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Abstract

Elliptic interface problems with multi-domains and triple junction points have wide

applications in engineering and science. However, the corner singularity makes it a chal-

lenging problem for most existing methods. An accurate and efficient method is desired. In

this paper, an efficient non-traditional finite element method with non-body-fitting grids is

proposed to solve the elliptic interface problems with multi-domains and triple junctions.

The resulting linear system of equations is positive definite if the matrix coefficients for

the elliptic equations in the domains are positive definite. Numerical experiments show

that this method is about second order accurate in the L
∞ norm for piecewise smooth

solutions. Corner singularity can be handled in a way such that the accuracy does not

degenerate. The triple junction is carefully resolved and it does not need to be placed

on the grid, giving our method the potential to treat moving interface problems without

regenerating mesh.
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1. Introduction

Elliptic interface problems have wide applications in a variety of disciplines. However,

designing highly efficient methods for these problems is a difficult job, especially with multi-

domains and triple junctions. In the past three decades, much attention has been paid to the

numerical solution of elliptic equations with discontinuous coefficients and singular sources on

regular Cartesian grids since the pioneering work of Peskin [22] on the first order accurate

immersed boundary method. In many applications, particularly for free boundary and moving

interface problems, simple Cartesian grids are preferred. In this way, the procedure of generating

an unstructured grid can be bypassed, and well developed fast solvers on Cartesian grids can be

utilized. With a fixed unstructured grid for moving interface problem, one cannot ensure the

triple junction point is a grid point. Without careful treatment, the accuracy is compromised

when the triple junction point is not a grid point.

Motivated by the immersed boundary method, to improve accuracy, in [10], the “immersed

interface” method (IIM) was presented. This method achieves second order accuracy by incor-

porating the interface conditions into the finite difference stencil in a way that preserves the

interface conditions in both solution and its flux, [u] 6= 0 and [βun] 6= 0. The corresponding

linear system is sparse, but may not be symmetric or positive definite if there is a jump in the
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coefficient. Various applications and extensions of IIM are discussed in [4, 14]. In [11], a fast

iterative method using the augmented IIM was developed for Poisson equations with piecewise

constant but discontinuous coefficient. The number of calls to the fast Poisson solver of the

method is independent of the jump in the coefficient and the mesh size.

In [12, 13], the immersed finite element methods (IFEM) are developed using non-body-

fitted Cartesian meshes for homogeneous jump conditions. The idea is to modify the basis

functions so that the homogeneous jump conditions are satisfied. Both non-conforming and

conforming IFEM are developed in [13] for 2D problems. Numerical evidence shows that IFEM

of the conforming version achieves second order accuracy in the L∞ norm, and higher than

first order for its non-conforming version. In [24], the IFEM is further developed to deal with

non-homogeneous jump conditions. The non-conforming immersed finite element methods are

also developed for elasticity equations in [5, 24].

In [11], a fast iterative method in conjunction with the “immersed interface” method has

been developed for constant coefficient problems with the interface conditions [u] = 0 and

[βun] 6= 0. Numerical results show that this method’s conforming version achieves second order

accuracy in the L∞ norm, and higher than first order for its non-conforming version.

In [7], a non-traditional finite element formulation for solving elliptic equations with smooth

or sharp-edged interfaces was proposed with non-body-fitting grids for [u] 6= 0 and [βun] 6= 0.

It achieved second order accuracy in the L∞ norm for smooth interfaces and about 0.8th order

for sharp-edged interfaces. In [8], the method is modified and improved to close to 2nd order

accurate for sharp-edged interfaces, and it is extended to handle general elliptic equations with

matrix coefficient and lower order terms. The resulting linear system is non-symmetric but

positive definite. In [9], the work was generalized to solve the elasticity interface problems.

In [26], the matched interface and boundary (MIB) method was proposed to solve elliptic

equations with smooth interfaces. In [25], the MIB method was generalized to treat sharp-edged

interfaces. With an elegant treatment, second order accuracy was achieved in the L∞ norm.

Also, there has been a large body of work from the finite volume perspective for developing high

order methods for elliptic equations in complex domains, such as [1], [19] for two dimensional

problems and [20] for three dimensional problems. Another class of methods is the Boundary

Condition Capturing Method [16–18].

Although there are many different methods above in the literature for solving the elliptic

interface problems with two domains, the elliptic interface problems with multi-domains and

triple junctions have not been extensively studied. The new challenges include the treatment

of the triple junction point and the added complexity of the problem. In [23], the MIB method

is generalized to solve the elliptic interface problems with multi-domains. Numerical evidence

shows second order accuracy.

Based on the method in [8], in this paper we propose a numerical method for solving the

elliptic problem in multi-domains. We propose an accurate treatment for the triple junction

point shown in Figure 3.1. The resulting linear system is positive definite if the matrix co-

efficients βi, i = 1, 2, 3 for the elliptic equation in three domains are positive definite. This

method is not just a trivial extension of the one in [8], as the triple junction point has to be

carefully studied. Numerical results demonstrate about second order accuracy for the method,

even with presence of corner singularity. Compared with the existing method [23] for the same

setup of the problem, there are two advantages of our method: one is the positive definiteness of

the coefficient matrix, the other is the generalization to matrix coefficients βi instead of scalar

coefficients in [23].
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2. Equations and Weak Formulation

Consider an open bounded domain Ω ⊂ Rd. Let Γ be an interface of co-dimension d − 1,

which divides Ω into disjoint open subdomains, Ω1, Ω2 and Ω3, hence Ω = Ω1

⋃

Ω2

⋃

Ω3

⋃

Γ,

see Figure 2.1. Assume that the boundary ∂Ω and the boundary of each subdomain ∂Ω1,2,3 are

Lipschitz continuous as submanifolds. Since ∂Ω1,2,3 are Lipschitz continuous, so is Γ. A unit

normal vector of Γ can be defined a.e. on Γ, see Section 1.5 in [6].

Note that although for simplicity of discussion the above setup is for three domains with a

triple junction, the method proposed in this paper works for multi-domains with many triple

junction points since the treatments are local.

We seek solutions of the variable coefficient elliptic equation away from the interface Γ given

by

−▽ ·(β(x)▽ u(x)) = f(x), x ∈ Ω \ Γ (2.1)

in which x = (x1, ..., xd) denotes the spatial variables and ▽ is the gradient operator. The

coefficient β(x) is assumed to be a d × d matrix that is uniformly elliptic on each disjoint

subdomain, Ω1, Ω2 and Ω3, and its components are continuously differentiable on each disjoint

subdomain, but they may be discontinuous across the interface Γ. The right-hand side f(x) is

assumed to lie in L2(Ω).

Fig. 2.1. A uniform triangulation.

Consider the problem on the rectangular domain Ω = (xmin, xmax) × (ymin, ymax) =

Ω1

⋃

Ω2

⋃

Ω3. Γj , j = 1, 2, 3







−∇ · (β1∇u1) = f1, in Ω1,

−∇ · (β2∇u2) = f2, in Ω2,

−∇ · (β3∇u3) = f3, in Ω3.

(2.2)

Given functions a and b along the interface Γ = Γ1

⋃

Γ2

⋃

Γ3, we prescribe the jump condi-

tions


































[u]Γ1
:= u2 − u3 = a1, on Γ1,

[u]Γ2
:= u3 − u1 = a2, on Γ2,

[u]Γ3
:= u1 − u2 = a3, on Γ3,

[β∇u]Γ1
:= (β2∇u2 − β3∇u3) · n1 = b1, on Γ1,

[β∇u]Γ2
:= (β3∇u3 − β1∇u1) · n2 = b2, on Γ2,

[β∇u]Γ3
:= (β1∇u1 − β2∇u2) · n3 = b3, on Γ3.

(2.3)
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The “1,2,3” subscripts refer to limits taken from within the subdomains Ω1,2,3.

Finally, we prescribe boundary conditions







u1 = g1, on ∂Ω
⋂

∂Ω1,

u2 = g2, on ∂Ω
⋂

∂Ω2,

u3 = g3, on ∂Ω
⋂

∂Ω3.

(2.4)

The interfaces prescribed by the zero level-set {(x, y) ∈ Ωj | φj(x, y) = 0} of a level-set

function φj(x, y), which have the following properties:

φ1(x, y)







< 0, (x, y) ∈ Ω3,

= 0, (x, y) ∈ Γ1,

> 0, (x, y) ∈ Ω2,

φ2(x, y)







< 0, (x, y) ∈ Ω1,

= 0, (x, y) ∈ Γ2,

> 0, (x, y) ∈ Ω3,

φ3(x, y)







< 0, (x, y) ∈ Ω2,

= 0, (x, y) ∈ Γ3,

> 0, (x, y) ∈ Ω1.

The unit normal vector of Γj is nj =
∇φj

|∇φj |
pointing from Ω−

j := {(x, y) ∈ Ω | φj(x, y) ≤ 0}

to Ω+
j = {(x, y) ∈ Ω | φj(x, y) ≥ 0} for j = 1, 2, 3.

We use the weak formulation in [8] for the elliptic equation with matrix coefficient and define

the inner product:

B [u, v] =

∫

Ω1

β▽ u · ▽v +

∫

Ω2

β ▽ u · ▽v +

∫

Ω3

β ▽ u · ▽v. (2.5)

Definition 2.1. A function u (the space of u is defined in [8])is a weak solution of equation

2.1-2.4, if u satisfies, for all ψ ∈ H1
0 (Ω),

∫

Ω1

β ▽ u · ▽ψ +

∫

Ω2

β ▽ u · ▽ψ +

∫

Ω3

β▽ u · ▽ψ =

∫

Ω

fψ +

∫

Γ

bψ. (2.6)

A classical solution of equation 2.1-2.4, u|Ω1,2,3
∈ C2(Ω1,2,3) is necessarily a weak solution.

Because all the subdomains’ boundaries ∂Ω1,2,3 are Lipschitz continuous, the integration by

parts are legal in each subdomain, Ω1,2,3.

It is shown in [6] that corner singularity could develop at the triple junction point with

f = 0 in all the three domains. In this case, the solutions are in C1 but not in C2. Special

numerical treatment is necessary to avoid a degeneracy in the convergence order, which will be

discussed in Section 3. A numerical example for such case is provided in Section 4.

We have the following theorem:

Theorem 2.1. If f ∈ L2(Ω), and a, b ∈ H1(Ω), then there exists a unique weak solution of

equation 2.2-2.4.

Proof. See Theorem 2.1 in [7].
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3. Numerical Method

In this paper, we restrict ourselves to a rectangular domain Ω = (xmin, xmax)×(ymin, ymax)

in the plane, and β is a 2×2 matrix that is uniformly elliptic in each subdomain. Given positive

integers I and J , set ∆x = (xmax − xmin)/I and ∆y = (ymax − ymin)/J . We define a uniform

Cartesian grid (xi, yj) = (xmin + i∆x, ymin + j∆y) for i = 0, ..., I and j = 0, ..., J . Each (xi, yj)

is called a grid point. For the case i = 0, I or j = 0, J , a grid point is called a boundary point,

otherwise it is called an interior point. The grid size is defined as h = max(∆x,∆y) > 0.

Two sets of grid functions are needed and they are denoted by

H1,h
± = {ωh = (ωi,j) : 0 ≤ i ≤ I, 0 ≤ j ≤ J},

and

H1,h
0,± = {ωh = (ωi,j) ∈ H1,h

± : ωi,j = 0 if i = 0, I or j = 0, J}.

We cut every rectangular region [xi, xi+1] × [yj , yj+1] into two pieces of right triangular

regions: one is bounded by x = xi, y = yj and y =
yj+1−yj

xi−xi+1
(x − xi+1) + yj , and the other is

bounded by x = xi+1, y = yj+1 and y =
yj+1−yj

xi−xi+1
(x− xi+1) + yj . Collecting all those triangular

regions, we obtain a uniform triangulation T h :
⋃

K∈Th K, see Fig.2.1. We can also choose the

hypotenuse to be y =
yj+1−yj

xi+1−xi
(x−xi)+yj, and get another uniform triangulation from the same

Cartesian grid. There is no conceptual difference for our method on these two triangulations.

A cell K belongs to one of the three sets below:

Λ1 = {△k ⊂ Ω : k1, k2, k3 are in the same domain among Ωj , j = 1, 2, 3},

Λ2 = {△k ⊂ Ω : k1, k2, k3 are in two different domains among Ωj , j = 1, 2, 3},

Λ3 = {△k ⊂ Ω : k1, k2, k3 are in three different domains of Ωj , j = 1, 2, 3}.

If K ∈ Λ1, it is a normal finite element. If K ∈ Λ2, it has the same definition in Section

3, [8]. If K ∈ Λ3, Fig 3.1 show the interfaces inside K.

Theorem 3.1. For all uh ∈ H1,h
± , Uh(uh) can be constructed uniquely, provided T h, φ, a and b

are given.

Fig. 3.1. One Triangle Cell.
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Proof. see Theorem 3.1 in [8].

Lemma 3.1. The coefficient matrix A generated by the method above is independent of aj(x, y)

and bj(x, y), j = 1, 2, 3.

Proof. See Lemma 3.2 in [8].

Theorem 3.2. The coefficient matrix A = (aij)n×n generated by the method above is positive

definite if βj, j = 1, 2, 3 are continuous and positive definite.

Proof. We want to show that for any vector c ∈ Rn, cTAc > 0. Since

cTAc =

n
∑

i,j=1

aijcicj = B

[

n
∑

i=1

ciu
i,

n
∑

i=1

ciψ
i

]

where ui are basis functions for the solution and ψi are the test functions. For i-th grid point,

ui and ψi both have non-zero support only on the six triangles which have a vertex on the i-th

grid point. So we can decompose ui into ui =
∑6

j=1 u
i
j , where each uij has non-zero support

only on the j-th triangle around the i-th grid point.

Let m be the number of triangles on the whole domain Ω =
⋃m

k=1 △k. We can rewrite the

summation of ui over all the triangles:

n
∑

i=1

ciu
i =

n
∑

i=1

6
∑

j=1

ciu
i
j =

m
∑

k=1

Uk,

where Uk is defined on △k = △k1k2k3
, and Uk = ck1

uk1
+ ck2

uk2
+ ck3

uk3
, k1, k2, k3 are the

three vertices of △k.

Similarly, we can rewrite the summation of ψi over all the triangles:

n
∑

i=1

ciψ
i =

n
∑

i=1

6
∑

j=1

ciψ
i
j =

m
∑

k=1

Ψk,

with Ψk = ck1
ψk1

+ ck2
ψk2

+ ck3
ψk3

.

Consider sets

Λ1 = {△k ⊂ Ω : k1, k2, k3 are in the same domain among Ωj , j = 1, 2, 3},

Λ2 = {△k ⊂ Ω : k1, k2, k3 are in two different domains among Ωj , j = 1, 2, 3},

Λ3 = {△k ⊂ Ω : k1, k2, k3 are in three different domains of Ωj , j = 1, 2, 3}.

Then

m
∑

k=1

Uk =
∑

△k∈Λ1

Uk +
∑

△k∈Λ2

Uk +
∑

△k∈Λ3

Uk,

m
∑

k=1

Ψk =
∑

△k∈Λ1

Ψk +
∑

△k∈Λ2

Ψk +
∑

△k∈Λ3

Ψk.

The difference between Uk and Ψk is, Uk satisfies the jump conditions on the interface and

Ψk is a simple linear function on △k. So when △k ∈ Λ1, there is no jump in △k. Thus

Uk(x, y) = Ψk(x, y), (x, y) ∈ △k, △k ∈ Λ1.
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When △k ∈ Λ2 or △k ∈ Λ3, by adjusting jump conditions to aj(x, y) = 0 and bj(x, y) = 0

we can obtain that

Uk(x, y) = Ψk(x, y), (x, y) ∈ △k.

Note that Lemma 3.1 says the matrix A for the generated linear system is independent of the

the jump conditions. Therefore the above choice of jump conditions would not change the

matrix A.

We combine the results in Λj, j = 1, 2, 3 to obtain

n
∑

i=1

ciu
i =

n
∑

i=1

ciψ
i.

It now follows from the positive definiteness of β that

cTAc = B

[

n
∑

i=1

ciu
i,

n
∑

i=1

ciψ
i

]

> 0.

Therefore, A is positive definite. �

Remark 3.1. A positive definite matrix has positive determinant, and is therefore invertible.

It also has an LDMT factorization where D = diag(di) and di > 0, and L,M are lower

triangular. The linear system Ax = b can be solved efficiently. Although a rigorous proof

requires the continuity of the coefficients, all our numerical examples show that even with

jumps in the coefficients across the interface, the matrix A is (non-symmetric) positive definite.

Remark 3.2. The above results are valid with presence of corner singularity. However, without

a special treatment, the convergence order would degenerate in this case. In order to obtain

second order accuracy, one could use a procedure similar to the one discussed in [25] and [23].

This is demonstrated by a numerical example in Section 4.

4. Numerical Experiments

In all numerical experiments below, the level-set function φj(x, y), the coefficients βj(x, y),

and the solutions uj are given for j = 1, 2, 3. Hence fj, aj, bj can be calculated on the whole

domain Ω. gj is obtained as a proper Dirichlet boundary condition, since the solutions are

given.

All errors in solutions are measured in the L∞ norm in the whole domain Ω.

We present three numerical examples to demonstrate the effectiveness of our method.

Example 1. Our first example has two triple junction points of intersection of three domains.

The level-set function φj(x, y), the coefficients βj(x, y), and the solution uj(x, y) for j = 1, 2, 3

Table 4.1: Numerical results for three-domain problem with two triple junction points

nx × ny Err in U Order

40× 40 5.4492e-002

80× 80 1.6279e-002 1.74

160 × 160 4.3505e-003 1.90

320 × 320 1.0927e-003 1.99
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are given as follows:

φ1(x, y) = −((x+ 0.17)2 + y2 − 0.3172),

φ2(x, y) = (x− 0.153)2 + y2 − 0.412,

φ3(x, y) = (x+ 0.17)2 + y2 − 0.3172,

β+
1 (x, y) =

(

x2 + y2 + 1 x2 + y2 + 2

x2 + y2 + 2 x2 + y2 + 5

)

,

β+
2 (x, y) =

(

x4 + y4 + 1 x4 + y4 + 2

x4 + y4 + 2 x4 + y4 + 5

)

,

β+
3 (x, y) =

(

x2 + y4 + 1 x2 + y4 + 2

x2 + y4 + 2 x2 + y4 + 5

)

,

u1(x, y) = x+ ey + 1,

u2(x, y) = sin(2πx) sin(2πy) + 6,

u3(x, y) = x2 + y3 + sin(x+ y).

Fig. 4.1 shows the numerical solution with our method using a 40×40 grid. Table 4.1 shows

the error on different grids. The numerical result shows close to second order accuracy in the

L∞ norm for the solution.

Example 2. Our second example is two circles circumscribed with each other. The level-set

function φj(x, y), the coefficients βj(x, y), and the solution uj(x, y) for j = 1, 2, 3 are given as

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−2

−1

0

1

2

3

4

5

6

7

Fig. 4.1. Three domain problem with two triple junction points.

Table 4.2: Numerical results for two circles circumscribed.

nx × ny Err in U Order

40× 40 9.5274e-003

80× 80 2.6414e-003 1.85

160 × 160 7.7858e-004 1.76

320 × 320 2.1667e-004 1.84
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follows:

φ1(x, y) = −((x+ 0.35)2 + y2 − 0.352),

φ2(x, y) = (x− 0.35)2 + y2 − 0.352,

φ3(x, y) = x,

β+
1 (x, y) =

(

x2 + y2 + 1 x2 + y2 + 2

x2 + y2 + 2 x2 + y2 + 5

)

,

β+
2 (x, y) =

(

x4 + y4 + 1 x4 + y4 + 2

x4 + y4 + 2 x4 + y4 + 5

)

,

β+
3 (x, y) =

(

x2 + y4 + 1 x2 + y4 + 2

x2 + y4 + 2 x2 + y4 + 5

)

,

u1(x, y) = 5x+ 6y + 1,

u2(x, y) = −5x+ 6y + 1,

u3(x, y) = 2y2 + sin(2πx)− 2.

Fig. 4.2 shows the numerical solution with our method using a 40×40 grid. Table 4.2 shows

the error on different grids. The numerical result shows close to second order accuracy in the

L∞ norm for the solution.

Example 3. Our third example is a circle circumscribed on a star. The level-set function

φj(x, y), the coefficients βj(x, y), and the solution uj(x, y) for j = 1, 2, 3 are given as follows:

φ1(r, θ) = −(
R sin(θt/2)

sin(θt/2 + θ − θr − 2π(i− 1)/5)
− r

θr + π(2i− 2)/5 ≤ θ < θr + π(2i− 1)/5),

φ1(r, θ) = −(
R sin(θt/2)

sin(θt/2− θ + θr − 2π(i− 1)/5)
− r

θr + π(2i− 3)/5 ≤ θ < θr + π(2i− 2)/5),

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4

−2

0

2

4

6

Fig. 4.2. Two circles circumscribed.
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Table 4.3: Numerical results for the Star in Circle example.

nx × ny Err in U Order

40× 40 1.7135e-002

80× 80 5.2382e-003 1.71

160 × 160 1.3995e-003 1.90

320 × 320 3.5629e-004 1.97

with θt = π/5, θr = π/7, R = 6/7 and i = 1, 2, 3, 4, 5.

φ2(x, y) = x2 + y2 − (6/7)2,

φ3(x, y) = −(x2 + y2 − (6/7)2),

β+
1 (x, y) =

(

x2 + y2 + 1 x2 + y2 + 2

x2 + y2 + 2 x2 + y2 + 5

)

,

β+
2 (x, y) =

(

x2 − y2 + 3 x2 − y2 + 1

x2 − y2 + 1 x2 − y2 + 4

)

,

β+
3 (x, y) =

(

xy + 2 xy + 1

xy + 1 xy + 3

)

,

u1(x, y) = 2y + 1 + 0.1 sin(2π(x2 + y)),

u2(x, y) = 0,

u3(x, y) = y3 + ex + 1.

Fig. 4.3 shows the numerical solution with our method using a 40×40 grid. Table 4.3 shows

the error on different grids. The numerical result shows close to second order accuracy in the

L∞ norm for the solution.

Example 4. Our final example has a triple-junction point at which corner singularity of

solution is present for three domains. The level-set function φj(x, y), the coefficients βj(x, y),

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−2

−1

0

1

2

3

4

Fig. 4.3. Star in circle.
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Table 4.4: Numerical results for triple junction with corner singularity.

nx × ny Err in U Order

40× 40 1.2742e-002

80× 80 3.5392e-003 1.85

160 × 160 8.8849e-004 1.99

320 × 320 2.1758e-004 2.03

and the solution uj(x, y) for j = 1, 2, 3 are given as follows:

φ1(x, y) = x+ 0.1y, β+
1 (x, y) =

(

1 0

0 1

)

,

φ2(x, y) = −x− 0.2y, β+
2 (x, y) =

(

2 0

0 2

)

,

φ3(x, y) = y + 0.03x, β+
3 (x, y) =

(

3 0

0 3

)

,

u1(x, y) = x+ ey + 1 + w1(x, y),

u2(x, y) = sin(x) + 6 + w2(x, y),

u3(x, y) = x2 + y3 + sin(x+ y) + w3(x, y),

where w1, w2, w3 are the singularity terms:

wi(r, θ) = r
π
αi sin

(

π

αi

(θ − θi)

)

,

with α1 = 1.798, θ1 = −0.030, α2 = 1.441, θ2 = −1.471, α3 = 3.049, θ3 = 1.768, The

singular terms are derived from the Laplace equation in polar coordinates, see [6] for details.

By a procedure similar to the one implemented in [25] and [23], we multiply the solution

by a polynomial (x2 + y2)2. Corner singularity can be removed so that the accuracy does not

degenerate.

Fig. 4.4 shows the numerical solution after multiplied with (x2 + y2)2 using a 40× 40 grid.
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Fig. 4.4. Dealing with corner singularity.



A Numerical Method for Solving the Elliptic Interface Problems 515

Table 4.4 shows the error on different grids. The numerical result shows close to second order

accuracy in the L∞ norm for the solution.

5. Conclusion

In this paper, we modified the method in [8] to solve the elliptic interface problem in multi-

domains with triple junctions. The matrix for the linear system generated by our method is

positive definite (but not symmetric) if the matrix coefficients for the elliptic equation in three

domains are positive definite. Through numerical experiments, our method is shown to be close

to second order accuracy in the L∞ norm, thanks to our careful treatment of the triple junction

points. By using a standard procedure of multiplying by a polynomial, the accuracy does not

degenerate with the presence of corner singularities.
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