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Abstract. In this paper, we are presenting a proposal for new modified algorithms
for RRGMRES and AGMRES. It is known that RRGMRES and AGMRES are viable
methods for solving linear discrete ill-posed problems. In this paper we have fo-
cused on the residual norm and have come-up with two improvements where suc-
cessive updates and the stabilization of decreases for the residual norm improve
performance respectively. Our numerical experiments confirm that our improved
algorithms are effective for linear discrete ill-posed problems.
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1 Linear dicrete ill-posed problems

Recently it is tried to use GMRES methods for linear discrete ill-posed problems (LDIP).
Conjugate gradient method and SVD is also applied to solve them, but we focus on the
GMRES methods for LDIP in this paper. As an introduction, we will shortly describe
the LDIP. The details of the GMRES methods for them are taken up in later sections.

Hansen [5], which is a good introduction to discrete ill-posed problems (LDIP), says
that the LDIP arise from the discretization of ill-posed problems such as the first kind
of Fredholm integral equation. The first kind of Fredholm integral equation

∫ 1

0
K(s, t) f (t)dt = g(s), 0 ≤ s ≤ 1, (1.1)
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where the right-hand side g(s) and the kernel K are known, but f is unknown, is one
of inverse problems. We obtain ”input” from ”output” when we deal with inverse
problems. After descretizing (1.1), a linear system like

Ax = b, (1.2)

where A ∈ Rn×n, x, b ∈ Rn, is derived. The coefficient matrix A appeared from the
LDIP is generally ill-conditioned, because it has clustered tiny singular values or sin-
gular values decaying to zero. The right-hand side vector in (1.2) represents the ”out-
put”, so it often includes measurement errors. Then the known right-hand side vector
is

b̄ = b + berror. (1.3)

Since usually we don’t know b, berror, the approximate solution is written as

x̄∗ = arg min
x̄j, j≥0

‖x̄j − x‖, (1.4)

in which x̄j, j ≥ 0 is generated in j steps of the GMRES methods. When the size of LDIP
is small, the analogous of SVD are used for them. However, some iterative methods
such as the CG method [5, 6, 8] and the GMRES meshod [1–3] are applied to the large
scale LDIP for regularization.

2 GMRES methods for LDIP

The GMRES method by Saad and Shultz [10] is one of the popular iterative methods
for the linear system like (1.2) In particular the method works well when the coefficient
matrix A is non-symmetric. The GMRES generates an approximate solution whose
residual norm is minimum by using a Krylov subspace as follow.

‖b− Axj‖2 = min
x0+Kj(A,r0)

‖b− Ax‖2, (2.1)

Kj(A, r0) = span{r0, Ar0, . . . , Aj−1r0}, (2.2)

where j is the iteration number, x0 is the initial guess and r0 = b− Ax0 is the initial
residual.

One of the GMRES methods for solving LDIP is the Range Restricted GMRES
(RRGMRES) method by Calvetti et al. [2]. This method restricts the Krylov subspace
to generating an approximate solution within the range of coefficient matrix A. The
least squares problem is solved as follows:

‖b− Axj‖2 = min
x0+K (A,Ar0)

‖b− Ax‖2, (2.3)

Kj(A, r0) = span{Ar0, A2r0, . . . , Ajr0}. (2.4)
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Calvetti et al. [3] have confirmed that RRGMRES performs well when solving LDIP.
Another option for this is the augmented GMRES (AGMRES) method developed by
Baglama and Reichel [1]. The augmented GMRES method generates an approximate
solution by using not only the Krylov subspace but also a user-supplied space W as
follows:

‖b− Axj‖2 = min
x0+Kj(A,r0)+W

‖b− Ax‖2, (2.5)

It works well when the space W compensate features of exact solution. The augmen-
tation is available for the RRGMRES.

In a previous study, we made a proposal for an adaptive augmented GMRES
and RRGMRES (AAGMRES and AARRGMRES) method in Kuroiwa and Nodera [7]
where we concentrated on the selection of the best user-supplied space W for the aug-
mentation. In this paper, we are making a proposal for a new modification, which
focuses on successive updates and decreases of residual norms.

3 Improvements for RRGMRES and AGMRES

In this section, we have explored two ideas that improve the performances of RRGM-
RES and AGMRES, and have detailed our modified algorithms here. These ideas are
relevant to successive updates and transition of residual norms.

3.1 Successive Updates on GMRES

GMRES can apply a value for checking residual norm ‖r j‖2 at every iteration step
without any extra calculations [9]. As a result, it is possible to determine approximate
solution xj with optimal iterations. However, if it were possible to obtain an alter-
native to calculating residual norm ‖r j‖2 in RRGMRES and AGMRES, these methods
would be further optimized.

We first reviewed the successive updates and how it applies to GMRES, when the
Arnoldi decomposition is represented as

AVj = Vj+1H, (3.1)

where Vj = [v1, v2, . . . , vj] ∈ Rn×j and H ∈ Rj+1×j are orthonormal and upper Hes-
senberg matrices, respectively, ∀x ∈ Kj(A, r0) is x0 + Vjy, and y ∈ Rj is an arbitrary
vector. The first column of Vj is r0/‖r0‖2. Therefore, the residual form is able to be
transformed to

b− Ax
=b− A(x0 + Vjy) = r0 −Vj+1Hy

=Vj+1(‖r0‖2e1 − Hy) = Vj+1GT(g −Uy),
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where G = ΩjΩj−1 · · ·Ω1, g = G‖r0‖2e1, and U = GH is a upper triangular matrix
and e1 is an identity vector whose first element is 1. Here, Ωi is a rotation matrix
defined by

Ωi =




Ii−1
ci si
−si ci

In−i−2


 , (3.2)

where Ii is an i× i identity matrix and

si =
hi+1, i√(

hii
i−2

)2 + h2
i+1,i

, ci =
h(i−1)

i, i√(
hii

i−2

)2 + h2
i+1,i

, s2
i + c2

i = 1, (3.3)

with H ≡ [hi,j]. Since Vj+1 and G are orthogonal and unitary matrices, respectively,

‖b− Ax‖2 = ‖g −Uy‖2 = |γ|+ ‖ĝ − Ûy‖2,

where

g =
(

ĝ
γ

)
, U =

(
Û

0 · · · 0

)
.

The j th approximate solution is

xj = x0 + Vjyj, with yj = arg min
y

‖ĝ − Ûy‖2. (3.4)

When γ represents the j th residual norm ‖r j‖2, it is no need to compute the approxi-
mate solution xj for the residual norm at every step.

The second consideration was the successive updates and how it is applied to the
RRGMRES method. The first columns of Vj is Ar0/‖Ar0‖2 in the RRGMRES. Applying
VT

j+1 to the residual vector b− Axj, we obtain

VT
j+1(b− Axj) = VT

j+1r0 − Hy = GT(GVT
j+1r0 − GHy) = GT(gR −URy).

Then the residual norm is

‖b− Axj‖2 = ‖gR −URy‖2 = |γR|+ ‖ĝR − ÛRy‖2,

in which γR is the last element of gR. The j th approximate solution in the RRGMRES
is

xj = x0 + Vjyj, with yj = arg min
y

‖ĝR − ÛRy‖2, (3.5)
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and

|γR| = ‖b− Axj‖2. (3.6)

Eq. (3.6) enables RRGMRES to use alternative γR instead of residual norm r j without
computing approximate solution xj. This type of RRGMRES will be referred to as
RRGMRES with Successive Updates (SRRGMRES) from here on.

In AGMRES, the user-supplied space is

W = rangeW, (3.7)

Apply the QR factorization

AW = QR, (3.8)

where W ∈ Rn×p, Q ∈ Rn×p and R ∈ Rp×p. After applying Arnoldi process, we get

A[W, Vj] = [Q, Vj+1]
[

R H1
0 H2

]
, (3.9)

where H2 is upper Hessenberg and the first column of Vj is

(I −QQT)r0

‖(I −QQT)r0‖2
.

Since any vector x in x0 + Kj(r0, Ar0) + W can be written as x = x0 + [W, Vj]y,

b− Ax = b− A(x0 + [W, Vj]y) = r0 − [Q, Vj+1]
[

R H1
0 H2

]
y, (3.10)

Applying [Q, Vj+1]T to the above equation (3.10), we immediately obtain

[Q, Vj+1]T(b− Ax) = [Q, Vj+1]Tr0 −
[

R H1
0 H2

]
y

=GT
A

(
GA[Q, Vj+1]Tr0 − GA

[
R H1
0 H2

]
y
)

=GT
A(gA −UAy),

where GA = Ωp+jΩp+j−1 · · ·Ωp+1. Then the residual norm can be written as

‖b− Axj‖2 = ‖gA −UAy‖2 = |γA|+ ‖ĝA − ÛAy‖2,

where γA is the last element of gA. The j th approximate solution in the AGMRES is
represented as

xj = x0 + [W, Vj]yj, with yj = arg min
y

‖ĝA − ÛAy‖2. (3.11)
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and |γA| = ‖b − Axj‖2. It is possible to update the residual norm successively in
AGMRES without calculating approximate solution xj. This method will be referred
to as AGMRES with Successive Updates (SAGMRES) from here on. Similarly, SAR-
RGMRES is determined if successive updates are applied to RRGMRES.

Both RRGMRES and AGMRES are able to use a temporary value which represents
the residual norm at each step of their internal iteration without computing approxi-
mate solution xj.

3.2 Transition of residual norms

One good feature of GMRES is that its residual norm is non-increasing. The residual
norm will converge when coefficient matrix A is positive definite, and it will stagnate
but not increase when A is not positive definite. It has been confirmed that since
residual norm ‖r j‖2 is equal to the last element of g = G‖r0‖2e1 and 0 ≤ |si| ≤ 1, it
can be denoted as

‖r j‖2 = |(−1)jsjsj−1 · · · s1|‖r0‖2 = | − sj|‖r j−1‖. (3.12)

On the other hand, the residual norm of the range restricted or augmented methods,
e.g., RRGMRES and SRRGMRES or AGMRES and SAGMRES, respectively, do not
perform in the same manner as that of GMRES. In SRRGMRES, since γR, which rep-
resents the residual norm and the last element of gR, is written as

|γR| = ‖r j‖2 = | − sj‖r j−1‖2 + cj(vj+1, r0)|, (3.13)

the difference between ‖r j‖2 and ‖r j−1‖2 is

‖r j‖2 − ‖r j−1‖2 = |sj‖r j−1‖2 − cj(vj+1, r0)| − ‖r j−1‖2

=
{

cj(vj+1, r0)− (1 + sj)‖r j−1‖2, if γR ≥ 0,
(sj − 1)‖r j−1‖2 − cj(vj+1, r0), if γR < 0,

(3.14)

where (·, ·) represents an inner product. This means that the residual norm of the
range restricted methods will not necessarily decrease monotonously. In SAGMRES,
temporary value γA is

|γA| = ‖r j‖2 = | − sj‖r j−1‖2 + cj(vj+1, r0)|. (3.15)

Then the difference between ‖r j‖2 and ‖r j−1‖2 is represented as (3.14). The residual
norm ‖r j‖2 in the SAGMRES does not always decrease as well as the SRRGMRES.

Consequently, the range restricted methods and the augmented methods may not
reduce their residual norm at each step of their inner iterations. This feature is an im-
pediment to generating approximate solutions because these residuals have the pos-
sibility of not diverging. In such a case, it is necessary to locate and define a condition
in this manner:

Stop iteration if |sj‖r j−1‖2 − cj(vj+1, r0)| − ‖r j−1‖2 ≥ 0, (3.16)
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This condition applies to both the range restricted and augmented methods and makes
it possible to determine whether residual norm ‖r j‖2 is increasing or stagnating. The
j− 1 th computed solution is assumed to be the approximate solution. Condition (3.16)
helps generate better approximate solutions than either SRRGMRES or SAGMRES.

3.3 Modified algorithms for RRGMRES and AGMRES

We have found two remedies for the algorithms of RRGMRES and AGMRES in sec-
tions 3.1 and 3.2 respectively. One of the remedies involves the successive updates of
residual norm ‖r j‖2, and the other involves the transition of this.

Our modified algorithm for SRRGMRES will be referred to as the Decreasing-
Residual RRGMRES with Successive Updates (SDRRGMRES). Its algorithm is shown
in Algorithm 3.1. The remedy for transition of residual norms is applied to SDRRGM-
RES. Thus we added condition 3.16 to SRRGMRES. Steps for the successive updates
are detailed in lines 2, 11-13 and 18-22. gR and UR are updated at every iteration to
determine whether to stop the iteration process or not. Lines 14-17 define the criterion
for when residual norm ‖r j‖2 should not increase.

Algorithm 3.1: Decreasing-residual RRGMRES with successive update

1: Compute r0 = b− Ax0 and v1 := Ar0/‖Ar0‖2
2: Define g = (n + 1)-vector[g1, g2, . . . , gn+1], g1 = (v1, r0)
3: for j = 1, . . . , n do
4: Compute w := Avj
5: for i = 1, . . . , j do
6: hij := (w, vi)
7: w := w− hijvi
8: end for
9: hj+1,j = ‖w‖2

10: vj+1 = w/hj+1,j
11: gj+1 := (vj+1, r0)
12: Multiply Ωi, i = j− 1, . . . , 1 by the j th column of H
13: Compute sj, cj in (3.3)
14: if | − sj‖r j−1‖2 + cjgj+1| − ‖r j−1‖2 ≥ 0 then
15: j := j− 1
16: break loop
17: end if
18: Multiply Ωj by the j th column of H and g
19: ‖r j‖2 := gj+1
20: if ‖r j‖2 is small enough then
21: break loop
22: end if
23: end for
24: Compute yj the minimizer of (3.5) and xj = x0 + Vjyj

Our improved algorithm for SAGMRES will be referred to from here on as the
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Decreasing-Residual AGMRES with Successive Updates (SDAGMRES). Its algorithm
is shown in Algorithm 3.2. The remedy for transition of residual norms is applied to
SDAGMRES. Thus we added condition 3.16 to SAGMRES. Lines 4, 13-15 and 20-24
update gA and UA to obtain γA which is an alternative to residual norm ‖r j‖2, and
lines 16-19 help prevent residual norm ‖r j‖2 from increasing.

Algorithm 3.2: Decreasing-residual AGMRES with successive update

1: Apply QR factorization for AW = QR
2: Compute r0 = b− Ax0
3: Compute v1 = (I −QQT)r0/‖(I −QQT)r0‖2
4: Define g = (p + n + 1)-vector[g1, g2, . . . , gp+n+1], V := [Q, v1], H := R, g := VTr0
5: for j = p + 1, . . . , p + n do
6: Compute w := Avj
7: for i = 1, . . . , j do
8: hij := (w, vi)
9: w := w− hijvi

10: end for
11: hj+1,j = ‖w‖2
12: vj+1 = w/hj+1,j, V := [V, vj+1]
13: gj+1 := (vj+1, r0)
14: Multiply Ωi, i = j− 1, . . . , p + 1 by the j th column of H
15: Compute sj, cj in (3.3)
16: if | − sj‖r j−1−p‖2 + cjgj+1| − ‖r j−1−p‖2 ≥ 0 then
17: j := j− 1
18: break loop
19: end if
20: Multiply Ωj by the j th column of H and g
21: ‖r j−p‖2 := gj+1
22: if ‖r j−p‖2 is small enough then
23: break loop
24: end if
25: end for
26: Compute yj the minimizer of (3.11) and xj = x0 + [W, Vp+1:p+j]yj

SDRRGMRES and SDAGMRES can be restarted in the same manner as the stan-
dard GMRES. From here on, these methods will be referred to as SDRRGMRES(m) and
SDAGMRES(m) respectively. When we restart these algorithms, the upper limit of the
inner iteration is set to m. After approximate solution xj is generated, let x0 := xj, and
then go to line 1 in Algorithm 3.1 or line 2 in Algorithm 3.2.

4 Numerical experiments

Three numerical experiments of LDIP, are shown in this section. We solved them with
SGMERS(m), SRRGMRES(m), SAGMRES(m), SARRGMRES(m), SDRRGMRES(m), SDA-
GMRES(m) and SDRRGMRES(m), which have been discussed in previous sections,
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and compared their results. SGMRES(m) represents classical GMRES with successive
update. The LDIP is usually too ill-conditioned for obtaining well-approximated so-
lutions even if restart cycle m or the iteration number is large. Hence in every example
restart cycle m was set to be from 1 to 50. Each method had 50 variations, and the
maximum iteration number was set to 1500. Matrices W for user-supplied spaces W
were

W1 =




1
1
...
1


 , W2 =




1 1
1 2
...

...
1 n


 , W3 =




1 1 1
1 2 4
...

...
...

1 n n2


 , (4.1)

Wi = range Wk , 1 6 i 6 3, (4.2)

based on Baglama [1]. We used spaces W1, W2 or W3 when augmenting the Krylov
subspace. Thus there are 4 types of augmentation, for we are able to use Wi, 1 6 i 6 3
or we don’t augment any spaces. Then each method has 4 augmentations and 50
restart cycles, i.e., there are 200 patterns of computaion in each method.

All programs were written in C. An SGI Altix 450, configured with a Dual-Core
Intel Itanium 2 1.4 GHz processor was used. Error vector berror had a 0 mean and
1/3n2 variant normal random numbers for its elements. The elements of error vectors
berror for each example were the same. The condition for finishing the iteration was

‖r j‖2

‖r0‖2
= 1.0× 10−12.

Example 4.1. Our first example is a type of the Fredholm integral equation of the first
kind:

∫ π

0
exp(s cos t)x(t)dt = 2

sin s
s

, t ∈
[
0,

π

2

]
,

which is a test problem baart from the Regularization Tools developed by Hansen [4].
Exact function x(t) is equal to sin t. Each function is discretized with size n = 1000.
The condition number of coefficient matrix A is ‖A‖‖A−1‖ = 6.604× 1018.

We solved this problem with SRRGMRES(m), SARRGMRES(m), SDRRGMRES(m)
and SDARRGMRES(m). The results of the analogues of SGMRES(m) are not shown
because they did not perform as well as those of SRRGMRES(m). Table 1 shows that,
the decreasing-residual methods are more stable than methods only with successive
updates.

Table 1: Example 4.1 Distribution of the minimal error norms ‖x̄∗ − x‖2 by each method in each interval.

method ≤ 0.5 < ‖x̄0 − x‖2 = ‖x̄0 − x‖2
SRRGMRES, SARRGMRES 16 3 181

SDRRGMRES, SDARRGMRES 193 6 1
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Table 2: Example 4.1 Methods whose error norm is minimal in each of SRRGMRES(m), SARRGMRES(m),
SDRRGMRES(m) and SDARRGMRES(m).

method augmentation iteration ‖r j‖2 ‖x̄∗ − x‖2
SRRGMRES(5) - 30 1.564× 10−3 2.416× 10−3

SARRGMRES(3) W2 294 1.193× 10−5 1.090× 10−3

SDRRGMRES(40) - 29 1.042× 10−5 1.288× 10−3

SDARRGMRES(27) W3 13 1.023× 10−5 1.085× 10−3

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

SRRGMRES(m) and SARRGMRES(m)

(a) SRRGMRES(m) and SARRGMRES (m)

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

SDRRGMRES(m) and SDARRGMRES(m)

(b) SDRRGMRES (m) and SDARRGMRES(m)

Figure 1: Experiment 4.2 Distribution of log10 ‖x̄∗ − x‖2. Let restart cycle m be 1 ≤ m ≤ 50 and the
space for augmentation be Wi where 1 ≤ i ≤ 3. Each figure has 200 points.

Table 1 shows the distribution of minimum error norm ‖x̄∗ − x‖2. 90.5% of all
results from SRRGMRES(m) and SARRGMRES(m) were equal to initial error norm
‖x̄0 − x‖2. In other words, their error norm was not reduced through iterations,
whereas 96.5 % of all the results obtained through methods with decreasing-residual
conditions were under 0.5.

The distribution of log10 ‖x̄∗ − x‖2 can be seen in Fig. 1. Fig. 1(a) has 200 points
obtained through SRRGMRES(m) and SARRGMRES(m), and Fig. 1(b) has 200 points
obtained through SDRRGMRES(m) and SDARRGMRES(m), where 1 ≤ m ≤ 50. Space
Wi, where 1 ≤ i ≤ 3 was used for the augmentations.

According to Table 1 and Fig. 1, the conditions under which an increasing residual
norm is avoided, help make better approximate solutions.

The results with the smallest error norm in each method are shown in Table 2. We
can see that SDARRGMRES(27) with W3 performs best both in terms of error norm
‖x̄∗− x‖2 and the iteration number. The smallest error norm ‖x̄∗− x‖2 of SDARRGM-
RES(27) with W3 was a little smaller than that of SARRGMRES(3) with W2, which ex-
hibited the best performance among these methods without the decreasing-residual
condition. The iteration number of SDARRGMRES(27) with W3 was about 1/20 that
of SARRGMRES(3) with W2.

Example 4.2. Our second example is a test problem called foxgood from the Regular-
ization Tools developed by Hansen [4]:

∫ 1

0

(
s2 + t2) 1

2 x(t)dt =
1
3

((
1 + s2) 3

2 − s3
)

, t ∈ [0, 1].
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Table 3: Example 4.2 Distribution of the minimal error norms ‖x̄∗ − x‖2 by each method in each interval.

method ≤ 0.5 < ‖x̄0 − x‖2 = ‖x̄0 − x‖2
SRRGMRES, SARRGMRES 29 15 106

SDRRGMRES, SDARRGMRES 200 0 0

Table 4: Example 4.2 Methods whose error norm is minimal in each of SRRGMRES(m), SARRGMRES(m),
SDRRGMRES(m) and SDARRGMRES(m).

method augmentation iteration ‖r j‖2 (10−5) ‖x̄∗ − x‖2
SRRGMRES(4) - 816 3.029 7.193× 10−3

SARRGMRES(1) W2 1 2.971 1.429× 10−4

SDRRGMRES(20) - 802 3.039 5.040× 10−3

SDARRGMRES(17) W2 1 2.840 4.917× 10−6

Exact function x(t) equals t. We discretized each function with size n = 500. The
condition number of coefficient matrix A was ‖A‖‖A−1‖ = 6.317× 1019.

SRRGMRES(m), SARRGMRES(m), SDRRGMRES(m), SDARRGMRES(m) were ap-
plied to this example. In every case the analogue of SGMRES(m) did not perform as
well as that of SRRGMRES(m). The data in Table 3 indicates that SDRRGMRES(m) and
SDARRGMRES(m) are more stable than SRRGMRES(m) and SARRGMRES(m).

Table 3 and Fig. 2 show the distribution of minimal error norm ‖x̄∗ − x‖2 of the
applied methods with each restart cycle m, where 1 ≤ m ≤ 50 and space Wi, where
1 ≤ i ≤ 3 for augmentations. All of the results from the methods with the decreasing-
residual condition were under 0.5, while only about 3/10 of the results from the meth-
ods without this condition were under 0.5. The upper figures in Fig. 2(a) are from
the methods with only successive updating of the residual norm, and the lower ones
in Fig. 2(b) are from the methods which also had the decreasing-residual condition
explained in Section 3.2. These figures indicate that the minimal error norms were
significantly improved by this condition.

The best performances from the perspective of the error norm ‖x̄∗ − x‖2 are seen
in Table 4. According to Table 4, the iteration numbers of SDARRGMRES(17) with

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

SRRGMRES(m) and SARRGMRES(m)

(a) SRRGMRES(m) and SARRGMRES(m)

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

SDRRGMRES(m) and SDARRGMRES(m)

(b) SDRRGMRES(m) and SDARRGMRES(m)

Figure 2: Experiment 4.2 Distribution of log10 ‖x̄∗ − x‖2. Let restart cycle m be 1 ≤ m ≤ 50 and the
space for augmentation be Wi where 1 ≤ i ≤ 3. Each figure has 200 points.
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W2 and SARRGMRES(1) with W2 are the same, but the error norm of the SDARR-
GMRES(17) with W2 is the smallest and about 3/100 that of SARRGMRES(1) with W2.

Example 4.3. Our last example is phillips:
∫ 6

−6
φ(s− t)x(t)dt = (6− |s|)

(
1 +

1
2

cos
(πs

3

))
+

9
2π

sin
(

π|s|
3

)
, t ∈ [−6, 6],

φ(u) =
{

1 + cos
(

πu
3

)
, |u| < 3

0, |u| ≥ 3
,

which is also a test problem from the Regularization Tools developed by Hansen [4].
The exact function was set to x(t) = φ(t). We discretized each function with size n =
500. The condition number of the coefficient matrix A was ‖A‖‖A−1‖ = 1.653× 109.

We compared the results of SGMRES(m), SRRGMRES(m), SAGMRES(m), SARR-
GMRES(m), SDRRGMRES(m), SDAGMRES(m) and SDRRGMRES(m) in this problem.
Table 5 suggests that the decreasing-residual methods work better in particular in the
RRGMRES methods.

The best results of each method have been tabulated in Table 6. Error norm ‖x̄∗ −
x‖ of SAGMRES(5) with W2 was the smallest among all the methods which did not
have a guarantee that the residual norm would decrease. However, the method which
had the smallest error norm of all was SDRRGMRES(20), which was about 1/3 that of
SAGMRES(5) with W2.

Table 5 and Fig. 3 show the distribution of minimum error norm ‖x̄∗ − x‖2 of each
of the applied methods in each m, where 1 ≤ m ≤ 50 and space Wi, where 1 ≤ i ≤ 3
for augmentation.

Table 5: Example 4.3 Distribution of the minimal error norms ‖x̄∗ − x‖2 by each method in each interval.

method ≤ 0.5 < ‖x̄0 − x‖2 = ‖x̄0 − x‖2
SGMRES, SAGMRES 196 2 2

SRRGMRES, SARRGMRES 150 22 28
SDGMRES, SDAGMRES 200 0 0

SDRRGMRES, SDARRGMRES 200 0 0

Table 6: Example 4.3 Methods whose error norm is minimal in each of SGMRES(m),
SAGMRES(m), SDGMRES(m), SDAGMRES(m) SRRGMRES(m), SARRGMRES(m), SDRRGMRES(m)
and SDARRGMRES(m).

method augmentation iteration ‖r j‖2 ‖x̄∗ − x‖2

SGMRES(4) - 1496 3.338× 10−4 1.504× 10−2

SAGMRES(5) W2 490 2.369× 10−4 7.830× 10−3

SDGMRES(4) - 1496 3.338× 10−4 1.504× 10−2

SDAGMRES(5) W2 490 2.369× 10−4 7.830× 10−3

SRRGMRES(7) - 385 1.023× 10−2 1.769× 10−2

SARRGMRES(1) W2 1500 4.081× 10−4 1.490× 10−2

SDRRGMRES(20) - 514 4.800× 10−5 2.686× 10−3

SDARRGMRES(48) W2 55 3.100× 10−3 1.246× 10−2
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(b) SDGMRES(m) and SDAGMRES(m)
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(c) SRRGMRES(m) and SARRGMRES(m)
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(d) SDRRGMRES(m) and SDRRAGMRES(m)

Figure 3: Experiment 2 Distribution of log10 ‖x̄∗ − x‖2. Let restart cycle m be 1 ≤ m ≤ 50 and the space
for augmentation be Wi where 1 ≤ i ≤ 3. Each figure has 200 points.

Table 5 shows that the decreasing-residual condition which helps prevent the
residual norm from increasing also improves the figures for the minimum error norm.
Figs. 4.3(a) and 4.3(b) show the results of the GMRES methods, and Figs. 4.3(c)
and 4.3(d) show the results of the RRGMRES methods. The data indicates that the
decreasing-residual conditions work well in both methods, but the RRGMRES meth-
ods are more influenced by this than the GMRES methods.

All examples show, that the modified algorithms with decreasing-residual condi-
tions performed better than the algorithms with only successive updates of the resid-
ual norm.

5 Conclusions

We have made a proposal for modified versions of SDRRGMRES and SDAGMRES.
One modification was the inclusion of successive updates which have already been
applied to the standard GMRES. The other modification was the procedure of stabiliz-
ing the decreases of the residual norm in inner iterations. Numerical examples have
illustrated that these generated more stable and better solutions than unmodified ver-
sions of SRRGMRES and SAGMRES.
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