form of iterative scheme (3.4). Thus, the theorem is proved. ¤
Before stating the result on convergence of the iterative process (3.5)-(3.7) we as-

sume that the data functions of the original problem (1.1a)-(1.1g) are sufficiently smooth
and this problem has a unique solution which also is sufficiently smooth.

In the case if b>0 we have the following theorem of the convergence of the iterative
scheme (3.4).

Theorem 3.2. Let b>0 and let u be the solution of the original problem (1.1a)-(1.1g). Then
the iterative scheme (3.4) (or equivalently, the iterative process (3.5)-(3.7) converges if

0 < τ <
2

‖S‖+ b
. (3.10)

In the case if

τ =
1

‖S‖/2 + b
, (3.11)

there holds the estimate

‖u(k) − u‖H5/2(Ω) 6 Cρk, k = 1, 2, ..., (3.12)
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where C is a positive constant, and

ρ =
1− ξ

1 + ξ
, ξ =

b
b + ‖S‖ . (3.13)

Proof. The convergence of the iterative scheme (3.4) under the condition (3.10)
follows directly from the theory of two-layer iterative scheme [13] applied to Eq. (3.2).
Besides, if τ is chosen by the formula (3.11) then according to this theory we have

‖v(k)
0 − v0‖ 6 ρk‖v(0)

0 − v0‖.

In view of this estimate in combination with the estimate

||v(k) − v||H1/2(Ω) ≤ C1||v(k)
0 − v0||

for the solution of the problem

∆(v(k) − v) = 0, in Ω, (3.14a)
∂

∂x
(v(k) − v) = 0, in Γ1 ∪ Γ3, (3.14b)

v(k) − v =

{
v(k)

0 − v0, on Γ2 ∪ Γ4,
0, on Γ5,

(3.14c)

and the estimate
||u(k) − u||H5/2(Ω) ≤ C2||v(k) − v||H1/2(Ω)

for the solution of

∆(u(k) − u) = v(k) − v, in Ω, (3.15a)
∂

∂x
(u(k) − u) = 0, in Γ1 ∪ Γ3, (3.15b)

u(k) − u = 0, on Γ2 ∪ Γ4 ∪ Γ5, (3.15c)

which follows from the general theory of elliptic problems [10], we obtain the estimate
(3.12) with C = C1C2‖v(0)

0 − v0‖. Here C1 and C2 are positive constants. ¤
Now consider the case b=0. In this case the convergence of the iterative scheme

(3.4) is guaranteed by Lemma A. 1 in Appendix A. due to the compactness and pos-
itivity of the operator S but we can not get any estimate for the error of approximate
solution.

4 Numerical examples and discussion

We performed some experiments in MATLAB for testing the convergence of the iter-
ative process (3.5)-(3.7) in dependence on the parameter b appearing in the boundary
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conditions (1.1c) and (1.1f), which later appears in Eq. (2.15) and in dependence on
the position of the point a, where transmission of boundary conditions on Γ4 and
Γ5 occurs. In the examples considered below the computational domain is the unit
square, i.e, l1=l2=1, with uniform grids including 65× 65 and 129× 129 nodes. The
mixed BVP for the Poisson equation (3.5), (3.6) is discretized by difference scheme of
second order approximation (see Appendix B). After that the obtained system of dif-
ference equations is solved by the method of complete reduction [14]. For computing
the normal derivative in (3.7) we also use a formula of second order error. Since the
calculation or the estimation of ‖S‖ is difficult, we can not choose optimal iterative
parameter τ by the formula (3.10). Instead of this, by experiments we observe that the
value

τ∗ =
1

b + 0.4
,

is best in comparison with some other values of τ.
Below we report the results of computation for several examples, where we first

take exact solution u(x, y) , calculate its corresponding boundary conditions, and af-
terwards perform iterative process (3.5)-(3.7) until

‖u(k+1) − u(k)‖∞ < h2,

h being the stepsize of the grid.

Example 1 We take

u = xey + yex, h =
1
64

.

We have h2 ≈ 2.44× 10−4. The results of computation for the cases a=1/2 and a=3/4
are given in Table 1, where K is the number of iterations, error=‖u(k) − u‖∞.

For a=1/4 and some other values of a the result of convergence of the iterative
process (3.5)-(3.7) is only slightly different from the above table.

Table 1: Convergence of the iterative scheme in Example 1 on grid 65× 65.

a = 1/2 a = 3/4b
K error K error

2 4 1.12e-5 4 1.18e-5
1 4 2.89e-5 4 3.21e-5

0.5 5 5.58e-5 5 5.60e-5
0.2 7 9.10e-5 6 1.93e-4
0.1 8 1.83e-4 7 3.29e-4
0.05 9 2.63e-4 9 2.63e-4
0.02 10 3.27e-4 9 5.11e-4
0.01 10 4.17e-4 10 4.41e-4

0.005 10 4.27e-4 10 4.98e-4
0.002 10 5.08e-4 10 5.37e-4
0.001 10 5.21e-4 10 5.50e-4

0 10 5.34e-4 10 5.64e-4
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Table 2: Convergence of the iterative scheme in Example 1 on grid 129× 129.

b K error
2 4 3.99e-6
1 5 5.21e-6
0.5 6 1.68e-5
0.2 8 4.20e-5
0.1 10 5.65e-5
0.05 12 6.67e-5
0.02 13 1.13e-4
0.01 13 1.56e-4
0.005 14 1.63e-4
0.002 14 1.47e-4
0.001 14 1.69e-4
0 14 1.75e-4

The convergence of the iterative scheme computed on a more dense grid, namely,
with h=1/128 is also rather fast as is shown in Table 2 (for a=1/2).

Example 2 We take another function

u = sin x sin y,

and perform computation by the iterative scheme (3.5)-(3.7) on two different grids .
The result of convergence of the scheme is given in Table 3, where K1 and K2 are the
numbers of iterations for h=1/64 and h=1/128, respectively, a=1/2.

Example 3 We take

u = (x− 1)2(y− 1), a =
1
2

.

The result of convergence rate of the iterative scheme is presented in Table 4, where as

Table 3: Convergence of the iterative scheme in Example 2.

b K1 K2
2 3 4
1 4 4
0.5 4 5
0.2 5 7
0.1 6 8
0.05 7 9
0.02 7 9
0.01 7 10
0.005 7 11
0.002 8 11
0.001 8 11
0 8 11
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Table 4: Convergence of the iterative scheme in Example 3.

b K1 K2
2 3 4
1 4 5
0.5 5 6
0.2 6 8
0.1 7 9
0.05 8 11
0.01 9 12
0.005 9 13
0.001 9 13
0 9 13

in Table 3, K1 and K2 are the numbers of iterations for h=1/64 and h=1/128, respec-
tively.

From the results of computation on different examples, as shown in Tables 1-4,
we see that the convergence rate of the iterative process (3.5)-(3.7) increases with the
growth of b and slightly depends on the position of the point a, where the transmis-
sion of boundary conditions occurs. This agrees with Theorem 3.2 because in the
performed experiments we use the iterative parameter

τ∗ =
1

b + 0.4
,

which appears close to the optimal value. In this case the convergence rate of the
iterative method is determined by ρ given in (3.13), namely,

ρ =
‖S‖

2b + ‖S‖ .

Of course, the convergence of the discretized version of the iterative process (3.5)-(3.7)
on a grid with stepsize h is determined by some ρh close to ρ. More precisely, Sh, as
discrete analog of S , is always positive definite

δh I 6 Sh 6 ∆h I, δh > 0,

then with optimal τh, the convergence rate is determined by

ρh =
∆h − δh

∆h + δh + 2b
.

Therefore, the iterative process (3.5)-(3.7) in discretized version, always converges for
any b>0, as was seen from Tables 1-4.

In the above examples for testing the convergence of the proposed iterative method
we take the parameter b in the range [0, 2], but in the problem of nanofluidic physics
[12] it may be any nonnegative number because it is the Navier slip length.
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Appendix A

Lemma A.1 Suppose that A is a linear, symmetric, positive and compact operator in a Hillbert
space H and u is the solution of the equation

Au = f , f ∈ R(A). (A. 1)

Then the iterative method
{ uk+1 − uk

τ
+ Auk = f , k = 0, 1, ...

u0 is given,
(A. 2)

converges if

0 < τ <
2
‖A‖ . (A. 3)

Proof. Since the operator A is linear, symmetric and compact in H there exists
a orthonormal basis of H consisting of the eigenvectors of A. Denote this basis by
e1, e2, · · · , en, · · · and the corresponding eigenvalues which are positive by λ1, λ2, · · · ,
λn, · · · . So, we have Aei=λiei (i=1, 2,· · · ). Suppose these eigenvalues are sorted in
descending order, i.e.,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · > 0.

Set zk=uk − u. Then, from (A. 2) it is easy to verify that

zk+1 = (I − τA)zk = (I − τA)kz0.

The convergence of the iterative method (A. 2) for Eq. (A. 1) will be proved if we can
show that

∀g ∈ H, ‖(I − τA)kg‖ → 0, as k → ∞. (A. 4)

For this purpose we suppose that

g =
∞

∑
n=1

anen.

Then

(I − τA)kg =
∞

∑
n=1

ξk
nanen ,

where ξn = 1− τλn. We have

‖g‖2 =
∞

∑
n=1

|an|2, ‖(I − τA)kg‖2 =
∞

∑
n=1

|ξn|2k|an|2.

Let ε be an arbitrary small number, ε>0. Then, there is a number N=N(ε) sufficiently
large so that

∞

∑
n=N+1

|an|2 <
ε2

2
. (A. 5)
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Since τ satisfies the condition (A. 3) and ‖A‖=λ1 we have |ξn|<1 (n=1, 2, · · · , N).
Therefore |ξn|2k→0 as k→∞. Hence we can choose K=K(ε) sufficiently large so that

N

∑
n=1

|ξn|2k|an|2 <
ε2

2
, ∀ k > K. (A. 6)

Thus, ∀ k>K we have

‖(I − τA)kg‖2 =
N

∑
n=1

|ξn|2k|an|2 +
∞

∑
n=N+1

|ξn|2k|an|2

<
ε2

2
+

∞

∑
n=N+1

|an|2 <
ε2

2
+

ε2

2
= ε2,

due to (A. 5) and (A. 6).
In summary, ∀ε>0, ∃K=K(ε) such that

‖(I − τA)kg‖ < ε, ∀ k > K,

which is the desired result (A. 4). The lemma is proved. ¤

Appendix B

Discretization of mixed boundary value problem for Poisson equation.
The mixed boundary value problem

− ∆u = f (x, y),
u(x, 0) = g1(x), u(x, l2) = g2(x),
∂u
∂x

∣∣∣
x=0

= µ1(y),
∂u
∂x

∣∣∣
x=l1

= µ2(y),

in(0, l1)× (0, l2), on the uniform grid

ω̄h1h2 =
{
(xi, yj) = (ih1, jh2), 0 ≤ i ≤ M, 0 ≤ j ≤ N

}
,

with h1=l1/M, h2=l2/N, is approximated by the following difference scheme

− 1
h2

1

(
ui−1,j − 2uij + ui+1,j

)− 1
h2

2

(
ui,j−1 − 2uij + ui,j+1

)
= f (xi, yj),

1 ≤ i ≤ M− 1, 1 ≤ j ≤ N − 1,

− 2
h1

1
h1

(u1j − u0j)− 1
h2

2
(u0,j−1 − 2u0j + u0,j+1) = − 2

h1
µ1(yj) + f (x0, yj),

1 ≤ j ≤ N − 1,
2
h1

1
h1

(uMj − uM−1,j)− 1
h2

2
(uM,j−1 − 2uMj + uM,j+1) =

2
h1

µ2(yj) + f (l1, yj),

1 ≤ j ≤ N − 1,
ui0 = g1(xi), uiN = g2(xi), 0 ≤ i ≤ M,
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where uij ≈ u(xi, yj). The truncation error of this difference scheme is of second-order.
Introduce the notations

Uj = (u0j, u1j, ..., uMj)T, r = h2
2/h2

1, d = 2(1 + r),

C =




d −2r 0 . . . 0 0
−r d −r . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −2r d


 ∈ R(M+1)×(M+1),

F0 =
(

g1(x0), g1(x1), . . . , g1(xM)
)T, FN =

(
g2(x0), g2(x1), . . . , g2(xM)

)T,

Fj = h2
2

(
f (x0, yj)− 2

h1
µ1(yj), f (x1, yj), . . . , f (xM−1, yj), f (xM, yj) +

2
h1

µ2(yj)
)T

.

Then the difference scheme can be written in the standard form of three- point vector
equations

−Uj−1 + CUj −Uj+1 = Fj, 1 ≤ j ≤ N − 1,

U0 = F0, UN = FN ,

for which the method of complete reduction [14] is applicable.
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