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Abstract

We study the separability properties of solutions to elliptic equations with piecewise

constant coefficients in Rd, d ≥ 2. The separation rank of the solution to diffusion equation

with variable coefficients is presented.
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1. Introduction

In this paper, we study the separability properties of solutions to elliptic equations with

piecewise constant coefficients. By a separable decomposition of a multivariate function, we

mean its representation or approximation by a sum of the products of univariate functions.

The separability properties of the Laplace operator inverse and hence of the solution to Poisson

equation were estimated in [1–4]. In what following, a point to study is the dependence on

structure of the diffusion coefficient.

To fix the idea, we first consider a model elliptic boundary value problem in two dimensions,

−∇(a∇u) = f, in Ω = [0, 1]2, (1.1a)

u|∂Ω = 0, (1.1b)

with an assumption that f is represented by a piecewise smooth tensor decomposition

f(x, y) =

rf∑
k=1

f
(1)
k (x) f

(2)
k (y), (1.2)
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and the diffusion coefficient a(x, y) is a piecewise constant function on cells of a tensor grid in

Ω. In the case of an M ×M tensor tiling, the reciprocals 1/a on these cells comprise a matrix

of the form

B =

 1/a11 · · · 1/a1M

...
. . .

...

1/aM1 · · · 1/aMM

 (1.3)

with the notation

r1/a = rankB.

Clearly, the function 1/a has the same separable form,

1/a(x, y) =

r1/a∑
l=1

b
(1)
l (x) · b(2)

l (y) =

r1/a∑
l=1

1

a
(1)
l (x)

· 1

a
(2)
l (y)

, (1.4)

which can be shown by a constant spline interpolation. Given ε > 0, we approximate u by a

separable decomposition

uru =

ru∑
k=1

u
(1)
k (x)u

(2)
k (y), (1.5)

so that ‖u− uru‖L∞ ≤ ε.
In this paper we investigate how ru depends on ε, r1/a, M and rf . Straightforward analysis

in the continuous case gives the following rank estimation,

ru = O(M2rv),

where rv is the maximal ε-rank of the solution in each domain generated by the M ×M tiling.

Notice that rv depends weakly on a, since in each domain the solution satisfies just the Poisson

equation: −a∆u = f .

In the 3D or higher dimensional case we formulate the problem in a similar way. Consider

−∇(a∇u) = f, in Ω = [0, 1]d, (1.6a)

u|∂Ω = 0, (1.6b)

and assume a separability property for the right-hand side,

f(x) =

rf∑
k=1

f
(1)
k (x1) · · · f (d)

k (xd), (1.7)

and the reciprocal diffusion coefficient,

1/a(x) =

r1/a∑
l=1

b
(1)
l (x1) · · · b(d)

l (xd) =

r1/a∑
l=1

1

a
(1)
l (x1)

· · · 1

a
(d)
l (xd)

. (1.8)

Now for given ε > 0, we approximate u by a separable decomposition

uru =

ru∑
k=1

u
(1)
k (x1) · · ·u(d)

k (xd), (1.9)

so that ‖u − uru‖L∞ ≤ ε. Such a decomposition is crucial for the numerical solution of the

problem. Suppose we discretize the problem on the grid with n points in each spatial direction.
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Then the solution might be represented as a d-dimensional tensor with nd entries, and the

so-called “curse of dimensionality” arises [5, 6]. The approximation (1.9) is then a reduction

of degrees of freedom using the canonical approximation of a tensor [7–10]. This problem

is ill-posed in general [6, 11–13], so the rank estimates provide us with important practical

information.

The main result is the rank bound

O(Md−1rv)

for a separable approximation of the solution. However, the numerical experiments point to a

better estimate like O(r1/arv).

The rest of the paper is organized as follows. In the section 2 we prove a theorem on the rank

estimate for continuous functions. In the section 3 we present numerical experiments in the

2D case showing that the rank of the solution depends on the rank of the reciprocal coefficient

rather than of the number of subdomains.

2. Continuous Case Analysis

We can split the initial problem (1.1) into the following two ones:

• Poisson equation in the whole domain with the scaled right-hand side:

−∆uI =
1

a
f, in Ω, (2.1a)

uI |∂Ω = 0; (2.1b)

• Laplace equation in each domain Ωi,j of a constant values of a with nonhomogeneous

Dirichlet boundary conditions:

−∆uII = 0 in Ωi,j , (2.2a)

uII |∂Ωi,j
= u|∂Ωi,j

− uI |∂Ωi,j
= g(∂Ωi,j). (2.2b)

Then, uI + uII = u.

Theorem 2.1. Suppose that a 2D problem (1.1) has a separable right-hand side (1.2) and the

diffusion coefficient in the form (1.3), (1.4). Let Ωh denote a subdomain of all points with the

distance at least h from the interface specifying the jumps of the coefficient. Then the solution

u can be approximated in Ωh by a separable function uru with the rank bound

ru ≤
(

4(M + 1) + r1/arf

)
· C| log(ε)|| log(h)| (2.3)

and the accuracy

‖u− uru‖L∞ ≤ ε.

Proof. For each of the solutions uI , uII we can use Green’s formula [14] in the corresponding

domain:

u(x, y)=
1

σd

∫
∂Ω

(
K(x, y, ξ, η)

∂u(ξ, η)

∂n
−u(ξ, η)

∂K(x, y, ξ, η)

∂n

)
dξdη+

∫
Ω

f(ξ, η)

a
K(x, y, ξ, η)dξdη

 ,



Low-rank Tensor Structure of Solutions to Elliptic Problems 17

where σd = 2π and K = ln(1/||x−x0||) for the 2D case; x = (x, y) and x0 = (ξ, η). From [2,15]

we have the following approximation for the logarithmic potential (kernel) at some distance

away from the singularity:

K(x, y, ξ, η) = ln
1

||x− x0||
≈

rlog∑
k=1

K
(1)
k (x− ξ) ·K(2)

k (y − η) (2.4)

with the accuracy ∥∥∥∥∥K(x, y, ξ, η)−
rlog∑
k=1

K
(1)
k (x− ξ) ·K(2)

k (y − η)

∥∥∥∥∥
L∞

≤ ε

and the rank

rlog = O(| log ε|).

Since the coefficient a is discontinuous, the right-hand side f/a and the solution of Poisson

equation have singularities in the points of discontinuity in the coefficient. Hence we can not

consider these functions in that points, but only outside some neighborhood of the singularities.

If the size of neighborhood is bounded by h then rlog is multiplied by | log h| [15, 16].

So, consider the first part of solution uI . From the separability properties of f , 1/a and K

we have:

uI(x, y)=
1

σd

∫
∂Ω

K
∂uI(ξ, η)

∂n
dξdη+

rlog∑
k=1

r1/a∑
l=1

rf∑
p=1

1∫
0

f
(1)
p (ξ)

a
(1)
l (ξ)

K
(1)
k (x−ξ)dξ ·

1∫
0

f
(2)
p (η)

a
(2)
l (η)

K
(2)
k (y−η)dη

 .

The first term consists of 4 boundary integrals, each of them requires integration only by one

variable. Applying the separability of K, we obtain rank 4rlog. The second term has maximal

rank rfr1/arlog. So, the rank of uI is estimated by

ruI
≤
(

4 + rfr1/a

)
· C| log(ε)|| log(h)|.

As for the second term uII , we use the following approach. Consider one column of cells

(see Fig. 2.1).

Fig 2.1. Working column in the boundary integral
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Consider a solution, obtained from the boundary integral by the left boundary of this col-

umn. On each cell, i.e. (x, y) ∈ Ωi,j , i, j = 1, · · · ,M , we can write the following:

uII,ij(x, y) =
1

σd

rlog∑
k=1

K
(1)
k (x− x∗i ) ·

yj∫
yj−1

(
∂g(x∗i , η)

∂y
K

(2)
k (y − η)−

∂K
(2)
k (y − η)

∂y
g(x∗i , η)

)
dη,

where x∗i is (fixed) x coordinate of this boundary. The solution on the whole column can be

represented as follows:

uII,i(x, y) =

M∑
j=1

θi(x)θj(y)uII,ij(x, y), i = 1, · · · ,M,

where θi(x) is a characteristic function of interval [xi−1, xi]. Then

uII,i=
1

σd

rlog∑
k=1

θi(x)K
(1)
k (x− x∗i ) ·

M∑
j=1

θj(y)

yj∫
yj−1

(
∂g(x∗i , η)

∂y
K

(2)
k (y−η)−

∂K
(2)
k (y−η)

∂y
g(x∗i , η)

)
dη.

So, we obtain a function of rank rlog. After the summation by i in the direction x, and by 3

other boundaries we obtain 4M rlog. And for the full solution

ru ≤
(

4M + 4 + r1/arf

)
· C| log(ε)|| log(h)|.

Theorem 2.1 is proved. �

In the higher dimensional case we formulate the problem in a similar way, as it is shown in

the introduction, see (1.6)-(1.9).

In this case we can prove the following separability properties of u:

Theorem 2.2. Suppose that a d-dimensional problem (1.6) has a separable right-hand side

(1.7) and the diffusion coefficient in the form (1.8). Let Ωh denote a subdomain of all points

with the distance at least h from the interface specifying the jumps of the coefficient. Then the

solution u can be approximated in Ωh by a separable function uru (1.9) with the rank bound

ru

(
2d(Md−1 + 1) + r1/arf

)
· C| log(ε)|| log(h)|, (2.5)

and the accuracy

‖u− uru‖L∞ ≤ ε.

Proof. Green’s formula in this case holds as well:

u(x) =
1

(d− 2)σd

∫
∂Ω

(
K(x, ξ)

∂u(ξ)

∂n
− u(ξ)

∂K(x, ξ)

∂n

)
dξ +

∫
Ω

f(ξ)

a
K(x, ξ)dξ

 ,

where σd is a surface of unitary sphere (σd = 4π in 3D), K(x, ξ) = ||x − ξ||2−d, and the kernel

also has a low-rank approximation:

K(x, ξ) =
1

||x− ξ||d−2
≈

rlog∑
k=1

K
(1)
k (x1 − ξ1) · · ·K(d)

k (xd − ξd).

The main idea of the proof is the same, as in 2D case. The differences are:
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1. Now there are 2d boundaries of d-dimensional cube;

2. Each boundary has dimension d− 1, hence, Md−1 tiling.

Then, uI is approximated with the rank (2d+ rfr1/a)rlog, and uII with the rank 2d Md−1 rlog.

Hence the total rank is estimated as (2.5).

3. Numerical Separability Properties in 2D

In the previous section we estimated the separation rank for the continuous solution to the

elliptic equation. Obviously, for the discretized problem, the same estimate (2.5) holds for the

canonical rank of discrete solution tensor. However, as we will see, the best approximation of

two-dimensional discrete solution might have significantly lower rank. Namely, it is proportional

to the rank of the reciprocal coefficient r1/a, but not to the number of the cells with constant

coefficient.

We solve the equation (1.1) using the Galerkin method [17]: choose appropriate basis func-

tions ϕ1(x), · · · , ϕn(x) and find the solution as a linear combination

uh(x, y) =

n∑
i1,i2=1

u(i1, i2)ϕi1(x)ϕi2(y),

with the unknown coefficients u(i1, i2) to be obtained from a linear system

n∑
i1,i2=1

u(i1, i2)
(
a∇ϕi1(x)ϕi2(y),∇ϕj1(x)ϕj2(y)

)
L2(Ω)

=
(
f, ϕj1(x)ϕj2(y)

)
L2(Ω)

, j1, j2 = 1, · · · , n.
(3.1)

Remark 3.1. Although we denote the basis functions by ϕ both for x and y directions (for the

ease of presentation), in fact, the number of grid points and the grid cell size can be different

for different directions, hence, in such case there will be different sets of basis functions ϕi1(x)

and ψi2(y).

We can write (3.1) in the following form:

AU = F,

where

A =

[(
a∇ϕi1(x)ϕi2(y),∇ϕj1(x)ϕj2(y)

)
L2(Ω)

]
,

F =

[(
f, ϕj1(x)ϕj2(y)

)
L2(Ω)

]
=

rf∑
k=1

[(
f

(1)
k , ϕj1(x)

)
L2(0,1)

]
⊗
[(
f

(2)
k , ϕj2(y)

)
L2(0,1)

]
.

Let us gather coefficients u(i1, i2) into a matrix U = [u(i1, i2)] ∈ Rn×n and decompose it using

the SVD:

u(i1, i2) =

n∑
k=1

σkU
(1)
i1,k

U
(2)
i2,k

,
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where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values, and U
(1)
i1,k

, U
(2)
i2,k

are the kth singular

vectors. In order to obtain a reduced representation for the solution, we can truncate this sum

keeping only the summands with a certain number of senior singular values and neglecting the

summands with smaller singular values. In this way we arrive at an approximation to U of a

lower rank Uru = [uru(i1, i2)]:

uru(i1, i2) =

ru∑
k=1

σk U
(1)
i1,k

U
(2)
i2,k

.

Given an accuracy parameter ε, we can choose ru so that the estimate ||U − Uru || ≤ ε is

guaranteed to hold with a minimal possible ru. Then, it is easy to derive that

ûru(x, y) =

n∑
i1,i2=1

uru(i1, i2)ϕi1(x)ϕi2(y) =

ru∑
k=1

σk

(
n∑

i1=1

U
(1)
i1,k

ϕi1(x)

)(
n∑

i2=1

U
(2)
i2,k

ϕi2(y)

)

approximates uh(x, y) with accuracy O(ε).

In the numerical examples below, we are interested to find relations between ru and ε, r1/a,

rf , and their dependence on n. In the following we assume that a has constant values on M×M
cells. We take piecewise linear hat elements as basis functions ϕi(x) on the uniform grid.

1. Dependence on ε and n (Table 3.1).

Table 3.1: ru versus ε and n; r1/a = 1; M = 8.

log10(1/ε)

n 4 5 6 7 8 9 10

16 2 4 5 5 6 7 7

32 3 5 5 7 7 9 9

64 2 4 4 6 6 9 9

128 2 4 5 6 8 10 11

256 2 4 5 6 8 10 12

512 3 4 5 7 8 11 13

1024 3 4 6 8 9 12 14

We can deduce that practical dependence is of the form

ru(ε) = C · log(1/ε). (3.2)

If we make a linear fit of ru(| log(ε)|) for n = 1024, using the least squares method, the depen-

dence is ru = 1.86 · log(1/ε)−5. Also we can see that if the approximation tolerance ε is greater

than the discretization error O(1/n2), then ru does not depend on n (e.g., see the column with

ε = 10−5).

2. Dependence on r1/a (Table 3.2).

Now the least squares linear fitting gives a dependence ru = 13.95·r1/a+7.96 (for ε = 10−10).

Thus,

ru(r1/a) = C · r1/a. (3.3)

3. Dependence on M (Table 3.3).

In this example we use randomly generated values in the closed interval [1, 7] for rank-1 a.

We see that for sufficiently large M (M > 4), the rank ru does not depend on M . As a matter
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Table 3.2: ru versus ε and r1/a; M = 8; n = 256.

log10(1/ε)

r1/a 4 5 6 7 8 9 10

1 3 4 6 8 9 12 14

2 5 8 14 21 28 34 41

3 5 8 14 20 30 37 47

4 7 13 22 35 45 56 67

5 8 17 31 46 60 73 85

6 8 17 30 46 65 80 93

7 11 19 34 54 72 91 107

8 11 23 41 60 81 96 112

Table 3.3: ru versus ε and M ; r1/a = 1; n = 256.

log10(1/ε)

M 4 5 8 11

2 2 3 7 12

3 2 4 9 16

4 3 4 11 17

8 3 5 12 18

12 4 5 12 19

16 3 5 11 18

32 3 5 11 18

Fig 3.1. Randomly filled coefficient a with rank 1 and 16×16 domain splitting

of fact, if the rank r1/a is fixed, then ru becomes a constant, no matter whatever big jumps and

high oscillations in a might occur (see Fig. 3.1).

In this examples we take a separable function f with rf = 1, but the same results are

observed as well with rf > 1. Consequently, from Eqs. (3.2)-(3.3) we observe an estimate of
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the form

ru ≤ C · r1/a · log(1/ε). (3.4)

Thus the experimental rank of the solution on the uniform grid depends on r1/a.

4. Conclusion

We presented an estimate of the separation (canonical) rank of the solution to diffusion

equation with variable coefficient. This result is based on the known estimates of the separation

rank for the Poisson equation with the constant coefficient in Rd. As the structuring property of

the coefficient, the number of cells with different values of a is included in the theoretical rank

bound. This result can be applied for the discrete solution as well, with a discretization scheme

on tensor grids which possess the approximation property. But the best approximation to

discrete solution usually has essentially lower rank. To obtain this result theoretically, a special

approach is required. The estimate (3.4) is going to be proved (under additional constraint to

the separation of 1/a) in the forthcoming paper.

Another part of work is the usage of more robust tensor formats, for example, the Tensor

Train (TT) format [18, 19] and Quantics-TT [20, 21]. The stable linear operations and rank

truncation in the formats allow to keep all the data in TT representation during the whole

iterative solution process. As the TT ranks are less or equal to the canonical rank, the esti-

mate (2.5) can be applied here straightforwardly. However, usually the bound (2.5) provides

significantly overestimated ranks. So the application of TT/QTT formats to elliptic equations

is to be considered in a separate paper.
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