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Abstract

We propose a new reconstruction scheme for the backward heat conduction problem.

By using the eigenfunction expansions, this ill-posed problem is solved by an optimization

problem, which is essentially a regularizing scheme for the noisy input data with both

the number of truncation terms and the approximation accuracy for the final data as

multiple regularizing parameters. The convergence rate analysis depending on the strategy

of choosing regularizing parameters as well as the computational accuracy of eigenfunctions

is given. Numerical implementations are presented to show the validity of this new scheme.
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1. Introduction

For a bounded domain Ω ⊂ R
N(N = 1, 2, 3), consider the heat conduction problem















∂u
∂t = ∇ · (a(x)∇u), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

For given initial data u0(x), this forward problem is well-posed(Chapter 3, Theorem 3.2,

[13]), which defines a map G : u0(·) ∈ L2(Ω) 7→ u(·, T ) ∈ H1
0 (Ω).

Now assume that u0(x) is unknown, while the final data is given by u(x, T ) = f(x), x ∈ Ω.

The backward problem is to solve u(x, t) for t ∈ [0, T ) from given f(x) or its measurement data

f δ(x) satisfying ‖f δ − f‖L2(Ω) ≤ δ for some known error level δ > 0. It is well-known that this

problem is ill-posed due to the irreversibility of heat conduction along time direction.

For this ill-posed problem with wide engineering background [19, 20], many regularizing

schemes have been researched thoroughly, which focus on the construction of the approximate

solution uδ(x, t) from f δ(x) and the convergence rate analysis on ‖uδ(·, t) − u(·, t)‖ as δ → 0.

Of course, these two issues depend on the regularizing scheme. One of the well-known scheme
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is the so-called quasi-reversibility method [3], which firstly constructs the regularizing solution

uδ0(x) for the initial data and then gets uδ(x, t) for t ∈ (0, T ) by solving the direct problem

(1.1). The convergence of such kinds of schemes can be established in terms of the convergence

of initial data uδ0(x), see [4–6, 9]. For solving uδ(x, t) for t ∈ (0, T ) directly from f δ(x) with

the Hölder stability of order t
T , the readers are refereed to [1, 17, 18, 23]. The other work for

backward heat problem can be found in [2, 15, 16, 21].

Recently, some attempts to construct a regularizing solution with explicit expression have

received much attention. The advantage of this new idea is that the well-posedness of the reg-

ularizing problem is guaranteed automatically, provided that the noisy input data be modified

appropriately. Then the numerical computation of the regularizing solution for all t ∈ [0, T )

is much easy, for example, see [4, 7, 14, 22] for the mollification method. We call such kind of

scheme as data regularization.

In this paper, we propose a new regularizing scheme along this direction. By expanding

the noisy data f δ(x) in terms of the base functions {ϕk(x, T ) : k ∈ N} solved from the heat

conduction process, the regularizing data for the noisy measurement are constructed using the

finite approximate terms expansion, where both the number of expansion terms and the ap-

proximate accuracy are considered as the regularizing parameters simultaneously. Then the

regularizing solution uδ(x, t) for all t ∈ [0, T ) can be constructed from the approximate final

data explicitly. In this regularizing scheme for backward heat problem, all the ill-posedness

is concentrated on the final data fitting process. Such a scheme is essentially a regularizing

technique for the input data. We analyze the convergence of this new scheme and give some

numerical implementations. It is interesting that our regularizing scheme provides the conver-

gence rate of ‖uδ(·, t)− u(·, t)‖ decreasing by the factor e−λ1t for fixed error level δ > 0, which

is physically reasonable from the smoothing property of direct heat conduction process, where

λ1 > 0 is the minimum eigenvalue of the operator −∇ · (a(x)∇).

We would like to emphasize the difference between our data fitting technique and the classical

TSVD method to deal with the linear ill-posed problems. For our problem, u(x, t) for t ∈ [0, T )

satisfies a linear integral equation of the first kind, so the TSVD method can be used to solve this

equation, where Tikhonov regularization can be combined together to determine the truncation

term from the noise level. In this scheme, the regularization technique is applied at each time

t ∈ [0, T ), and therefore the regularization equation should be solved for every time t. However,

in our data fitting scheme, we only regularize the final measurement data uδ(x, T ) by its base

function expansion, with both the truncation term and the approximate accuracy as regularizing

parameters. Then the approximate solution for any t ∈ [0, T ) can be expressed explicitly using

the spatial base function of elliptic operator. In other words, we extract the ill-posedness of the

problem from the original parabolic system with the help of the eigensystem of elliptic operator

−∇ · (a(x)∇u). Therefore, the novelty of the proposed scheme in this paper compared with

the classical TSVD method is that we can decrease the amount of computations by solving the

regularizing equation only one times at t = T and then get the regularizing solution for all

t ∈ [0, T ) explicitly with convergence rate estimate. Moreover, we also analyze the influence of

the computational error for the eigensystem and give an explicit error estimate.

This paper is organized as follows. In Section 2, we construct the regularizing solution

explicitly. Then in Section 3, we give the convergence analysis on the regularizing solution

using the exact eigenfunction expansions. In Section 4, we consider the convergence for the

noisy eigensystem, noticing that both the eigenfunctions and the eigenvalues must be computed

numerically for general heat conduction system. In this case, the error η in computing the
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eigenfunctions has essential effects on the regularizing solution. We show that the accuracy of

eigensystem should match the noisy level of input data in the sense η = O(δ) in such a practical

situation, explaining the optimal balance between the amount of computation for eigensystem

and the convergence rate of regularizing solution. Finally we present some numerical results in

Section 5 to show the validity of our inversion scheme.

2. The Construction of Regularizing Solution

Denote by {λn, ϕ0
n(x) : n ∈ N} the eigensystem of the operator A[⋄] := −∇ · (a(x)∇⋄),

acting on D(A) := {ψ(x) : ψ ∈ H2(Ω), ψ(x)|∂Ω = 0}. That is, ϕ0
n(x) solves

{

−∇ · (a(x)∇ϕ0
n(x)) = λnϕ

0
n(x), x ∈ Ω

ϕ0
n(x) = 0, x ∈ ∂Ω.

(2.1)

It is easy to know that {ϕ0
n(x), n ∈ N} constitutes the base of L2(Ω) and 0 < λ1 < · · · <

λn · · · → +∞ (Chapter 2, Theorem 4.1, [13]). We assume that {ϕ0
n(x), n ∈ N} is orthogonal

with ‖ϕ0
n‖L2(Ω) = 1 and introduce the functions

ϕn(x, t) := e−λntϕ0
n(x), (2.2)

which obviously satisfies














∂ϕn(x,t)
∂t = ∇ · (a(x)∇ϕn(x, t)), x ∈ Ω, t > 0

ϕn(x, t) = 0, x ∈ ∂Ω, t > 0

ϕn(x, 0) = ϕ0
n(x), x ∈ Ω.

(2.3)

Lemma 2.1. {ϕn(·, t) : n ∈ N} forms the orthogonal base of L2(Ω) with ‖ϕn(·, t)‖ = e−λnt (n ∈
N) for any fixed t ∈ [0, T ].

Now let us expand the initial temperature distribution as

u0(x) =

∞
∑

m=1

cmϕ
0
m(x), x ∈ Ω (2.4)

with cn =
∫

Ω
u0(x)ϕ

0
n(x)dx, n ∈ N. So the exact solution of (1.1) can be expressed as

u(x, t) =
∞
∑

m=1

cmϕm(x, t). (2.5)

Especially, the final value has the expansion

f(x) =

∞
∑

m=1

cmϕm(x, T ). (2.6)

In practice, only the noisy data f δ(x) of f(x) is given. On the other hand, we can only

compute finite terms of the series in (2.6). Therefore, cm are determined by the following

approximation to (2.6):
M
∑

m=1

cδmϕm(x, T ) = f δ(x), (2.7)
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where the truncation term M is unknown in advance which will affect the inversion result.

So the solution to (2.7) for determining both M and {cm : m = 1, · · · ,M} is ill-posed, the

regularization method should be applied to solve (2.7).

To this end, denote by Cε,δ
M := {cε,δm : m = 1, 2, · · · ,M} ∈ R

M the minimum norm solution

to the equation (2.7) with discrepancy ε. That is, Cε,δ
M satisfies

∥

∥

∥

∥

M
∑

m=1

cε,δm ϕm(·, T )− f δ(·)
∥

∥

∥

∥

L2(Ω)

≤ ε, (2.8)

‖Cε,δ
M ‖RM = inf

{

‖Cδ
M‖RM : ‖

M
∑

m=1

cδmϕm(·, T )− f δ(·)‖L2(Ω) ≤ ε

}

, (2.9)

where Cδ
M := {cδm : m = 1, 2, · · · ,M}. In the following we will choose ε = δ. The positive

integer M :=M(δ) as the regularizing parameter will be specified later.

Define the operator K : RM → L2(Ω) by

(KCδ
M )(x) :=

M
∑

m=1

cδmϕm(x, T ), (2.10)

with its adjoint operator under the dual system 〈RM ,RM 〉 and 〈L2(Ω), L2(Ω)〉:

K∗g =

(
∫

Ω

ϕ1(x, T )g(x)dx, · · · ,
∫

Ω

ϕM (x, T )g(x)dx

)T

. (2.11)

The minimum norm solution Cδ,δ
M can be solved by Tikhonov regularization with Morozov

principle [10], i.e., Cδ,δ
M satisfies the following equation

(α(δ)I +K∗K)Cδ,δ
M = K∗f δ(x), (2.12)

where the regularizing parameter α = α(δ) is determined from the implicit system
{

(αI +K∗K)Cα,δ
M = K∗f δ

‖Kgα,δM − f δ‖ = δ,

which can be solved numerically by classical Newton method [10] or recently developed model

function method [11, 24]. We remark that the regularizing scheme (2.12) for solving the ex-

tremely ill-posed problem (2.7) is valid from the standard theory of Tikhonov regularization in

finite dimensional space [10].

Now we construct

F δ,δ
M (x, T ) :=

M
∑

m=1

cδ,δm ϕm(x, T ) (2.13)

and consider the problem














∂uδ,δ
M (x,t)

∂t = ∇ · (a(x)∇uδ,δM (x, t)), x ∈ Ω, t ∈ (0, T )

uδ,δM (x, t) = 0, x ∈ ∂Ω, t > 0

uδ,δM (x, T ) = F δ,δ
M (x, T ), x ∈ Ω.

(2.14)

The unique solution to this backward problem can be expressed explicitly as

uδ,δM (x, t) =

M
∑

m=1

cδ,δm ϕm(x, t), t ∈ [0, T ]. (2.15)
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The function uδ,δM (x, t) will be taken as the regularizing solution for u(x, t), with the regu-

larizing parameter M specified in terms of the noise level in the sequel.

3. Convergence Analysis on the Regularizing Solution

Since our scheme regularizes the measurement data and gives an explicit expression of

regularizing solution (2.15) uniformly for all t ∈ [0, T ], we can establish the uniform convergence

rate for all t ∈ [0, T ]. This fact is quite different from the classical regularization where the

convergence rate depends on t. Especially, to get the convergence rate at t = 0, some more

strong regularity on u0(x) should be assumed there [4].

Firstly, we consider the approximation error uδ,δM (·, t)− u(·, t).

Theorem 3.1. Assume that u0 ∈ Hp with ‖u0‖Hp ≤ Up for p = 1 or p = 2. Then there exists

a constant Ca > 0 such that for arbitrary δ > 0 and positive integer M , it holds

‖uδ,δM (·, t)− u(·, t)‖L2(Ω) ≤ 3e−λ1t

[

δeλMT +
CaUp

λ
p/2
M

]

, t ∈ [0, T ]. (3.1)

Proof. From direct computations, we have

|uδ,δM (x, t)− u(x, t)|2 =

(

M
∑

m=1

(cδ,δm − cm)ϕm(x, t)

)2

+

(

∞
∑

m=M+1

cmϕm(x, t)

)2

− 2

M
∑

m=1

(cδ,δm − cm)ϕm(x, t)

∞
∑

m=M+1

cmϕm(x, t).

So it follows from the orthogonality of {ϕm(·, t) : m ∈ N} that

‖uδ,δM (·, t)− u(·, t)‖2L2(Ω)

=

M
∑

m=1

(cδ,δm − cm)2e−2λmt +

∞
∑

m=M+1

c2me
−2λmt

≤e−2λ1t
M
∑

m=1

(cδ,δm − cm)2 + e−2λM t
∞
∑

m=M+1

c2m. (3.2)

On the other hand, the following identity

M
∑

m=1

(cδ,δm − cm)ϕm(x, T )

≡
M
∑

m=1

cδ,δm ϕm(x, T )− f δ(x) + f δ(x)− f(x) +

∞
∑

m=M+1

cmϕm(x, T )

yields

1

3

(

M
∑

m=1

(cδ,δm − cm)ϕm(x, T )

)2

≤
(

M
∑

m=1

cδ,δm ϕm(x, T )− f δ(x)

)2

+ (f δ(x)− f(x))2 +

(

∞
∑

m=M+1

cmϕm(x, T )

)2

.
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Consequently, it follows from (2.8) that

1

3

M
∑

m=1

(cδ,δm − cm)2e−2λmT ≤ 2δ2 + e−2λMT
∞
∑

m=M+1

c2m.

Therefore

1

3

M
∑

m=1

(cδ,δm − cm)2 ≤ 2e2λMT δ2 +

∞
∑

m=M+1

c2m. (3.3)

Inserting (3.3) into (3.2) yields

‖uδ,δM (·, t)− u(·, t)‖2L2(Ω) ≤ 6δ2e2λMT e−2λ1t +

(

3e−2λ1t + e−2λM t

) ∞
∑

m=M+1

c2m. (3.4)

On the other hand, we have

∇ · (a(x)∇u0(x)) =
∞
∑

m=1

cm∇ · (a(x)∇ϕ0
m(x)) = −

∞
∑

m=1

cmλmϕ
0
m(x). (3.5)

Then for u0(x) ∈ H2(Ω), it follows

∞
∑

m=1

c2mλ
2
m = Ca‖u0‖2H2(Ω) ≤ C2

aU
2
2 < +∞ (3.6)

by using the equivalent norm. While for u0 ∈ H1(Ω), (3.5) yields

∫

Ω

a(x)|∇u0(x)|2dx =
∞
∑

m=1

c2mλm,

by noticing u0(x)|∂Ω = 0. Then using the Poincare inequality we have

λ2M

∞
∑

m=M+1

c2m ≤
∞
∑

m=M+1

c2mλ
2
m ≤

∞
∑

m=1

c2mλ
2
m ≤ C2

aU
2
2 (3.7)

for p = 2 and

λM

∞
∑

m=M+1

c2m ≤
∞
∑

m=M+1

c2mλm ≤
∞
∑

m=1

c2mλm ≤ C2
aU

2
1 (3.8)

for p = 1. Now it follows from (3.4), (3.7) and (3.8) that

‖uδ,δM (·, t)− u(·, t)‖2L2(Ω) ≤ 6δ2e2λMT e−2λ1t +

(

3e−2λ1t + e−2λM t

)

C2
aU

2
pλ

−p
M .

The proof is complete. �

Now we can establish the optimal convergence rate based on this error estimate.

Theorem 3.2. Assume that u0 ∈ Hp with ‖u0‖Hp ≤ Up for p = 1 or p = 2. If the truncation

term M =M(δ) satisfies

λM(δ) ≈
1

T
ln

1

δβ
(3.9)

for any fixed β ∈ (0, 1), then as δ → 0

‖uδ,δM(δ)(·, t)− u(·, t)‖L2(Ω) ≤ C0(a, p, T, β)e
−λ1t 1

(− ln δ)p/2
, t ∈ [0, T ]. (3.10)
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Proof. For any positive function h(δ) tending to 0 as δ → 0, we firstly take λM(δ) ≈ 1
T

1
h(δ) ,

then it follows from Theorem 3.1 that for t ∈ [0, T ]

‖uδ,δM(δ)(·, t)− u(·, t)‖L2(Ω)

≤3e−λ1t
[

e1/h(δ)δ + T p/2CaUph
p
2 (δ)

]

≤ C(a, p, T )e−λ1t(e1/h(δ)δ + h
p
2 (δ)) (3.11)

with the constant C(a, p, T ) := 3max{1, T p/2CaUp}. By choosing h(δ) := 1/ ln 1
δβ for any fixed

β ∈ (0, 1), we are led to

0 < e1/h(δ)δ + h
p
2 (δ) = δ1−β +

1

(ln 1
δβ
)p/2

→ 0, δ → 0.

Noticing δ1−β = o( 1
(ln 1

δβ
)p/2

) as δ → 0, the proof is complete. �

Remark 3.1. We cannot take β = 1 in this result. On the other hand, it should be noticed that

limβ→1 C0(a, p, T, β) = +∞. Therefore, a practical convergence rate depending on β ∈ (0, 1)

should be

‖uδ,δM(δ)(·, t)− u(·, t)‖L2(Ω) ≤ C(a, p, T )e−λ1t

(

δ1−β +
1

(ln 1
δβ
)p/2

)

, δ → 0. (3.12)

This observation means that it is impossible to get O( 1
(− ln δ)p/2

) convergence in practical com-

putations. The notation ≈ in (3.9) means that λM(δ) has the same order as that of 1
T ln 1

δβ ,

i.e., λM(δ) = C 1
T ln 1

δβ
for some constant C > 0.

4. The Error Effect of Eigenfunctions

Different from some classical regularizing schemes, here we propose the eigenfunction-based

regularizing scheme. In most of the cases, both eigenvalues and eigenfunctions can only be

obtained numerically, especially for the operator with variable coefficient and general domain

Ω. Therefore we need to consider the error effect arising in computing eigenfunctions on the

regularizing solution. On the other hand, since the measurement data contain error, too much

accurate computation of eigenfunctions is senseless. We should keep some optimal balance

between the accuracy of eigensystem and the noise level of input data.

Assume that the eigensystem (2.1) is solved approximately. Denote by {λn,η, ϕ0
n,η : n ∈ N}

the approximate eigensystem with error level η > 0 measured by

‖ϕ0
n,η − ϕ0

n‖L2(Ω) ≤ η, |λn,η − λn| ≤ η. (4.1)

For the approximation errors of eigensystem for Laplace operator, the readers are refereed

to [12]. Our first result is about the linear independence of the noisy eigenfunctions {ϕ0
n,η : n =

1, · · · ,M} for small η > 0.

Theorem 4.1. For exact eigenfunctions {ϕ0
n : n = 1, · · · ,M}, the noisy functions {ϕ0

n,η : n =

1, · · · ,M} satisfying (4.1) are linear independent for small η > 0.

Proof. Note the relation
M
∑

k=1

ckϕ
0
k,η(x) ≡ 0, x ∈ Ω. (4.2)
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We express the noisy functions as ϕ0
k,η(x) = ϕ0

k(x) + ηdk(x), with dk(x) ∈ L2(Ω) satisfying

‖dk‖L2 ≤ 1 and being expanded as dk(x) =
∑

∞

j=1Dkjϕ
0
j (x). Therefore (4.2) becomes

M
∑

k=1

ckϕ
0
k(x) + η

M
∑

k=1

∞
∑

j=1

ckDkjϕ
0
j (x) ≡ 0.

Taking inner product with respect to ϕ0
l (x) for any l = 1, · · · ,M yields

cl + η

M
∑

k=1

ckDkl = 0, l = 1, · · · ,M.

For small η > 0, this linear system has only trivial solution c1 = c2 = · · · = cM = 0, noticing

|Dkl|2 ≤∑∞

j=1D
2
kj = ‖dk‖2L2 ≤ 1, the proof is complete. �

Based on this result, the Schmidt orthogonalization can generate a set of standard orthogonal

functions from {ϕ0
n,η : n = 1, · · · ,M}. So we assume that {ϕ0

n,η : n = 1, · · · ,M} itself is

standard orthogonal in the sequel directly. Then the regularizing solution to our backward heat

problem can also be constructed from the approximate eigenfunctions. That is, we define

ϕn,η(x, t) = e−λn,ηtϕ0
n,η(x) (4.3)

and determine the minimum norm solution to the equation

M
∑

m=1

cδmϕm,η(x, T ) = f δ(x) (4.4)

with discrepancy δ. Denote by cδ,δm,η the solution of (4.4). Then we construct the regularizing

solution by

uδ,δM,η(x, t) =

M
∑

m=1

cδ,δm,ηϕm,η(x, t). (4.5)

In this case, we have the following error estimate.

Theorem 4.2. Assume that {ϕ0
n,η(x) : n = 1, · · · ,M} is standard orthogonal and u0 ∈ Hp(Ω)

for p = 1 or p = 2. Then there exists a constant C > 0 such that for arbitrary δ > 0 and

positive integer M , it follows for all η ∈ [0, 1] that

‖uδ,δM,η(·, t)− u(·, t)‖L2(Ω) ≤C(T, u0, a)e−λ1teλMT
[

δ + η
√
MeλMT (2δ + 1)

]

+ 3e−λ1t

[

δeλMT +
CaUp

λ
p/2
M

]

, t ∈ [0, T ]. (4.6)

Remark 4.1. The structure of the error in this case is clear: the error order for η = 0 is just

the same as that for the exact eigensystem. Notice, the factor e−λ1t indicates that numerical

error decreases exponentially with respect to t ∈ [0, T ] for fixed δ, η. Once M(δ) is chosen such

that eλMT δ → 0 as δ → 0, the term e−λ1teλMT δ still decays exponentially with respect to

t ∈ (0, T ) for any given small δ > 0.

Proof. From the triangle inequality

‖uδ,δM,η(·, t)− u(·, t)‖L2(Ω)

≤‖uδ,δM,η(·, t)− uδ,δM (·, t)‖L2(Ω) + ‖uδ,δM (·, t)− u(·, t)‖L2(Ω) (4.7)
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and Theorem 3.1, we only need to estimate the first term in (4.7).

‖uδ,δM,η(·, t)− uδ,δM (·, t)‖

=‖
M
∑

m=1

cδ,δm,ηϕm,η(·, t)−
M
∑

m=1

cδ,δm ϕm(·, t)‖

≤‖
M
∑

m=1

cδ,δm,ηϕm,η(·, t)−
M
∑

m=1

cδ,δm,ηϕm(·, t)‖+ ‖
M
∑

m=1

cδ,δm,ηϕm(·, t)−
M
∑

m=1

cδ,δm ϕm(·, t)‖

=:(I) + (II). (4.8)

Now we estimate two terms in (4.8) respectively. Observe that

(I) ≤
M
∑

m=1

|cδ,δm,η|‖ϕm,η(·, t)− ϕm(·, t)‖

≤
M
∑

m=1

|cδ,δm,η|
(

‖e−λm,ηtϕ0
m,η − e−λmtϕ0

m,η‖+ ‖e−λmtϕ0
m,η − e−λmtϕ0

m‖
)

≤
M
∑

m=1

|cδ,δm,η||e−λm,ηt − e−λmt|‖ϕ0
m,η‖+

M
∑

m=1

|cδ,δm,η|e−λmt‖ϕ0
m,η − ϕ0

m‖

≤
(

1 + TeT
)

e−λ1tη

M
∑

m=1

|cδm,η|, (4.9)

where we have used the estimate |e−λm,ηt − e−λmt| = e−λmt|e−ηθmt − 1| ≤ e−λmteTTη with

θm ∈ (−1, 1) due to (4.1). On the other hand, it follows from the definition of cδ,δm,η that

∥

∥

∥

∥

M
∑

m=1

cδ,δm,ηϕm,η(·, T )
∥

∥

∥

∥

≤
∥

∥

∥

∥

M
∑

m=1

cδ,δm,ηϕm,η(·, T )− f δ(·)
∥

∥

∥

∥

+ ‖f δ − f‖+ ‖f‖ ≤ 2δ + ‖f‖.

Therefore the orthogonality of {ϕm,η(·, T ) : m = 1, · · · ,M} yields

e−2λM,ηT
M
∑

m=1

|cδ,δm,η|2 ≤
M
∑

m=1

|cδ,δm,η|2e−2λm,ηT ≤ 2

(

(2δ)2 + ‖f‖2
)

.

Using this estimate gives

M
∑

m=1

|cδ,δm,η| ≤
√
M

√

√

√

√

M
∑

m=1

|cδ,δm,η|2 ≤ 2
√
MeλM,ηT (2δ + ‖f‖). (4.10)

Inserting (4.10) into (4.9) yields

(I) ≤ 2e2T (T + 1)e−λ1tη
√
MeλMT (2δ + ‖f‖). (4.11)

For (II), we have

(II)2 =

M
∑

m=1

(cδ,δm,η − cδ,δm )2e−2λmt ≤ e−2λ1t
M
∑

m=1

(cδ,δm,η − cδ,δm )2. (4.12)
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On the other hand, we also have

M
∑

m=1

(cδ,δm,η − cδ,δm )ϕm(x, T ) =
M
∑

m=1

cδ,δm,η(ϕm(x, T )− ϕm,η(x, T )) +
M
∑

m=1

cδ,δm,ηϕm,η(x, T )

− f δ(x) + f δ(x)−
M
∑

m=1

cδ,δm ϕm(x, T ), (4.13)

which generates by using the same technique in deriving (3.3) that

1

3

M
∑

m=1

(

cδ,δm,η − cδ,δm

)2

e−2λmT ≤
∥

∥

∥

∥

M
∑

m=1

cδ,δm,η (ϕm(x, T )− ϕm,η(x, T ))

∥

∥

∥

∥

2

L2(Ω)

+ 2δ2, (4.14)

using the definitions of cδ,δm,η and cδ,δm . The first term in the right-hand side of (4.14) is the same

as (I) with t replaced by T . So it follows from (4.11) that

1

3

M
∑

m=1

(cδ,δm,η − cδ,δm )2e−2λmT ≤ 4e4T (T + 1)2η2Me2λMT (2δ + ‖f‖)2 + 2δ2. (4.15)

Inserting (4.15) into (4.12) gives

(II) ≤ 4e−λ1teλMT [e2T (T + 1)η
√
MeλMT (2δ + ‖f‖) + δ], (4.16)

and inserting (4.11) and (4.16) into (4.8) yields

‖uδ,δM,η(·, t)− uδ,δM (·, t)‖ ≤ 4e−λ1teλMT

(

δ + η
√
Me2T (T + 1)(1 + eλMT )(2δ + ‖f‖)

)

.

Noticing the continuous dependence of ‖f‖L2 on u0, we rewrite this estimate as

‖uδ,δM,η(·, t)− uδ,δM (·, t)‖L2(Ω) ≤ C(T, u0, a)e
−λ1teλMT

[

δ + η
√
MeλMT (2δ + 1)

]

(4.17)

for η ∈ [0, 1]. The proof is complete from (3.1) and (4.17). �

Now we can analyze the convergence rate of regularizing solution in terms of δ, η.

Theorem 4.3. Under the assumptions of Theorem 3.2, we can choose M =M(δ, η) appropri-

ately such that

‖uδ,δM(δ,η),η(·, t)− u(·, t)‖L2(Ω) ≤ C(β, T, p, Up, a)e
−λ1t

1

(− ln(δ + η))p/2
(4.18)

for all t ∈ [0, T ] uniformly with any fixed β ∈ (0, 1).

Remark 4.2. It should be noticed that the analogy of Remark 3.1 also holds for this result.

From this convergence rate, it can be seen that we should compute the eigensystem up to the

accuracy η = O(δ) for noisy input data with noisy level δ.

Proof. Firstly we rewrite (4.6) for t ∈ [0, T ] as

‖uδ,δM,η(·, t)− u(·, t)‖ ≤ C̃∗e−λ1t

[

e2λMT
√
Mη(1 + δ) + eλMT δ +

1

λ
p/2
M

]

(4.19)
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for all η ∈ [0, 1], where the new constant C̃∗ := C̃∗(T, u0, a, p, Up) > 0 is obvious from (4.6).

The first term in the right-hand side is the error caused from the error η in computing the eigen-

system, while the remained two-terms represents the approximation error by our regularizing

scheme.

Noticing δ → 0, (4.19) yields for all η, δ ∈ (0, 1) that

‖uδ,δM,η(·, t)− u(·, t)‖ ≤ C∗e−λ1t

(

e2λMT
√
Mη + eλMT δ +

1

λ
p/2
M

)

. (4.20)

On the other hand, we can estimate the eigenvalue λM from the asymptotic behavior
√
M ≤

C0e
λMT with C0 = C0(a,Ω, T ). Therefore (4.20) becomes

‖uδ,δM,η(·, t)− u(·, t)‖ ≤ C∗

0 e
−λ1t

(

e3λMT (η + δ) +
1

λ
p/2
M

)

. (4.21)

Using the same technique as that in the proof of Theorem 3.2 for the right-hand side, we know

that for M =M(δ, η) choosing

3λM(δ,η) ≈
1

T
ln

1

(δ + η)β
(4.22)

leads to (4.18). This completes the proof. �

5. Numerical Examples

We present three numerical examples to show the validity of our inversion scheme.

Example 5.1. Consider the following 1-dimensional heat conduction problem

∂u

∂t
= uxx, x ∈ (0, π), t ∈ (0, T ] (5.1a)

u(0, t) = u(π, t) = 0, t ∈ (0, T ] (5.1b)

u(x, 0) =

{

2
πx, x ∈ [0, π2 ]

2− 2
πx, x ∈ (π2 , π],

(5.1c)

where the measurement data is given at T = 0.4.

For this model, the eigensystem has the exact representation λn = n2, ϕ0
n(x) = sinnx, for

n = 1, 2, · · · . The exact solution is

u(x, t) =

+∞
∑

m=1

8

m2π2
sin

mπ

2
e−m2t sinmx.

We approximate the above infinite series by its first 20-terms, and the noisy data of u(x, T ) is

simulated by

uδ(x, T ) =

20
∑

m=1

8

m2π2
sin

mπ

2
e−m2T sinmx+ δ × randn(x),
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Fig. 5.1. Example 5.1: errors with respect to truncation term M .
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Fig. 5.2. Example 5.1: inversion results with different δ (left) and different nodes for δ = 0.03 (right).

where the random number randn(x) is a normal distribution with mean 0 and standard devi-

ation 1 uniformly distributed in [−1, 1]. So the L2−error is

||uδ(·, T )− u(·, T )||L2(Ω)
.
=

√
πδ := δ1.

In our numerical procedure, we must solve the minimum norm solution Cδ,δ
M to the equation

(2.7) or Cδ,δ
M,η to (4.4), where the regularizing parameter M can be chosen in terms of (3.9)

or (4.22) from our result. However, this choice strategy is numerically not easy, since the

theoretical relation between M, δ, η given in (3.9) and (4.22) contains some implicit constant

C. In the following numerical procedure, M is given by minimizing the error between the exact

initial temperature u(x, 0) and the inversion result uδ,δM,η(x, 0). In this example with δ = 0.01,
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Fig. 5.3. Example 5.2: inversion result with different δ (left) and Inversion result with different nodes

(right).
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we get the optimal valueM = 3 by trials and errors for the node number N = 80 of the interval

[0, π]. In this case, the corresponding λM approximates C
T ln 1

δβ for β = 1
2 with C = 10.

Fig. 5.1 (left) shows the truncation-error curves for exact data u(x, T ) and exact eigensystem.

It is consistent with our theoretical analysis that, the largerM is, the better the inversion result

is for exact input data, although the L2−error keeps almost a small constant for M > 8 due

to the truncation error from the computer itself. However we can see from Fig. 5.1 (right) that

the optimal parameter M = 3 for noisy data uδ(x, T ) and exact eigensystem.

In Fig. 5.2 (left), we present the exact data u(x, 0), u(x, T ) and inversion results of u(x, 0) for

different noise level δ of uδ(x, T ) using the exact eigensystem. It can be seen that the inversion

results are satisfactory with the exact eigensystem expansion.

To show the effect of computational error of the eigensystem, we yield the eigenfunction

and eigenvalue by FEM and the computational error is controlled by the node number N of

the interval [0, π]. It should be pointed out that the optimal value of truncation term M also

changes for different node number N in numerical implementations. Fig. 5.2 (right) gives the

inversion results of u(x, 0) and the according optimal value of M with different node number

N for fixed δ = 0.03. It can be seen that the accurate computation of eigensystem is necessary

for our inversion scheme.

Example 5.2. Consider the following 1-dimensional heat conduction problem with variable

coefficient a(x) = ex/20:

∂u

∂t
= ∇ · (a(x)∇u), x ∈ (0, 1), t ∈ (0, T ] (5.2a)

u(0, t) = u(π, t) = 0, t ∈ (0, T ] (5.2b)

u(x, 0) = sin(πx), x ∈ [0, 1], (5.2c)

where the measurement data is given at T = 1.

In this example, both exact solution and the eigensystem have to be computed numerically.

The FEM is used here to solve the direct problem and the eigenvalue problems. The optimal

value of parameter M is 2 for node number N = 80 in this case. Fig. 5.3 (left) shows the

exact data u(x, 0), u(x, T ) and the inversion results with different noise level δ. Similarly the

inversion results are satisfactory.

Now we consider the effect of the error in computing eigensystem on the inversion results.

Similarly we represent the accuracy of eigensystem by using different node number N of the

interval [0, 1] in computing (5.2) and the eigensystem (2.1). In Fig. 5.3 (right), we show the

inversion results and the corresponding optimal value of M with δ = 0.03 for different node

number N . Similarly the truncation term M is also different for different N . From Fig. 5.3

(right), we can get the same conclusion as that for Example 5.1.

Example 5.3. Consider the following 2-dimensional heat conduction problem

∂u

∂t
= ∇ · (σ∇u), x ∈ Ω = (0, π)× (0, π), t ∈ (0, T ] (5.3a)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ] (5.3b)

u(x, 0) = sinx1 sinx2, x ∈ (0, π)× (0, π), (5.3c)

where the measurement data is given at T = 0.2 and σ(x) = 0.3x21 + x2 + 1.
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Fig. 5.4. Example 5.3: isolines(left) and three-dimensional shaded surface (right) of u(x, 0).
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Fig. 5.5. Example 5.3: isolines of u(x, T ) (left) and Inversion result for δ = 0.02 (right).
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−error curve with different δ (left) and with different time (right).

Both exact solution and the eigensystem are computed numerically by FEM. And the noisy

data of u(x, T ) is given by uδ(x, T ) = u(x, T ) + δ × randn(x). So ||uδ(·, T ) − u(·, T )||L2(Ω)
.
=

πδ := δ2. In this case, the optimalM is 4 for node number N = 100. Fig. 5.4 shows the isolines

and three-dimensional shaded surface of exact initial data u(x, 0) which is symmetric from

Fig. 5.4 (left). Due to the general form of σ(x), the final data u(x, T ) becomes dissymmetric

as shown in Fig. 5.5 (left). However the inversion results are satisfactory for δ = 0.02 even we

apply the noisy data uδ(x, T ), see Fig. 5.5 (right).

Fig. 5.6 (left) gives the L2−error curve between uδ(·, 0) and u(·, 0) with different noise level

δ. Fig. 5.6 (right) shows the L2−error between uδ(·, t) and u(·, t) depending on time t for

δ = 0.02 and node number N = 100, which shows the exponentially decreasing with respect to

time t, as given in our theoretical analysis in Section 4.
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