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Abstract. In this paper, we present an efficient method of two-grid scheme for
the approximation of two-dimensional nonlinear parabolic equations using an ex-
panded mixed finite element method. We use two Newton iterations on the fine
grid in our methods. Firstly, we solve an original nonlinear problem on the coarse
nonlinear grid, then we use Newton iterations on the fine grid twice. The two-grid
idea is from Xu′s work [SIAM J. Numer. Anal., 33 (1996), pp. 1759–1777] on stan-
dard finite method. We also obtain the error estimates for the algorithms of the
two-grid method. It is shown that the algorithm achieve asymptotically optimal
approximation rate with the two-grid methods as long as the mesh sizes satisfy
h = O(H(4k+1)/(k+1)).
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1 Introduction

In this paper, we consider the following nonlinear parabolic equations

∂p
∂t
−∇ · (K(p)∇p) = f (p,∇p), (x, t) ∈ Ω× J, (1.1)
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with initial condition

p(x, 0) = p0(x), x ∈ Ω, (1.2)

and boundary condition

(K(p)∇p) · ν = 0, (x, t) ∈ ∂Ω× J, (1.3)

where Ω ⊂ R2 is a bounded and convex domain with C1 boundary ∂Ω, ν is the unit
exterior normal to ∂Ω, J = (0, T], K is a symmetric positive definite tensor and K :
Ω×R → R2×2. Eq. (1.1) can be rewritten as following

∂p
∂t

+∇ ·Ψ = f (p,∇p), (1.4)

K(p)−1Ψ +∇p = 0. (1.5)

Eqs. (1.1)-(1.3) are the simplification of the modeling of groundwater through porous
media [9]. In this particular case, p denotes the fluid pressure; and K is a symmet-
ric, uniformly positive definite tensor with L∞(Ω) components representing the per-
meability divided by the viscosity; Ψ represents the Darcy velocity of the flow; and
f (p,∇p) models the external flow rate.

The two-grid methods was first introduced by Xu [16, 17] as a discretization tech-
nique for nonlinear and nonsymmetric indefinite partial differential equations. It
based on the fact the nonlinearity, nonsymmetry and indefiniteness behaving like low
frequencies are governed by coarse grid and the related high frequencies are governed
by some linear or symmetric positive definite operators. The basic idea of the two-grid
method is to solve a complicated problem (nonlinear, nonsymmetric indefinite) on a
coarse grid (mesh size H) and then solve an easier problem (linear, symmetric posi-
tive) on the fine grid (mesh size h and h ¿ H) as correction.

In many partial differential equations, the objective functional contains the gradi-
ent of the state variables. Thus, the accuracy of the gradient is important in numerical
discretization of the coupled state equations. Mixed finite element methods are ap-
propriate for the equations in such cases since both the scalar variable and its flux
variable can be approximated to the same accuracy by using such methods. Some
specialists have made many important works on some topic of mixed finite element
method for linear elliptic or reaction-diffusion equations. In [5, 6], Chen has stud-
ied the expanded mixed element methods for some quasilinear second order elliptic
equations. However, there doesn’t seem to exist much work on theoretical analysis for
two-grid methods for mixed finite element approximation of quasilinear or nonlinear
parabolic equations in the literature.

Many contributions have been done to the multi-grid schemes for finite element
methods, see, for example [11,12]. In [8], the authors have studied a two-grid finite dif-
ference scheme for nonlinear parabolic equations. Xu and Zhou have considered some
multi-scale schemes for finite element method of elliptic partial differential equations
in [18]. Recently, we constructed a new two-grid method of expanded mixed finite
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element method for semi-linear reaction-diffusion equation [4]. As a continued work
of Chen [3], in this paper, we shall discuss the case that the coefficient matrix function
K and the reaction term f are nonlinear, namely, K = K(p) and f = f (p,∇p).

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω
with a norm ‖ · ‖m,p given by

‖v‖p
m,p = ∑

|α|≤m
‖Dαv‖p

Lp(Ω),

and a semi-norm | · |m,p given by

|v|pm,p = ∑
|α|=m

‖Dαv‖p
Lp(Ω).

We set
Wm,p

0 (Ω) =
{

v ∈ Wm,p(Ω) : v|∂Ω = 0
}

.

For p=2, we denote

Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), ‖ · ‖m=‖ · ‖m,2, ‖ · ‖=‖ · ‖0,2 .

We denote by Ls(J; Wm,p(Ω)) the Banach space of all Ls integrable functions from J
into Wm,p(Ω) with norm

‖v‖Ls(J;Wm,p(Ω)) =
( ∫ T

0
||v||sWm,p(Ω)dt

) 1
s
, for s ∈ [1, ∞),

and the standard modification for s = ∞. The details can be found in [10]. In addition
C or c denotes a general positive constant independent of h.

At first, we make the following assumptions for the nonlinear parabolic equations.

(A1) There exist positive constants K∗ and K∗, such that for z ∈ R2,

K∗‖z‖2 ≤ ztK(x, s)z ≤ K∗‖z‖2, for x ∈ Ω,

and that each element of K is twice continuously differential with derivatives up to
second order bounded above by K∗.

(A2) For some integer k ≥ 1, we assume that the solution function (1.4)-(1.5) has the
following regularity:

p ∈ L2
(

J; Wk+2,4(Ω)
)

, Ψ ∈
(

L2(J; Hk+1(Ω))
)2

.

To analyze the discretization on a time interval (0, T), let N > 0, 4t = T/N, and
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tn = n4t, and set

φn = φ(·, tn), ∂tφ
n =

φn − φn−1

4t
,

‖φ‖l2((0,T);X) =
( N

∑
n=1

4t‖φn‖2
X

) 1
2
,

‖φ‖l∞((0,T);X) = max
1≤n≤N

‖φn‖X,

‖ϕ‖L2((0,T);X) =
(∫ T

0
‖ϕn(·, t)‖2

Xdt
) 1

2

.

The plan of this paper is as follows. In next section, we introduce some notations
and projections. The approximation properties of these projections will be recalled.
In section 3, we construct a expanded mixed finite element discretization for the non-
linear parabolic equations (1.1)-(1.3). A two-grid scheme and error estimates for two-
dimensional nonlinear parabolic equations using an expanded mixed finite element
method are discussed in section 4. Finally, we give the conclusion and future work in
section 5.

2 Projection operators and approximation properties

Let (·, ·) denote the L2(Ω) inner product. Let

VVV = H(div; Ω) = {vvv ∈ (L2(Ω))2,∇ · vvv ∈ L2(Ω)},
ṼVV = VVV ∩ {vvv · ν = 0}, W = L2(Ω).

The Hilbert space VVV is equipped with the following norm:

‖vvv‖H(div;Ω) =
(‖vvv‖2 + ‖divvvv‖2) 1

2 .

Let Γh denote a quasi-uniform partition of Ω into rectangles or triangles with the parti-
tion step h. We form VVVh and Wh, discrete subspaces of VVV and W, using standard mixed
finite element space such as the RT [13] spaces of order k, RTk, or Brezzi-Douglas-
Marini [1] spaces of order k, BDMk. In addition, we assume that
(A3) The following inclusion hold for the RT spaces or BDM spaces

∇ · vvvh ∈ Wh, ∀vvvh ∈ VVVh.

We shall employ some projection operators. Let Qh denote the L2 projection de-
fined by

(φ, wh) = (Qhφ, wh), ∀wh ∈ Wh, (2.1)
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for any φ ∈ L2(Ω), and

(φ, vvvh) = (Qhφ, vvvh), ∀vvvh ∈ VVVh, (2.2)

for any vector valued function φ ∈ (L2(Ω))2.
We also assume that the following approximation properties hold. For 1 < q ≤ ∞,

there exists a positive constant C independent of h such that [1]: for all φ ∈ Wk+1,q(Ω)
(or φ ∈ (Wk+1,q(Ω))2)

‖Qhφ‖0,q ≤ C‖φ‖0,q, 2 ≤ q < ∞, (2.3)
‖φ−Qhφ‖0,q ≤ C‖φ‖r,qhr, 0 ≤ r ≤ k + 1. (2.4)

We use the well known Πh projection for mixed finite element approximation spaces.
We shall assume that there exists a projection operator Πh : (H1(Ω))2 → VVVh such that
for q ∈ H(div; Ω),

(∇ ·Πhq, wh) = (∇ · q, wh), ∀wh ∈ Wh. (2.5)

The following approximation properties [1] hold for the projection Πh:

‖q−Πhq‖0,q ≤ C‖q‖r,qhr,
1
q

< r ≤ k + 1, (2.6)

‖∇ · (q−Πhq)‖0,q ≤ C‖∇ · q‖r,qhr, 0 ≤ r ≤ k + 1. (2.7)

We also assume that

‖φ−Qhφ‖∞ ≤ C‖φ‖∞hr, 0 ≤ r ≤ k + 1, (2.8)
‖vvvh‖∞ ≤ C‖vvvh‖∞h−1, ∀vvvh ∈ VVVh. (2.9)

Now, we recall the discrete Gronwall’s Lemma (see, e.g., [14]):

Lemma 2.1. Assume that kn is a non-negative sequence, and that the sequence ϕn satisfies




ϕ0 ≤ g0,

ϕn ≤ g0 +
n−1

∑
s=0

ps +
n−1

∑
s=0

ks ϕs, n ≥ 1.
(2.10)

Then ϕn satisfies




ϕ1 ≤ g0(1 + k0) + p0,

ϕn ≤ g0

n−1

∏
s=0

(1 + ks) +
n−2

∑
s=0

ps

n−1

∏
r=s+1

(1 + kr) + pn−1, n ≥ 2.
(2.11)

Moreover, if g0 ≥ 0 and pn ≥ 0 for n ≥ 0, it follows

ϕn ≤
(

g0 +
n−1

∑
s=0

ps

)
exp

(
n−1

∑
s=0

ks

)
, n ≥ 1. (2.12)
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3 Expanded mixed finite element discretization

First, we set three variables: the pressure p, the gradient Υ=−∇p, and the flux
Ψ=K(p)Υ.

We suppose that the following assumption is satisfied.
(A4) The reaction term f is a sufficiently smooth function with bounded derivatives
through the second order on Ω. For all ( p̂, Υ̂) ∈ W ×VVV there exists F > 0 such that

fp( p̂, Υ̂) ≤ F, fΥ( p̂, Υ̂) ≤ F.

Now, we define the weak form of the nonlinear parabolic equations (1.1)-(1.3) as fol-
lows: Find (p, Υ, Ψ) ∈ W ×VVV × ṼVV such that

(∂p
∂t

, w
)

+ (∇ ·Ψ, w) =
(

f (p,−Υ), w
)
, w ∈ W, (3.1)

(Υ, vvv) = (p,∇ · vvv), vvv ∈ ṼVV, (3.2)

(Ψ, vvv) =
(
K(p)Υ, vvv

)
, vvv ∈ VVV. (3.3)

The discrete time mixed finite element approximation to (3.1)-(3.3) can be defined as
follows: Find (pn

h , Υn
h , Ψn

h) ∈ Wh ×VVVh × ṼVVh such that

( pn
h − pn−1

h
4t

, wh

)
+ (∇ ·Ψn

h , wh) =
(

f (pn
h ,−Υn

h), wh
)
, wh ∈ Wh, (3.4)

(Υn
h , vvvh) = (pn

h ,∇ · vvvh), vvvh ∈ ṼVVh, (3.5)

(Ψn
h , vvvh) =

(
K(pn

h)Υn
h , vvvh

)
, vvvh ∈ VVVh. (3.6)

At the time of t = tn, we rewrite (3.1)-(3.3) in the following form

(∂pn

∂t
, wh

)
+ (∇ ·Ψn, wh) =

(
f (pn,−Υn), wh

)
, wh ∈ Wh, (3.7)

(Υn, vvvh) = (pn,∇ · vvvh), vvvh ∈ ṼVVh, (3.8)

(Ψn, vvvh) =
(
K(pn)Υn, vvvh

)
, vvvh ∈ VVVh. (3.9)

Using the definition of Πh and Qh, and the assumption (A3) that ∇ ·VVVh ⊂ Wh, we can
obtain

(Qh pn −Qh pn−1

4t
, wh

)
+ (∇ ·ΠhΨn, wh)

=
(

f (pn,−Υn), wh
)
+ (∂t pn − pn

t , wh), (3.10)

(QhΥn, vvvh) = (Qh pn,∇ · vvvh), (3.11)

(ΠhΨn, vvvh) =
(
K(pn)Υn, vvvh

)
+ (ΠhΨn −Ψn, vvvh). (3.12)

Set
µn = Qh pn − pn

h , ξn = QhΥn − Υn
h , λn = ΠhΨn −Ψn

h .
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Subtracting (3.10)-(3.12) from (3.4)-(3.6), we derive the error equations:
(

µn − µn−1

4t
, wh

)
+ (∇ · λn, wh)

=
(

f (pn,−Υn)− f (pn
h ,−Υn

h), wh
)
+ (∂t pn − pn

t , wh), (3.13)

(ξn, vvvh) = (µn,∇ · vvvh), (3.14)

(λn, vvvh) =
(
K(pn)Υn − K(pn

h)Υn
h , vvvh

)
+ (ΠhΨn −Ψn, vvvh). (3.15)

Letting wh = µn, vvvh = λn, vvvh = ξn in Eqs. (3.13)-(3.15) respectively, we can get
(

µn − µn−1

4t
, µn

)
+ (∇ · λn, µn)

=
(

f (pn,−Υn)− f (pn
h ,−Υn

h), µn)
+ (∂t pn − pn

t , µn), (3.16)

(ξn, λn) = (µn,∇ · λn), (3.17)

(λn, ξn) =
(
K(pn

h)(Υn −QhΥn), ξn)− (
(K(pn

h)− K(pn))Υn, ξn)

+
(
K(pn

h)ξn, ξn)
+ (ΠhΨn −Ψn, ξn). (3.18)

Noticing that

− 1
2

(
‖µn−1‖2 + ‖µn‖2

)
≤ −(µn−1, µn), (3.19)

(
K(pn

h)ξn, ξn)
= ‖K(pn

h)
1
2 ξn‖2. (3.20)

We have

(∂tµ
n, µn) +

(
K(pn

h)ξn, ξn) ≥ 1
24t

(
‖µn‖2 − ‖µn−1‖2

)
+ ‖K(pn

h)
1
2 ξn‖2. (3.21)

Applying the Taylor expansions, we have

f (pn,−Υn)− f (pn
h ,−Υn

h) = fp( p̄, Ῡ)(pn − pn
h)− fΥ( p̄, Ῡ)(Υn − Υn

h).

Then,
(

f (pn,−Υn)− f (pn
h ,−Υn

h), µn)

≤(
F(pn −Qh pn), µn)

+
(

Fµn, µn)− (
F(Υn −QhΥn), µn)− (Fξn, µn). (3.22)

Moreover,

|(∂t pn − pn
t , µn)| =

∣∣∣∣
(∫

(t− tn−1)ptt(·, s)ds, µn
)∣∣∣∣

≤4t
∫ tn

tn−1
‖ptt(·, s)‖ds‖µn‖ ≤ (4t)2

(∫ tn

tn−1

∥∥∥∥
∂2 p
∂t2 (·, s)

∥∥∥∥
)2

+ ‖µn‖2, (3.23)
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and
(
(K(pn

h)− K(pn))Υn, ξn) ≤ K∗ ‖ Υn ‖∞‖ pn
h − pn ‖ · ‖ ξn ‖

≤CK∗
( ‖ pn

h −Qh pn ‖ + ‖ Qh pn − pn ‖ ) ‖ ξn ‖
= CK∗(‖ µn ‖ + ‖ Qh pn − pn ‖) ‖ ξn ‖
≤C

( ‖ µn ‖2 + ‖ Qh pn − pn ‖2 )
+ δ ‖ ξn ‖2, (3.24)

where we have used the assumptions (A1)-(A2). From (3.16)-(3.24), applying the
Hölder’s inequality gives

1
24t

(‖µn‖2 − ‖µn−1‖2) + ‖K(pn
h)

1
2 ξn‖2

≤
(

µn − µn−1

4t
, µn

)
+ ‖K(pn

h)
1
2 ξn‖2

≤ (∂t pn − pn
t , µn) + (ΠhΨn −Ψn, ξn) + (F(pn −Qh pn), µn)

+ (Fµn, µn)− (F(Υn −QhΥn), µn)− (Fξn, µn)

+
(
K(pn

h)(Υn −QhΥn), ξn)
+

(
(K(pn

h)− K(pn))Υn, ξn)

≤ C‖µn‖2 + C4t2 + δ‖ξn‖2 + C[‖ΠhΨn −Ψn‖2

+ ‖Υn −QhΥn‖2 + ‖pn −Qh pn‖2]. (3.25)

We next multiply both sides of (3.25) by 24t and sum over n, n = 1, · · ·, N, applying
the discrete Gronwall’s Lemma, to obtain

‖µN‖2 +
N

∑
n=1

4t‖K(pn
h)

1
2 ξn‖2

≤C
N

∑
n=1

4t
[
‖ΠhΨn −Ψn‖2 + ‖Υn −QhΥn‖2

+ ‖pn −Qh pn‖2
]
+ ‖µ0‖2 + C(4t)2.

With a proper choice of the initial function p0
h = Qh p0, we have µ0 = 0, combining

(2.4) and (2.6), we get

‖µN‖2 +
N

∑
n=1

4t‖K(pn
h)

1
2 ξn‖2 ≤ C

(
(4t)2 + h2k+2

)
.

Then, we have

‖µN‖+

(
N

∑
n=1

4t‖K(pn
h)

1
2 ξn‖2

) 1
2

≤ C
(
4t + hk+1

)
. (3.26)

Applying the triangle inequality, we have the following result.
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Theorem 3.1. Suppose that assumptions (A1)-(A4) are valid. Let (pn
h , Υn

h , Ψn
h) ∈ Wh ×

VVVh × ṼVVh be the solution of the mixed finite element equations (3.4)-(3.6) for n ≥ 1. If we
choose the initial function

p0
h = Qh p0,

for 1 ≤ M ≤ N and k ≥ 1, then there exists a positive constant C, independent of h such that

‖pM − pM
h ‖+

(
M

∑
n=1

4t‖K(pn
h)

1
2 (Υn − Υn

h)‖2

) 1
2

+

(
M

∑
n=1

4t‖Ψn −Ψn
h‖2

) 1
2

≤C
(
4t + hk+1

)
. (3.27)

4 A two-grid method and error estimates

Note that the two-grid algorithms used in Wu and Allen [15] involve only one Newton
iteration on the fine grid. Nevertheless, some more interesting results can be derived
if one more Newton iteration is carried out on the fine grid. The idea is from Xu’s
work [16]. Thus, based on the works of Dawson [7], we can construct an algorithm of
the two-grid method for Eqs. (1.1)-(1.3) discretized by expanded mixed finite element
methods.

To iteratively solve the nonlinear system (3.4)-(3.6), we find ( ˜̃pn
h , ˜̃Υn

h , ˜̃Ψn
h) ∈ Wh ×

VVVh × ṼVVh in three steps as follows:

Step 1: On the coarse grid ΓH, compute (pn
H, Υn

H, Ψn
H) ∈ WH ×VVVH × ṼVVH to satisfy the

following original nonlinear system:

(
pn

H − pn−1
H

4t
, wH

)
+ (∇ ·Ψn

H, wH) = ( f n, wH), wH ∈ WH, (4.1)

(Υn
H, vvvH)− (pn

H,∇ · vvvH) = 0, vvvH ∈ ṼVVH, (4.2)
(Ψn

H, vvvH) = (K(pn
H)Υn

H, vvvH), vvvH ∈ VVVH. (4.3)

Step 2: On the fine grid Γh, compute ( p̃n
h , Υ̃n

h , Ψ̃n
h) ∈ Wh ×VVVh × ṼVVh to satisfy the fol-

lowing linear system:

(
p̃n

h − p̃n−1
h

4t
, wh

)
+ (∇ · Ψ̃n

h , wh) = ( f n, wh), wh ∈ Wh, (4.4)

(Υ̃n
h , vvvh)− ( p̃n

h ,∇ · vvvh) = 0, vvvh ∈ ṼVVh, (4.5)

(Ψ̃n
h , vvvh) = (K(pn

H)Υ̃n
h , vvvh) + (K′(pn

H)Υn
H( p̃n

h − pn
H), vvvh), vvvh ∈ VVVh. (4.6)
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Step 3: On the fine grid Γh, compute ( ˜̃pn
h , ˜̃Υn

h , ˜̃Ψn
h) ∈ Wh ×VVVh × ṼVVh to satisfy the fol-

lowing linear system:
(

˜̃pn
h − ˜̃pn−1

h
4t

, wh

)
+ (∇ · ˜̃Ψn

h , wh) = ( f n, wh), wh ∈ Wh, (4.7)

( ˜̃Υn
h , vvvh)− ( ˜̃pn

h ,∇ · vvvh) = 0, vvvh ∈ ṼVVh, (4.8)

( ˜̃Ψn
h , vvvh) = (K( p̃n

h)
˜̃Υn

h , vvvh) + (K′( p̃n
h)Υ̃n

h( ˜̃pn
h − p̃n

h), vvvh), vvvh ∈ VVVh. (4.9)

Remark 4.1. Eq. (4.9) is motivated by the Taylor expansion

K( ˜̃pn
h)

˜̃Υn
h = K( p̃n

h)
˜̃Υn

h + K′( p̃n
h)

˜̃Υn
h( ˜̃pn

h − p̃n
h) +

K′′(xn)
2

˜̃Υn
h( ˜̃pn

h − p̃n
h)

2, (4.10)

for some xn between ˜̃pn
h and p̃n

h .

Lemma 4.1. Suppose that assumptions (A1)-(A4) are fulfilled. Let ( p̃n
h , Υ̃n

h , Ψ̃n
h) ∈ Wh ×

VVVh × ṼVVh be the solution of the mixed finite element equations (4.1)-(4.6) for n ≥ 1. If we
choose the initial function

p̃0
h = Qh p0,

for 1 ≤ M ≤ N and k ≥ 1, then there exists a positive constant C, independent of h such that

‖pM − p̃M
h ‖+

(
M

∑
n=1

4t‖K(pn
H)

1
2 (Υn − Υ̃n

h)‖2

) 1
2

≤ C(4t + hk+1 + H2k+1).

The proof can be found in [7].
Moreover, by an argument similar to that in Lemma 4.1, we can also prove the

following result:

Remark 4.2. If we choose the initial function p̃0
h = Qh p0, then for 1 ≤ n ≤ N, 2 ≤ q <

∞, and k ≥ 1, we have

‖pn − p̃n
h‖0,q ≤ C(4t + hk+1 + H2k+1). (4.11)

Now, we can prove the following main theorem.

Theorem 4.1. Suppose that assumptions (A1)-(A4) are fulfilled. Let ( ˜̃pn
h , ˜̃Υn

h , ˜̃Ψn
h) ∈ Wh ×

VVVh × ṼVVh be the solution of the mixed finite element equations (4.1)-(4.9) for n ≥ 1. If we
choose the initial function

˜̃p0
h = Qh p0, (4.12)

then for 1 ≤ M ≤ N and k ≥ 1, we have

‖pM − ˜̃pM
h ‖+

(
M

∑
n=1

4t‖K( p̃n
h)

1
2 (Υn − ˜̃Υn

h)‖2

) 1
2

≤ C(4t + hk+1 + H4k+1). (4.13)
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Proof. We now derive an estimate for this two-grid scheme. We set

αn = Qh pn − ˜̃pn
h , βn = QhΥn − ˜̃Υn

h , γn = ΠhΨn − ˜̃Ψn
h .

Using (3.10)-(3.12), (4.7)-(4.9), and the definition of projection Qh, Πh, we get the error
equations:

(
αn − αn−1

4t
, wh) + (∇ · (ΠhΨn − ˜̃Ψn

h), wh) = (Ep, wh), wh ∈ Wh, (4.14)

(QhΥn − ˜̃Υn
h , vvvh)− (Qh pn − ˜̃pn

h ,∇ · vvvh) = 0, vvvh ∈ ṼVVh, (4.15)

and

(ΠhΨn − ˜̃Ψn
h , vvvh)

=(ΠhΨn −Ψn, vvvh)− (K(pn)(QhΥn − Υn), vvvh) +
(

K( p̃n
h)(QhΥn − ˜̃Υn

h), vvvh

)

+
(
(αn + (pn −Qh pn))K′( p̃n

h)Υ̃n
h , vvvh

)
+

(
K′( p̃n

h)(pn − p̃n
h)(QhΥn − Υ̃n

h), vvvh

)

+
1
2

(
(pn − p̃n

h)
2K′′(xn)QhΥn, vvvh

)
, vvvh ∈ VVVh, (4.16)

for some xn between p̃n
h and pn

h and Ep = ∂t pn − pn
t .

Choosing wh = αn in (4.14), vvvh = γn in (4.15), vvvh = βn in (4.16), adding (4.14) and
(4.15), and subtracting (4.16), yield

(
αn − αn−1

4t
, αn

)
+

(
K( p̃n

h)βn, βn
)

= (Ep, αn)− (ΠhΨn −Ψn, βn) +
(

K(pn)(QhΥn − Υn), βn
)

−
(
(αn + (pn −Qh pn))K′( p̃n

h)Υ̃n
h , βn

)
−

(
K′( p̃n

h)(pn − p̃n
h)(QhΥn − Υ̃n

h), βn
)

− 1
2

(
(pn − p̃n

h)
2K′′(xn)QhΥn, βn

)
, (4.17)

for some xn between p̃n
h and pn

h . Note that

(
(pn − p̃n

h)
2K′′(xn)QhΥn, βn

)

=
([

( p̃n
h − pn

H)2 − 2( p̃n
h − pn)(pn − pn

H)− (pn − pn
H)2] · K′′(xn)(QhΥn − Υn

+ Υn − Υn
H), βn

)
+

(
(pn − p̃n

h)
2K′′(xn)(Υn

H − Υn + Υn), βn
)

, (4.18)

and using the Hölder’s inequality, we get
(
(pn − p̃n

h)
2K′′(xn)Υn, βn

)
≤ C‖pn − p̃n

h‖2
0,4‖βn‖. (4.19)
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Using the Hölder’s inequality and (3.23), multiplying by 4t and summing n = 1 to
M, M ≤ N, using the approximation properties, we see that

‖αM‖2 − ‖α0‖2 +
M

∑
n=1

4t‖K( p̃n
h)

1
2 βn‖2

≤ C(4t)2 + δ
M

∑
n=1

4t‖βn‖2 + C

[
M

∑
n=1

4t‖αn‖2 + h2k+2

]

+C
M

∑
n=1

4t
[
‖(pn −Qh pn)Υ̃n

h‖2 + ‖(pn − p̃n
h)(QhΥn − Υ̃n

h)‖2 + T1

]

≡ C(4t)2 + δ
M

∑
n=1

4t‖βn‖2 + C

[
M

∑
n=1

4t‖αn‖2 + h2k+2 + T2

]
, (4.20)

where

T1 =‖pn
H − p̃n

h‖2
∞‖pn

H − p̃n
h‖2‖QhΥn − Υn‖2

∞

+ ‖pn − p̃n
h‖2

∞‖pn − pn
H‖2‖QhΥn − Υn‖2

∞

+ ‖pn − p̃n
H‖2

∞‖pn − p̃n
H‖2‖QhΥn − Υn‖2

∞

+ ‖pn − p̃n
h‖2

∞‖pn − p̃n
h‖2‖Υn

H − Υn‖2
∞ + ‖pn − p̃n

h‖4
0,4, (4.21)

T2 =C
M

∑
n=1

4t
[
‖(pn −Qh pn)Υ̃n

h‖2 + ‖(pn − p̃n
h)(QhΥn − Υ̃n

h)‖2 + T1

]
. (4.22)

Using (4.11) and the Hölder’s inequality, we have

T1 =‖pn
H − p̃n

h‖2
∞‖pn

H − p̃n
h‖2‖QhΥn − Υn‖2

∞

+ ‖pn − p̃n
h‖2

∞‖pn − pn
H‖2‖QhΥn − Υn‖2

∞

+ ‖pn − p̃n
H‖2

∞‖pn − p̃n
H‖2‖QhΥn − Υn‖2

∞

+ ‖pn − p̃n
h‖2

∞‖pn − p̃n
h‖2‖Υn

H − Υn‖2
∞ + ‖pn − p̃n

h‖4
0,4

≤h−2(hk+1 + H2k+1 +4t)4h2k+2

+ h−2(hk+1 + H2k+1 +4t)2(Hk+1 +4t)2h2k+2

+ h−2(hk+1 + H2k+1 +4t)4‖Υn − Υn
H‖2

∞ + (hk+1 + H2k+1 +4t)4. (4.23)

Combining (4.22)-(4.23), Lemma 4.1 and Theorem 3.1, we can obtain

T2 =C
M

∑
n=1

4t
[
‖(pn −Qh pn)Υ̃n

h‖2 + ‖(pn − p̃n
h)(QhΥn − Υ̃n

h)‖2 + T1

]

≤C
M

∑
n=1

4t
[

h2k+2 + h−2(hk+1 + H2k+1 +4t)4h2k+2

+ h−2(hk+1 + H2k+1 +4t)2(Hk+1 +4t)2h2k+2 + (hk+1 + H2k+1 +4t)4
]
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+ h−2(hk+1 + H2k+1 +4t)4
M

∑
n=1

4t‖Υn − Υn
H‖2

∞.

From (2.4), (2.8)-(2.9), and Theorem 3.1, we have

M

∑
n=1

4t‖Υn − Υn
H‖2

∞

≤C
M

∑
n=1

4t(‖Υn −QHΥn‖2
∞ + ‖QHΥn − Υn

H‖2
∞)

≤ C
M

∑
n=1

4tH2k+2 + C
M

∑
n=1

4t(H−1‖QHΥn − Υn
H‖)2

≤CH−2(Hk+1 +4t)2, (4.24)

and

‖Υn − Υn
H‖∞ ≤ ‖Υn −QHΥn‖∞ + ‖QHΥn − Υn

H‖∞

≤ H−1(Hk+1 +4t). (4.25)

Then, we obatin

T2 ≤ C
(

h2k+2 + H8k+2 + H10k+4h−2 + (4t)2
)

, (4.26)

where h ≤ Hk+1, we have

T2 ≤ C
(

h2k+2 + H8k+2 + (4t)2
)

. (4.27)

Noticing that α0 = 0, and applying the discrete Gronwall’s Lemma, we deduce that

‖αM‖+

(
M

∑
n=1

4t‖K( p̃n
h)

1
2 βn‖2

) 1
2

≤ C(hk+1 + H4k+1 +4t). (4.28)

Applying the triangle inequality and the approximation properties, we can prove the
results of the Theorem.

5 Conclusion and future works

In this paper, we have presented a new two-grid scheme for expanded mixed finite
element solution of nonlinear parabolic equations. The theory demonstrates a remark-
able fact about the two-grid scheme: we can iterate on a very coarse grid ΓH and still
get good approximations by taking one iteration on the fine grid Γh. We have derived
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an error estimate for the algorithms of the two-grid method. It is shown that the algo-
rithm achieve asymptotically optimal approximation as long as the mesh sizes satisfy

h = O
(

H
4k+1
k+1

)
.

The next step of our work is to carry out some the numerical experiment with the
proposed two-grid scheme. Furthermore, we shall consider the two-grid schemes for
expanded mixed finite element solution of nonlinear hyperbolic equations.
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