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Abstract

The error caused by the ghost force is studied for a quasicontinuum method with planar

interface in two dimension. For a special case, we derive an analytical expression of the

error, which is exploited to prove that the ghost force may lead to a finite size error for

the gradient of the solution. The pointwise estimate of the error shows that the error

decays algebraically away from the interface, which is much slower than that of the one-

dimensional problem, for which the error decays exponentially away from the interface.
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1. Introduction

Multiscale methods have been developed to simulate mechanical behaviors of solids for

several decades [18]. Combination of models at different scales greatly enhances the dimension of

problems that computers can deal with. However, problems regarding the consistency, stability

and convergence of the multiscale methods may arise from the coupling procedure [3]. Taking

the quasicontinuum (QC) method [13, 24] for example, one of the main issues is the so called

ghost force problem [22], which is the artificial non-zero force that the atoms experience at the

equilibrium state. In the language of numerical analysis, the scheme lacks consistency at the

interface between the atomistic region and the continuum region [4]. For the one-dimensional

problem, it has been shown in [2,20] that the ghost force may lead to a finite size error for the

gradient of the solution. The error decays exponentially away from the interface.

To understand the influence of the ghost force for high dimensional problems, we study a

two-dimensional triangular lattice model with a QC approximation. This QC method couples

the Cauchy-Born elasticity model [1] and the atomistic model with a planar interface. Numerical

results show that the ghost force may lead to a finite size error for the gradient of the solution

as the one-dimensional problem. The error profile exhibits a layer-like structure. Outside the

layer, the error decays algebraically.

To further characterize the influence of the ghost force, we introduce a square lattice model

with a QC approximation. Compared to the triangular lattice model, this model can be solved

* Received June 5, 2012 / Revised version received July 1, 2012 / Accepted August 7, 2012 /

Published online November 16, 2012 /



658 J.R. CHEN AND P.B. MING

analytically and the error profile exhibits a clear layer-like structure. Based on the analytical

solution, we prove the error committed by the ghost force for the gradient of the solution is

O(1) and the error decays away from the interface to O(ε) at distance O(
√
ε ), where ε is the

equilibrium bond length. These are also confirmed by the numerical results. We note that

there are some recent efforts devoted to the convergence analysis for ghost force free multiscale

coupling methods in high dimension, we refer to [16, 21] and the references therein.

The paper is organized as follows. Numerical results for the triangular lattice model and

the square lattice model with QC approximations are presented in § 2 and § 3, respectively.

We derive an analytical expression of the solution of the square lattice model with a QC

approximation in § 4. The pointwise estimate of the solution is proved in § 5.

2. A QC Method for Triangular Lattice

2.1. Atomistic and continuum models

We consider the triangular lattice L, which can be written as

L =
{

x ∈ R
2 | x = ma1 + na2, m, n ∈ Z

}

with the basis vectors a1 = (1, 0), a2 = (1/2,
√
3/2). Define the unit cell of L as

Γ =
{

x ∈ R
2 | x = c1a1 + c2a2, −1/2 ≤ c1, c2 < 1/2

}

.

We shall consider lattice system εL inside the domain Ω = Γ, and denote Ωε = Ω ∩ εL, where

ε is the equilibrium bond length. Assume that the atoms are interacted with the potential

function, which is usually a highly nonlinear function, e.g., the Lennard-Jones potential [15].

Denote by S1 and S2 the first and the second neighborhood interaction ranges; see Fig. 2.1. In

particular, we have

S1 = ∪6
i=1si = {a1, a2,−a1 + a2,−a1,−a2, a1 − a2},

S2 = ∪12
i=7si = {a1 + a2,−a1 + 2a2,−2a1 + a2,−a1 − a2, a1 − 2a2, 2a1 − a2}.

For µ ∈ Z
2, the translation operator T µ

ε is defined for any lattice function z : L → R
2 as

(T µ
ε z)(x) = z(x+ εµ1a1 + εµ2a2) for x ∈ L.

We define the forward and backward discrete gradient operators as

D+
s = ε−1(T µ

ε − I) and D−
s = ε−1(I − T µ

ε ),

where s = µ1a1 + µ2a2 and I is the identity operator. We shall also use the short-hand

Dz = (D+
1 z,D

+
2 z) = (D+

s1z,D
+
s2z).

In what follows, we denote z(x) as the deformed positions of the atoms.

Consider an atomic system posed on Ωε. The total energy is given by

Etot
at =

1

2

∑

x∈Ωε

∑

s∈S1∪S2

V
(

|D+
s z(x)|

)

, (2.1)
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Fig. 2.1. The first and second neighborhood interaction ranges of the triangular lattice; S1 =

{s1, · · · , s6} and S2 = {s7, · · · , s12}.

where V is a potential function. In this paper, we only consider the pairwise potential function,

and leave the discussion on the more general potential functions in future publication. The

atomistic problem is to minimize the total energy subject to certain boundary conditions that

will be specified later on.

Next we turn to the Cauchy-Born elasticity model [1, 7–9]. Given a 2 by 2 matrix A, the

stored energy density function is given by

Wcb(A) =
1

2ϑ0

∑

s∈S1∪S2

V (|s ·A|),

where ϑ0 is the area of the unit cell and ϑ0 =
√
3ε2/2. The stored energy function is defined by

Etot
cb =

∫

Ω

Wcb(∇z(x)) dx.

The continuum problem is to minimize the stored energy function subject to certain boundary

conditions. We employ the standard P1 Lagrange finite element to approximate the Cauchy-

Born elasticity model with the lattice L as the triangulation. The approximate stored energy

function is

Etot
cb,ε =

1

2

∑

x∈Ωε

6
∑

i=1

(

V
(

|D+
siz(x)|

)

+ V
(

|(D+
si +D+

si+1
)z(x)|

))

. (2.2)

One can see Etot
cb,ε reproduces the atomistic energy Etot

at ; cf. (2.1), if only the nearest neighbor-

hood interaction is considered.

We study the quasicontinuum method [24]. Let ε = 1/(2M), and we assume that the

interface between the continuum model and the atomistic model is x1 = 0 as shown in Fig. 2.2.

The total energy of the QC method is

Etot
qc =

1

2

∑

x1≤−2ε

6
∑

i=1

(

V
(

|D+
siz(x)|

)

+ V
(

|(D+
si +D+

si+1
)z(x)|

))

+
1

2

∑

x1=−ε

{ 6
∑

i=1

(

V
(

|D+
siz(x)|

)

+ V
(

|(D+
si +D+

si+1
)z(x)|

))

+ V (|D+
s12z(x)|)

}
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+
1

2

∑

x1=0

{

∑

s∈S1

V
(

|D+
s z(x)|

)

+

4
∑

i=2

(

V
(

|D+
siz(x)|

)

+ V
(

|(D+
si +D+

si+1
)z(x)|

))

+
1

2
V (|D+

s7z(x)|) + V (|D+
s11z(x)|) + V (|D+

s12z(x)|)
}

+
1

2

∑

x1=ε

{

∑

s∈S1∪S2

V
(

|D+
s z(x)|

)

− 1

2
V (|D+

s9z(x)|)
}

+
1

2

∑

x1≥2ε

∑

s∈S1∪S2

V
(

|D+
s z(x)|

)

.

The force at atom x is defined by

Fqc[z](x) ≡ −
∂Etot

qc

∂z(x)
.

Since we only concern the influence of the ghost force, following [20], we assume that the

interaction potential is harmonic, i.e.,

V0(r) =
1

2
r2,

where r is the distance between the atoms. Denote r̄ = r/ε, and we rescale the potential V0 as

V (r̄) = V0(r) with ε the equilibrium bond length.

Without taking into account the external force, we write the equilibrium equations for the

QC approximation as

Fqc[z](x) = 0

with

Fqc[z](x) = −12z(x) +

12
∑

i=1

z(x+ εsi), x ∈ Ωε, x1 ≤ −2ε,

Fqc[z](x) = −24z(x) + 4

6
∑

i=1

z(x+ εsi), x ∈ Ωε, x1 ≥ 2ε.

For x = (−ε, x2),

Fqc[z](x) = −49

2
z(x) + 4

6
∑

i=1

z(x+ εsi) +
1

2
z(x+ εs12).

Continuum region Atomistic region

m=−M m=0 m=M
n=−N

n=N

Fig. 2.2. Schematic picture of Ωε.
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For x = (0, x2),

Fqc[z](x) = −18z(x) + [z(x+ εs1) + z(x+ εs6)] +
5

2

(

z(x+ εs2) + z(x+ εs5)
)

+ 4
(

z(x+ εs3) + z(x+ εs4)
)

+
(

z(x+ εs7) + z(x+ εs11) + z(x+ εs12)
)

.

For x = (ε, x2),

Fqc[z](x) = −23

2
z(x) +

12
∑

i=1

z(x+ εsi)−
1

2
z(x+ εs9).

At the equilibrium state, we evaluate Fqc at z(x) = x to get

Fqc[x](x) =























(−3ε/4,
√
3ε/4), if x1 = −ε,

(3ε/2,−
√
3ε/2), if x1 = 0,

(−3ε/4,
√
3ε/4), if x1 = ε,

(0, 0), otherwise.

The above equations imply z1(x) = −
√
3z2(x). Therefore, we only study the first component

of z(x) and neglect the subscript if no confusion will occur. We denote the error caused by the

ghost force by y(x) ≡ z(x)− x, which satisfies

Fqc[y](x) = Fqc[z](x)−Fqc[x](x) = −Fqc[x](x) ≡ f(x) (2.3a)

with

f(x) =























3ε/4, if x1 = −ε,

−3ε/2, if x1 = 0,

3ε/4, if x1 = ε,

0 otherwise.

(2.3b)

Boundary conditions need to be supplemented to close the system of equilibrium equations.

Two types of boundary conditions will be considered in this paper. One is the periodic boundary

condition in x2 direction while homogeneous Dirichlet boundary condition in x1 direction,

which will be called periodic boundary condition if no confusion will occur. The other is the

homogeneous Dirichlet boundary conditions in both x1 and x2 directions.

In what follows, we shall use a conventional notation y(m,n) = y(x) with x = ε(ma1+na2),

and call (2.3) the triangular lattice model with a QC approximation.

2.2. Periodic boundary condition

The periodic boundary condition can be written as

{

y(−M,n) = y(M,n) = y(M + 1, n) = 0, n = −N, · · · , N,

y(m,n) = y(m, 2N + n), m = −M, · · · ,M, n = −N, · · · , N.

Observe that the solution of (2.3) with the periodic boundary condition takes a special form:

y(x) = cy(x1),
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Fig. 2.3. Profiles of the discrete gradients for triangular lattice model with M = N = 20 under Dirichlet

boundary condition.

namely, the solution is constant along x2 direction. Based on this observation, we conclude

that the QC approximation with the periodic boundary condition reduces to a one-dimensional

problem. The equilibrium equations satisfied by y(x1) are as follows. In the continuum region,

i.e., m = −M + 1, · · · ,−2,

8y(m+ 1)− 16y(m) + 8y(m− 1) = 0,

and in the atomistic region, i.e., m = 2, · · · ,M − 1,

y(m+ 2) + 4y(m+ 1)− 10y(m) + 4y(m− 1) + y(m− 2) = 0.

The equations in the interfacial region are

1

2
y(1) + 8y(0)− 33

2
y(−1) + 8y(−2) =

3

4
ε,

y(2) + 4y(1)− 13y(0) + 8y(−1) = −3

2
ε,

y(3) + 4y(2)− 19

2
y(1) + 4y(0) +

1

2
y(−1) =

3

4
ε.

The boundary condition is

y(−M) = y(M) = y(M + 1) = 0.

The above equilibrium equations can also be obtained by considering a one-dimensional

chain interacted with the following harmonic potential:

V ({y}) = k1
2

∑

|i−j|=1

|yi − yj |2 +
k2
2

∑

|i−j|=2

|yi − yj|2 (2.4)

with k1 = 4 and k2 = 1. This is the model studied in [2].



Ghost Force Influence of a Quasicontinuum Method 663

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) χE1
(x)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) χE2
(x)

Fig. 2.4. Profiles of the characteristic functions for triangular lattice model.

2.3. Dirichlet boundary condition

The Dirichlet boundary condition can be written as











y(−M,n) = y(M,n) = y(M + 1, n) = 0, n = −N, · · · , N,

y(m,−N) = y(m,N) = 0, m = −M, · · · ,−1,

y(m,−N − 1) = y(m,−N) = y(m,N) = y(m,N + 1) = 0, m = 0, · · · ,M.

This boundary condition together with (2.3) yields an essentially two-dimensional model. We

show profiles of discrete gradients D+
s1y and D+

s2y in Fig. 2.3 with M = N = 20. The profile

of D+
s1y is similar to that of the one-dimensional problem, but there is some difference if one

zooms the interface. For i = 1, 2, we define

Ei =
{

x ∈ Ωε | |Dsiy(x)| ≥ c0

}

,

and let χEi
be the characteristic function. Here c0 is an empirical parameter chosen to highlight

the interface. We plot χEi
in Fig. 2.4 with M = N = 640 and c0 = 10−3. In Fig. 2.4(a), the

width of the interface near the boundary is much wider than that in the interior domain. No

interfacial layer for D+
s2y is observed in Fig. 2.4(b). Therefore, we only measure the width of

m=−M m=0 m=M
n=−N

m=N

Continuum
region

Continuum region

Atomistic
region

Continuum region

Fig. 2.5. Padding technique to remove the boundary effect.
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Table 2.1: Width of the interfacial layer versus the equilibrium bond length ε for the triangular lattice

model with Dirichlet boundary condition.

ε (5× 10−2) 20 2−1 2−2 2−3 2−4 2−5 Rate

Layer width(10−1) 5.0 2.3 1.1 0.56 0.28 0.14 1.02

Table 2.2: Width of the interfacial layer versus the equilibrium bond length ε by removing the effect

of the boundary condition.

ε(10−2) 1.7 0.83 0.41 0.21 0.10 Rate

Layer width(10−2) 17 8.3 4.2 2.1 1.0 1.00

the interfacial layer for D+
s1y, which is defined by

max
n

{

[m1(n)−m2(n)]ε
∣

∣

∣
m1(n) = argmaxm{x = ma1ε+ na2ε ∈ E1}

m2(n) = argminm{x = ma1ε+ na2ε ∈ E1}
}

.

Numerical results in Table 2.1 imply that the width of the interfacial layer scales O(ε).

One may doubt the above result could be caused by the boundary condition instead of the

ghost force. To clarify this issue, we enlarge the continuum region to weaken the influence of

the boundary condition. We set N = 3M and use different equilibrium equations for different

regions as in Fig. 2.5.

We plot D+
s1y, D

+
s2y, and their characteristic functions in Fig. 2.6 and Fig. 2.7, which are

similar to those in Fig. 2.3 and Fig. 2.4. The discrete gradients of the error are still localized

around the interface, and are away from boundaries we imposed. This suggests that the interface

is caused by the ghost force instead of the boundaries.

Table 2.2 shows the width of the interfacial layer in terms of ε. Numerical results suggest

that the width of the interfacial layer is still of O(ε), which is consistent with that in Table 2.1.

The QC approximation discussed in this section is quite realistic except the potential func-

tion, which however seems enough to characterize the influence of the ghost force. Unfortu-
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Fig. 2.6. Profiles of the discrete gradients for triangular lattice model with M = 20 and padding

technique under Dirichlet boundary condition.
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Fig. 2.7. Profiles of the characteristic functions for triangular lattice model with padding technique.

nately, it does not seem easy to solve this model analytically as we have done in [20] for the

one-dimensional problem. In next section, we introduce a QC method for square lattice model

that can be solved analytically. We shall prove that this square lattice model with the QC

approximation does capture the main feature of the ghost force for the triangular lattice model

with a planar interface.

3. A QC Method for Square Lattice

We consider the square lattice model with the harmonic potential. Compared to the

standard interaction range of the square lattice, we assume a special interaction range as shown

in Fig. 3.1 (Left). Namely, the first and second neighborhood interactions in x1 direction,

and the first neighborhood interaction in x2 direction are taken into account. This seemingly

strange selection may be obtained from a rotated triangular lattice as in Fig. 3.1 (Right). If

we condense the interaction of the atoms 9, 4, 5, 11 into one atom, and the atoms 8, 2, 1, 12 into

another, then we obtain a square lattice model with the special interaction range described

above, which may be the underlying reason why it can be regarded as a surrogate model. We

shall show in the next two sections that this model not only captures the main features of the

triangular lattice model with the QC approximation as shown in Fig. 2.2, but also lends itself

theoretically tractable.

Proceeding along the same line that leads to (2.3), we obtain the equilibrium equations for

the error y(x).1) In the continuum region, i.e., m = −M, · · · ,−2 and n = −N, · · · , N ,

12yi(m,n)− yi(m,n− 1)− yi(m,n+ 1)− 5yi(m− 1, n)− 5yi(m+ 1, n) = 0, (3.1)

for i = 1, 2, and in the atomistic region, i.e., m = 2, · · · ,M and n = −N, · · · , N ,

6yi(m,n)− yi(m,n− 1)− yi(m,n+ 1)− yi(m− 1, n)− yi(m+ 1, n)

− yi(m− 2, n)− yi(m+ 2, n) = 0, i = 1, 2. (3.2)

The interface between the continuum model and the atomistic model is the line m = 0 as

shown in Fig. 3.2, and M is assumed to be even for simplicity. The equilibrium equations for

the layers m = −1, 0 and 1 are as follows.

1) We actually multiply −1 on both sides of (2.3).
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Fig. 3.1. Interaction ranges. Left: First and second neighborhood interactions in x1 direction and

first neighborhood interaction in x2 direction for square lattice; Right: First and second neighborhood

interactions for triangular lattice in a rotated coordinate.

For layer m = −1 and n = −N, · · · , N ,

25

2
yi(−1, n)− yi(−1, n− 1)− yi(−1, n+ 1)− 5yi(−2, n)− 5yi(0, n)

− 1

2
yi(1, n) = fi, i = 1, 2, (3.3)

where f1 = −ε and f2 = 0. For layer m = 0 and n = −N, · · · , N ,

9yi(0, n)− yi(0, n− 1)− yi(0, n+ 1)− 5yi(−1, n)− yi(1, n)− yi(2, n) = fi, (3.4)

for i = 1, 2, where f1 = 2ε and f2 = 0. For layer m = 1 and n = −N, · · · , N ,

11

2
yi(1, n)− yi(1, n− 1)− yi(1, n+ 1)− yi(0, n)− yi(2, n)

− 1

2
yi(−1, n)− yi(3, n) = fi, i = 1, 2, (3.5)

where f1 = −ε and f2 = 0. Using f2 = 0, we obtain y2 = 0. We only consider y1 and omit the

subscript from now on.

First we impose the Dirichlet boundary condition in the x1 direction, and the periodic

Continuum region Atomistic region

m=−M m=Mm=0
n=−N

n=N

Fig. 3.2. Square lattice with a planar interface.
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Table 3.1: Width of interfacial layer versus the equilibrium bond length ε for square lattice model.

ε (5× 10−2) 20 2−1 2−2 2−3 2−4 Rate

Layer width (10−1) 10 5.5 2.4 1.2 0.59 1.04

Table 3.2: Width of the interfacial layer versus the equilibrium bond length ε by removing the effect

of the boundary condition for the square lattice model.

ε(10−2) 3.3 1.7 0.83 0.41 0.21 Rate

Layer width(10−2) 13.3 6.7 4.4 1.7 0.83 1.00

boundary condition in the x2 direction as

{

y(−M,n) = y(M,n) = y(M + 1, n) = 0, n = −N, · · · , N,

y(m,n) = y(m,n+ 2N), m = −M, · · · ,M, n = −N, · · · , N.
(3.6)

Similar to the triangular lattice model, it is easy to check that this square lattice model re-

duces to a one-dimensional chain model with the following equilibrium equations and boundary

conditions.

5y(m+ 1)− 10y(m) + 5y(m− 1) = 0, m = −M + 1, · · · ,−2,

y(m+ 2) + y(m+ 1)− 4y(m) + y(m− 1) + y(m− 2) = 0, m = 2, · · · ,M − 1.

The equations for the interface are























1

2
y(1) + 5y(0)− 21

2
y(−1) + 5y(−2) = ε,

y(2) + y(1)− 7y(0) + 5y(−1) = −2ε,

y(3) + y(2)− 7

2
y(1) + y(0) +

1

2
y(−1) = ε.

The boundary condition is

y(−M) = y(M) = y(M + 1) = 0.
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Fig. 3.3. Profiles of the discrete gradients of y for square lattice modle with M = N = 20 under

Dirichlet boundary condition.
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Fig. 3.4. Profiles of the characteristic functions for square lattice model.
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Fig. 3.5. Profiles of the discrete gradients for the square lattice model with M = 20 and padding

technique under Dirichlet boundary condition.

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) χE1
(x)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) χE2
(x)

Fig. 3.6. Profiles of the characteristic functions for the square lattice model with padding technique.
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It is clear that the above model is exactly the same as that has been studied in [20], which

can also be obtained from the one-dimensional model (2.4) with k1 = k2 = 1.

Next we impose the Dirichlet boundary condition in both x1 and x2 directions.
{

y(−M,n) = y(M,n) = y(M + 1, n) = 0, n = −N, · · · , N,

y(m,−N) = y(m,N) = 0, m = −M, · · · ,M.
(3.7)

Choosing M = N = 20, we show the profiles of the discrete gradients D+
s1y and D+

s2y in

Fig. 3.3. The feature is similar to that of the triangular lattice model. To highlight the interface,

we plot the characteristic functions χE1
and χE2

in Fig. 3.4 with M = N = 320 and c0 = 10−3.

We report the width of the interfacial layer in Table 3.1. It is clear that the width of the

interfacial layer is of O(ε), which is the same with that of the triangular lattice model. In § 5,

we shall prove this fact.

To clarify that the above result is caused by the ghost force instead of the boundary con-

dition, we use the same setup shown in Fig. 2.5 for the square lattice model with a QC ap-

proximation. We plot the discrete gradients D+
s1y, D

+
s2y, and their characteristic functions in

Fig. 3.5 and Fig. 3.6. The profiles are similar to those in Fig. 3.3 and Fig. 3.4. The discrete

gradients of the error are still localized around the interface, and are away from the boundaries.

Table 3.2 shows the width of the interfacial layer in terms of ε, which suggest that the width

of the interfacial layer is still of O(ε). This is consistent with that in Table 3.1.

4. Exact Solution for the Square Lattice Model

To find the exact solution of the QC approximation (3.1) –(3.5) with Dirichlet boundary

condition (3.7), we follow the approach in [20]: firstly, we find the general expression for the

solution of the continuum equation and the atomistic equation by separation of variables ansatz,

with certain unspecified constants; secondly, we use the equations around the interface to

determine these constants. The next lemma gives the general expression of the solution.

Lemma 4.1. For m = −M, · · · ,−1 and n = −N, · · · , N , we have

y(m,n) =

2N−1
∑

k=1

ak sinh
(

(M +m)αk

)

sin
kπ

2N
(N + n), (4.1a)

where

coshαk = 1 +
λk

5
, λk = 2 sin2

kπ

4N
. (4.1b)

For m = 0, · · · ,M and n = −N, · · · , N , we have

y(m,n) =

2N−1
∑

k=1

(

bk
(

−1
)m

Fm(γk, δk) + ckfm(γk, δk)
)

sin
kπ

2N
(N + n), (4.2)

where

cosh γk =
1+

√
25 + 8λk

4
, cosh δk =

−1 +
√
25 + 8λk

4
, (4.3)

and


























Fm(γ, δ) =
sinh[(M + 1−m)γ] + sinh[(M −m)γ] cosh δ

cosh γ + cosh δ

−
(

−1
)m cosh[(M −m)δ] sinh γ

cosh γ + cosh δ
,

fm(γ, δ) = Fm(δ, γ).

(4.4)
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The coefficients bk and ck are parameters to be determined; see (4.13).

Proof. By separation of variables, we get (4.1a).

The explicit expression for the solution of the atomistic model can also be obtained by

separation of variables ansatz. Substituting y(m,n) = f(m)g(n) into (3.2), we get

2
∑

i=−2

(

f(m+ i)− f(m)
)

g(n) +

1
∑

i=−1

(

g(n+ i)− g(n)
)

f(m) = 0.

By (3.7), we have

g(−N) = g(N) = 0 and f(M) = f(M + 1) = 0.

We write the above equation as

1

f(m)

2
∑

i=−2

(

f(m+ i)− f(m)
)

+
1

g(n)

1
∑

i=−1

(

g(n+ i)− g(n)
)

= 0.

For λ ∈ R, we get

{

g(n+ 1) + (2λ− 2)g(n) + g(n− 1) = 0,

f(m+ 2) + f(m+ 1)− (4 + 2λ)f(m) + f(m− 1) + f(m− 2) = 0.

Using the boundary condition for g, i.e., g(N) = g(−N) = 0, we have, for any c ∈ R,

g(n) = c sin
kπ

2N
(n+N) and λ = 2 sin2

kπ

4N
.

The characteristic equation for f(m) is:

t2 + t−2 + t+ t−1 − 2(λ+ 2) = 0.

Denote the roots of the above equation by t1, · · · , t4. It is clear that

t1 = −eγ , t2 = −e−γ , t3 = eδ, t4 = e−δ,

with

2 cosh γ = −s1, s1 =
−1−

√
25 + 8λ

2
,

2 cosh δ = s2, s2 =
−1 +

√
25 + 8λ

2
.

This leads to

f(m) = a
(

−1
)m

sinh
(

(M −m)γ
)

+ b
(

−1
)m

cosh
(

(M −m)γ
)

+ c sinh
(

(M −m)δ
)

+ d cosh
(

(M −m)δ
)

with constants a, b, c and d that will be determined by the conditions f(M) = f(M + 1) = 0.

Since M is even, by f(M) = 0, we obtain b = −d. By f(M + 1) = 0, we obtain

a sinh γ − c sinh δ − b(cosh γ + cos δ) = 0.



Ghost Force Influence of a Quasicontinuum Method 671

Therefore,

b =
a sinh γ − c sinh δ

cosh γ + cosh δ
.

We write f(m) as

f(m) = a
(

−1
)m

sinh
(

(M −m)γ
)

+ c sinh
(

(M −m)δ
)

+
a sinh γ − c sinh δ

cosh γ + cosh δ

{

(

−1
)m

cosh
(

(M −m)γ
)

− cosh
(

(M −m)δ
)}

.

It is easy to rewrite f(m) into a symmetrical form

f(m) = a
(

−1
)m

Fm(γ, δ) + cFm(δ, γ),

where Fm(γ, δ) is given in (4.4), this gives (4.3). 2

Remark 4.1. The exact solution based on the series expansion is common in solving a finite

difference equation. We refer to [17] and [11] for a thorough discussion.

Next we use the interfacial equations (3.3) – (3.5) to determine the coefficients ak, bk and

ck. Denote

ycb(m,n) = y(m,n) −M ≤ m ≤ −1,−N ≤ n ≤ N

with y(m,n) given by (4.1a), and

yat(m,n) = y(m,n) 0 ≤ m ≤ M,−N ≤ n ≤ N

with y(m,n) given by (4.2). Though ycb and yat are only defined in a subset of Z2, they can

be extended to Z
2, and satisfy

Fε[ycb](m,n) = 0, Fat[yat](m,n) = 0, (4.5)

where

Fε[y](m,n) ≡ 12y(m,n)− y(m,n− 1)− y(m,n+ 1)− 5y(m− 1, n)− 5y(m+ 1, n),

Fat[y](m,n) ≡ 6y(m,n)− y(m,n− 1)− y(m,n+ 1)− y(m− 1, n)− y(m+ 1, n)

− y(m− 2, n)− y(m+ 2, n).

This observation is crucial to simplify the equations around the interface.

The equation for m = −1 changes to

Fε[ycb(1̄, n)] + 5(ycb − yat)(0, n) +
1

2

(

ycb(1̄, n)− yat(1, n)
)

= −ε.

Using Fε[ycb(1̄, n)] = 0, we have

5(ycb − yat)(0, n) +
1

2

(

ycb(1̄, n)− yat(1, n)
)

= −ε. (4.6)

Proceeding in the same fashion, we get

yat(1̄, n)−
1

2
yat(1, n)−

1

2
ycb(1̄, n) = −ε, (4.7)

3yat(0, n) + yat(1̄, n) + yat(2̄, n)− 5ycb(1̄, n) = 2ε. (4.8)
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In what follows, we use the above simplified interfacial equations and the representation formulas

to determine ak, bk and ck. Subtracting (4.7) from (4.6), we obtain

5ycb(0, n) + ycb(1̄, n) = 5yat(0, n) + yat(1̄, n).

Substituting (4.1a) and (4.2) into the above equation, we get

ak =
bk(5F0 − F1̄)(γk, δk) + ck(5f0 + f1̄)(γk, δk)

5 sinh[Mαk] + sinh[(M − 1)αk]
. (4.9)

Substituting (4.1a) and (4.2) into (4.7), we get

2N−1
∑

k=1

ℓk sin

[

kπ

2N
(n+N)

]

= −2ε

with

ℓk = − sinh[(M − 1)αk]ak + (−2F1̄ + F1)(γk, δk)bk + (2f1̄ − f1)(γk, δk)ck.

Using the discrete Fourier transform, we get

ℓk =
2× (−2ε)

2N − 1 + 1

2N−1
∑

j=1

sin
kπj

2N
=







−2ε

N
cot

kπ

4N
, if k is odd,

0, if k is even.

This leads to

Pkbk + pkck = ℓk, (4.10)

where

Pk = [−2F1̄ + F1 − ρk(−F1̄ + 5F0)](γk, δk), (4.11a)

pk = [2f1̄ − f1 − ρk(f1̄ + 5f0)](γk, δk), (4.11b)

ρk =
sinh[(M − 1)αk]

5 sinh[Mαk] + sinh[(M − 1)αk]
. (4.11c)

Using (4.7) and (4.8) to eliminate ycb(1̄, n), we obtain

3yat(0, n)− 9yat(1̄, n) + yat(2̄, n) + 5yat(1, n) = 12ε.

The coefficients bk and ck satisfy

Rkbk + rkck = −6ℓk, (4.12a)

where
{

Rk = (3F0 + 9F1̄ + F2̄ − 5F1)(γk, δk),

rk = (3f0 − 9f1̄ + f2̄ + 5f1)(γk, δk).
(4.12b)

To solve the linear system (4.10) and (4.12), we need to check whether Pkrk − pkRk is

nonzero for all k. We shall prove in Lemma 5.4 that this is indeed the case. Therefore, we may

solve (4.10) and (4.12) to obtain

bk =
rk + 6pk

Pkrk − pkRk
ℓk, ck = − Rk + 6Pk

Pkrk − pkRk
ℓk. (4.13)
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Substituting the above equation into (4.9), we get

ak =
(rk + 6pk)(5F0 − F1̄)(γk, δk)− (Rk + 6Pk)(5f0 + f1̄)(γk, δk)

(5 sinh[Mαk] + sinh[(M − 1)αk])
(

Pkrk − pkRk

) ℓk.

To sum up, we obtain the representation formulas for the solution of the QC approximation

by specifying the parameters ak, bk and ck in Lemma 4.1.

Theorem 4.1. Let y be the solution of problem (3.1)-(3.5). Then for m = −M, · · · , 1̄ and

n = −N, · · · , N ,

y(m,n) = −2ε

N

2N−1
∑

k=1
k odd

Qk

Pkrk −Rkpk

sinh[(M +m)αk]

sinh[(M − 1)αk]
ρk · cot

kπ

4N
sin

[

kπ

2N
(n+N)

]

, (4.14)

where ρk is given in (4.11c). For m = 0, · · · ,M and n = −N, · · · , N ,

y(m,n) = −2ε

N

2N−1
∑

k=1
k odd

Qm,k

Pkrk −Rkpk
cot

kπ

4N
sin

[

kπ

2N
(n+N)

]

, (4.15)

where

Pkrk −Rkpk = 6(8ρk − 1)

∣

∣

∣

∣

F0 −F1̄

f0 f1̄

∣

∣

∣

∣

+ (25ρk − 3)

∣

∣

∣

∣

−F1 F0

f1 f0

∣

∣

∣

∣

−
∣

∣

∣

∣

−F1 F2̄

f1 f2̄

∣

∣

∣

∣

+ (2− ρk)

∣

∣

∣

∣

−F1̄ F2̄

f1̄ f2̄

∣

∣

∣

∣

+ (5ρk − 1)

∣

∣

∣

∣

−F1 −F1̄

f1 f1̄

∣

∣

∣

∣

− 5ρk

∣

∣

∣

∣

F0 F2̄

f0 f2̄

∣

∣

∣

∣

,

Qk = 12

∣

∣

∣

∣

F0 −F1̄

f0 f1̄

∣

∣

∣

∣

+ 5

∣

∣

∣

∣

F0 F2̄ + F1

f0 f2̄ − f1

∣

∣

∣

∣

+

∣

∣

∣

∣

−F1̄ F2̄ + F1

f1̄ f2̄ − f1

∣

∣

∣

∣

,

and

Qm,k = 3(1− 10ρk)

∣

∣

∣

∣

(

−1
)m

Fm F0

fm f0

∣

∣

∣

∣

+ 3(1− 2ρk)

∣

∣

∣

∣

(

−1
)m

Fm −F1̄

fm f1̄

∣

∣

∣

∣

+

∣

∣

∣

∣

(

−1
)m

Fm F2̄ + F1

fm f2̄ − f1

∣

∣

∣

∣

.

As an immediate consequence of the above theorem, the solution is symmetrical with respect

to n = 0, i.e.,

y(m,n) = y(m,−n), (4.16)

which can be easily verified from the representation formulas (4.14) and (4.15).

5. Pointwise Estimate of the Error

The main result of this section is the pointwise estimate for the error caused by the ghost

force of a QC method for square lattice introduced in § 3.

Theorem 5.1. Let y be the solution of problem (3.1)-(3.5). Then

|Dy(m,n)| ≤ C

m2
exp

[

− |m|
6
√
5N

]

, m ≤ −1, (5.1)

|Dy(m,n)| ≤ C

((

3−
√
5

2

)m

+
1

m2 + 1
exp

[

− 2m

15N

]

)

, m ≥ 0. (5.2)
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The above result suggests that the error decays algebraically away from the interface.

Remark 5.1. The above theorem indicates that the width of the interface is of O(ε). It also

suggests that the gradient of the error decays away from the interface to O(ε) at distance

O(
√
ε ), while for one-dimensional problem, the error decays away from the interface to O(ε)

at distance O(ε|ln ε| ) as shown in [2, 20].

Remark 5.2. In view of the estimates (5.1) and (5.2), we conclude that the gradient of the

solution actually decays as fast as (m2+1)−1, which is due to the decay properties of the lattice

Green’s function associated with Fqc. We shall elaborate on this issue in the future work.

5.1. Some lemmas

We exploit the explicit expression of the solution in Theorem 4.1 to prove Theorem 5.1. Note

that the terms Pkrk − Rkpk,Qk and Qm,k consist of the terms like (−1)mFmfn − (−1)nFnfm
for different integers m and n. The asymptotical behavior of such terms will be given in a series

of lemmas, i.e., Lemma 5.4, Lemma 5.5 and Lemma 5.6. We begin with certain elementary

estimates that will be frequently used later on.

Lemma 5.1. For 1 ≤ k ≤ 2N − 1, there holds

λk

6
≤ cosh γk − 3

2
≤ λk

5
, (5.3)

sinh δk ≥
√

λk

3
, (5.4)

sinhαk ≥
√

2λk

5
, sinh

αk

2
=

√

λk

10
. (5.5)

Proof. Invoking (4.3), we have

cosh γk −
3

2
=

1

4

(

√

25 + 8λk − 5
)

=
2λk√

25 + 8λk + 5
,

which immediately implies (5.3). The estimate (5.5) follows from (4.1a) by definition. Us-

ing (4.3), we have

cosh γk − cosh δk =
1

2
, (5.6)

this implies

sinh2 δk = cosh2 δk − 1 = (cosh γk − 1/2)2 − 1

= (cosh γk − 3/2 + 2)(cosh γk − 3/2).

Using (5.3), we have

sinh2 δk ≥ 2(cosh γk − 3/2) ≥ λk

3
.

This gives (5.4). 2

To proceed further, we need the following estimates.
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Lemma 5.2. For 1 ≤ k ≤ 2N − 1, there holds

exp(−αk) ≤ exp
[

− k

2
√
5N

]

, (5.7)

exp(−γk) ≤
3−

√
5

2
, exp(−δk) ≤ exp

[

− k

5N

]

. (5.8)

Proof. We only prove (5.7). Other cases are similar. Using (5.5) and coshαk ≥ 1, we have

expαk = coshαk + sinhαk

≥ 1 +

√

2λk

5
= 1 +

2√
5
sin

kπ

4N
.

Using Jordan’s inequality sinx ≥ 2x/π for x ∈ [0, π/2], we have

expαk ≥ 1 +
k√
5N

.

For any 0 < x < 2/
√
5, we have

ln(1 + x) ≥ x(1 − x/2) ≥ x(1− 1/
√
5) ≥ x/2.

Using the fact that k/(
√
5N) ≤ 2/

√
5 since 1 ≤ k ≤ 2N − 1, and combining the above two

inequalities, we obtain

exp(−αk) ≤
(

1 +
k√
5N

)−1

= exp[− ln(1 + k/(
√
5N))]

≤ exp

[

− k

2
√
5N

]

.

This completes the proof of the lemma. 2

The next lemma concerns the estimate of ρk.

Lemma 5.3.

0 < 1− 6ρk ≤ 5

6

(

λk

5
+

1

M − 1
+ sinhαk

)

. (5.9)

Proof. Using the definition of ρk, we get

1− 6ρk =
5 (sinh[Mαk]− sinh[(M − 1)αk])

5 sinh[Mαk] + sinh[(M − 1)αk]
,

which implies the left hand side of (5.9). Moreover

1− 6ρk ≤ 5

6

(

sinh[Mαk]

sinh[(M − 1)αk]
− 1

)

=
5

6

(

coshαk − 1 + cot[(M − 1)αk] sinhαk

)

.

Using cosh t ≤ 1 + sinh t for any t ∈ R, we have

cot[(M − 1)αk] sinhαk ≤ sinhαk +
sinhαk

sinh[(M − 1)αk]

≤ sinhαk +
1

M − 1
,
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where we have used the elementary inequality

sinh[Mt]

sinh t
≥ M.

Combining the above three inequalities, we obtain the right hand side of (5.9). 2

By the definition of ρk and the left hand side of (5.9), we get

0 < ρk ≤ 1/6. (5.10)

A direct calculation gives

(

cosh γ + cosh δ
)(

(−1)mFmfn − (−1)nFnfm

)

= A sinh[Mγ] sinh[Mδ] +B cosh[Mγ] sinh[Mδ]

+ C sinh[Mγ] cosh[Mδ] +D cosh[Mγ] cosh[Mδ]

− sinh[(m− n)δ] sinh γ + (−1)m+n sinh[(m− n)γ] sinh δ,

where

A = (−1)m cosh[mγ] cosh[(n− 1)δ] + (−1)m cosh[nδ] cosh[(m− 1)γ]

− (−1)n cosh[nγ] cosh[(m− 1)δ]− (−1)n cosh[mδ] cosh[(n− 1)γ],

B = −(−1)m sinh[mγ] cosh[(n− 1)δ]− (−1)m sinh[(m− 1)γ] cosh[nδ]

+ (−1)n sinh[nγ] cosh[(m− 1)δ] + (−1)n sinh[(n− 1)γ] cosh[mδ],

C = −(−1)m cosh[mγ] sinh[(n− 1)δ]− (−1)m cosh[(m− 1)γ] sinh[nδ]

+ (−1)n cosh[nγ] sinh[(m− 1)δ] + (−1)n cosh[(n− 1)γ] sinh[mδ],

D = (−1)m sinh[mγ] sinh[(n− 1)δ] + (−1)m sinh[(m− 1)γ] sinh[nδ]

− (−1)n sinh[nγ] sinh[(m− 1)δ]− (−1)n sinh[(n− 1)γ] sinh[mδ].

The following lemma gives a lower bound for |Pkrk −Rkpk|.

Lemma 5.4. There holds

(

cosh γk + cosh δk

)∣

∣

∣
Pkrk −Rkpk

∣

∣

∣
≥ 5

24

(

1− exp

[

−2M

5N

])

exp [M(γk + δk)]. (5.11)

Proof. A direct calculation gives

(

cosh γk + cosh δk

)(

Pkrk −Rkpk

)

= Ak sinh[Mγk] sinh[Mδk] +Bk cosh[Mγk] sinh[Mδk]

+ Ck sinh[Mγk] cosh[Mδk] +Dk cosh[Mγk] cosh[Mδk]

+ 2(12 + 2λk − 72ρk) sinh γk sinh δk,
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where

Ak =

(

4λ2
k +

313

2
λk + 315

)

ρk − 6λ2
k − 39λk −

105

2
,

Bk =

(

18λk +
225

4
+

(

229

4
+ 2λk

)

√

25 + 8λk

)

ρk sinh γk

+

(

25

2
+ 4λk − (14 + 4λk)

√

25 + 8λk

)

sinh γk,

Ck =

(

−18λk −
225

4
+

(

229

4
+ 2λk

)

√

25 + 8λk

)

ρk sinh δk

+

(

−25

2
− 4λk − (14 + 4λk)

√

25 + 8λk

)

sinh δk,

Dk =
(

169 + 8λk)ρk − (74 + 20λk)
)

sinh γk sinh δk.

Using (5.10), we may show that

Ak, Bk, Ck, Dk < 0. (5.12)

Using Dk < 0 and invoking (5.10) once again, we have

Dk cosh[Mγk] cosh[Mδk] + 2
(

12 + 2λk − 72ρk

)

sinh γk sinh δk

≤ Dk + 2
(

12 + 2λk − 72ρk

)

sinh γk sinh δk

=
(

(169 + 8λk)ρk − (74 + 20λk) + 2(12 + 2λk − 72ρk)
)

sinh γk sinh δk

=
(

(24 + 8λk)ρk − (50 + 16λk)
)

sinh γk sinh δk

≤ −
(

46 + 44λk/3
)

sinh γk sinh δk < 0, (5.13)

which together with (5.12) implies

(cosh γk + cosh δk)(Pkrk −Rkpk) < 0.

Combining the above equation with (5.12) and (5.13), we obtain
∣

∣

∣
(cosh γk + cosh δk)(Pkrk −Rkpk)

∣

∣

∣

=−
(

cosh γk + cosh δk

)(

Pkrk −Rkpk

)

=−Bk cosh[Mγk] sinh[Mδk]−Ak sinh[Mγk] sinh[Mδk]− Ck sinh[Mγk] cosh[Mδk]

+
(

−Dk cosh[Mγk] cosh[Mδk]− 2(12 + 2λk − 72ρk) sinh γk sinh δk

)

≥|Bk| cosh[Mγk] sinh[Mδk]. (5.14)

Using (5.9), we bound |Bk| as

|Bk| = −Bk = −
(

18λk +
225

4
+

(

229

4
+ 2λk

)

√

25 + 8λk

)

ρk sinh γk

−
(

25

2
+ 4λk − (14 + 4λk)

√

25 + 8λk

)

sinh γk

≥
((

107

24
+

11

3
λk

)

√

25 + 8λk − 175

8
− 7λk

)

sinh γk.
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A direct calculation gives sinh γk ≥
√
5/2, which together with the above inequality yields

|Bk| ≥
5

6
. (5.15)

By (5.8), we have

exp[2Mδk] ≥ exp[2kM/(5N)] ≥ exp[2M/(5N)].

It follows from the above inequality that

sinh[Mδk] =
1

2
exp[Mδk] (1− exp[−2Mδk])

≥ 1

2
(1− exp[−2M/(5N)]) exp[Mδk].

Substituting the above inequality and (5.15) into (5.14) implies (5.11). 2

Next two lemmas concern the upper bounds of Qk and Qm,k. Instead of calculating all the

coefficients of Qk and Qm,k as we have done for (cosh γk + cosh δk)|Pkrk −Rkpk|, we consider

the coefficients of the leading order terms of Qk and Qm,k. We write

(

cosh γ + cosh δ
)(

(−1)mFmfn − (−1)nFnfm

)

=
1

4
(A+B + C +D)eM(γ+δ) 1

4
(−A−B + C +D)eM(γ−δ) + L.O.T. (5.16a)

with






A+B + C +D = (eγ + eδ)
(

(−1)me−(nδ+mγ) − (−1)ne−(nγ+mδ)
)

,

−A−B + C +D = (eγ + e−δ)
(

−(−1)menδ−mγ + (−1)nemδ−nγ
)

,
(5.16b)

and L.O.T. stands for the terms that are of lower order than eM(γ+δ) and eM(γ−δ). Using (4.14),

we write (cosh γk + cosh δk)Qk as

(

cosh γk + cosh δk

)

Qk = Q0
k exp[M(γk + δk)] +Q1

k exp[M(γk − δk)] + L.O.T. (5.17a)

with

Q0
k =

1

4

(

eγk + eδk
){

12(eγk + eδk) + 5(e2δk − e2γk)− 5(e−γk + e−δk)

− eγk+δk(eγk + eδk) + eγk−δk − eδk−γk

}

, (5.17b)

Q1
k =

1

4

(

eγk + e−δk
){

−12(eγk + e−δk) + 5(e2γk − e−2δk) + 5(e−γk + eδk)

+ eγk−δk(eγk + e−δk) + e−γk−δk − eγk+δk
}

. (5.17c)

We have the following estimate for Q0
k and Q1

k.

Lemma 5.5. There exists C such that

|Q0
k|+ |Q1

k| ≤ C
√

λk. (5.18)
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Proof. We only estimate Q0
k, and Q1

k can be bounded similarly. We firstly write Q0
k as

Q0
k =

1

4

(

eγk + eδk
){

(12 + e−δk − e2δk)eγk − (5 + eδk)(e2γk + e−γk)

+ 12eδk − 5e−δk + 5e2δk
}

. (5.19)

By definition, we have

cosh[2γk] = 2 cosh2 γk − 1 = cosh γk + λk + 2, (5.20)

which implies

e2γk + e−γk = cosh[2γk] + sinh[2γk] + cosh γk − sinh γk

= 2 coshγk + λk + 2 + sinh γk(2 cosh γk − 1)

= 2(eγk + 1) + λk + sinh γk(2 coshγk − 3).

Substituting the above equation into (5.19) produces

Q0
k =

1

4

(

eγk + eδk
){

(5− eγk)[2(eδk − 1)− e−δk + e2δk)]

− (5 + eδk)[λk + sinh γk(2 coshγk − 3)]
}

.

Using (5.6), we get

2(eδk − 1)− e−δk + e2δk = (eδk − 1)(3 + 2 cosh δk) = 2(cosh γk + 1)(eδk − 1).

Combining the above two equations, we obtain

Q0
k = (eγk + eδk)

{

2(5− eγk)(cosh γk + 1)(eδk − 1)

− (5 + eδk)[λk + sinh γk(2 cosh γk − 3)]
}

. (5.21)

Proceeding along the same way that leads to (5.21), we obtain

Q1
k =

1

4
(eγk + eδk)

{

(5 + e−δk)[λk + 2 sinh γk(2 coshγk − 3)]

+ (5− eγk)(1 + 3e−δk + e−2δk)(eδk − 1)
}

. (5.22)

Using (5.6) gives

eδk − 1 = cosh δk + sinh δk − 1 = cosh γk −
3

2
+ sinh δk.

Substituting the above equation into (5.21) and (5.22), and using the estimates (5.3) and (5.4),

we obtain (5.18). 2

Next we write (cosh γk + cosh δk)Qm,k as

(cosh γk + cosh δk)Qm,k = Q0
m,k exp[M(γk + δk)] +Q1

m,k exp[M(γk − δk)] + L.O.T.

with


















Q0
m,k =

1

4
(eγk + eδk)

(

(−1)me−mγkQ1 − e−mδkQ2

)

,

Q1 = 3(1 + eδk) + e2δk − e−δk − 6ρk(5 + eδk),

Q2 = e2γk + e−γk − 3(eγk − 1) + 6ρk(e
γk − 5),
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and


















Q1
m,k =

1

4
(eγk + e−δk)

(

−(−1)me−mγkQ3 − emδkQ4

)

,

Q3 = 3(1− 2ρ)(e−δk − 1) + e−2δk − eδk + 6(1− 6ρk),

Q4 = −Q2.

We have the following estimate for Q0
m,k and Q1

m,k .

Lemma 5.6. There holds

|Q1|+ |Q2|+ |Q3|+ |Q4| ≤ C

(

√

λk +
1

M − 1

)

. (5.23)

Proof. We only estimate Q1 and Q2. The terms Q3 and Q4 can be bounded similarly.

Similar to (5.20), we have

cosh[2δk] = − cosh δk + λk + 2.

Using the above equation, we write Q1 as

Q1 = 3(1 + cosh δk + sinh δk)− cosh δk + λk + 2 + sinh[2δk]

− (cosh δk − sinh δk)− 6ρk(5 + eδk)

= λk + 5 + cosh δk + 4 sinh δk + sinh[2δk]− 6ρk(5 + eδk)

= λk + (5 + eδk)(1− 6ρk) + sinh δk(3 + 2 cosh δk).

Using (5.20) and proceeding along the same line that leads to the above expression of Q1, we

obtain

Q2 = 2 cosh2 γk + 2 + sinh[2γk]− 3(cosh γk + sinh γk) + cosh γk − sinh γk + 6ρk(e
γk − 5)

= λk + 5− cosh γk + sinh[2γk]− 4 sinh γk + 6ρk(e
γk − 5)

= λk + (1− 6ρk)(5 − eγk) + 2 sinh γk(cosh γk − 3/2).

Using (5.3), (5.4) and (5.9), we get

|Q1|+ |Q2| ≤ C

(

√

λk +
1

M − 1

)

.

This completes the proof of the lemma. 2

To prove Theorem 5.1, we need the following identity that can be easily derived from [12, p.

38, formula 1.353(1)].

Lemma 5.7. For any ̺ ∈ (0, 1), we have

N
∑

k=1

̺2k−1 sin[(2k − 1)x]

=
(̺+ ̺3) sinx− ̺2N+1 sin[(2N + 1)x] + ̺2N+3 sin[(2N − 1)x]

1− 2̺2 cos[2x] + ̺4
.
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5.2. Proof of Theorem 5.1

Based on the above estimates, we are ready to prove Theorem 5.1. Using (5.11) and (5.18),

we have, for m ≤ −2,

|Dy(m,n)| ≤ C

N

2N−1
∑

k=1
k odd

exp(−|m|αk) sin
kπ

2N
. (5.24)

By (5.11) and (5.23), we have, for m ≥ 0,

|D1y(m,n)| ≤ C

N

2N−1
∑

k=1
k odd

(

exp(−mγk) + exp(−mδk) sin
kπ

2N

)

, (5.25)

|D2y(m,n)| ≤ C

N

2N−1
∑

k=1
k odd

(

exp(−mγk) sin
kπ

2N
+ exp(−mδk) sin

kπ

2N

)

. (5.26)

Let ̺ = exp[−|m|/(2
√
5N)] and x = π/[2N ], and using Lemma 5.7, we have

2N−1
∑

k=1
k odd

exp(−|m|αk) sin
kπ

2N
≤

N
∑

k=1

̺2k−1 sin[(2k − 1)x]

=
̺(1 + ̺2)(1 + ̺2N )

(1− ̺2)2 + 4̺2 sin2 x
sinx ≤ 2̺(1 + ̺)2

(1− ̺2)2
sinx =

2̺

(1− ̺)2
sinx.

Using Lozarević’s inequality [14]:

cosh t ≤
(

sinh t

t

)3

, t 6= 0,

and the elementary inequality cosh t ≥ et/2, t ∈ R, we obtain

2̺

(1− ̺)2
sinx =

sin
π

2N

2 sinh2
( |m|
4
√
5N

) ≤
π

2N
( |m|
4
√
5N

)2

cosh2/3
( |m|
4
√
5N

)

≤ 22/340πN

m2
exp

[

− |m|
6
√
5N

]

≤ 80πN

m2
exp

[

− |m|
6
√
5N

]

,

which together with (5.24) leads to(5.1).

For m ≥ 1 and let ̺ = exp[−m/(5N)], we immediately have (5.2).

The proof of the case when m = −1 can be done in the same way that leads to (5.1). We

leave it to the interested readers. 2

Proceeding along the same line that leads to Theorem 5.1, we have the following estimate

on the solution.

Corollary 5.1. There exists C such that

|y(m,n)| ≤ C
ε

|m| , m ≤ −1,

|y(m,n)| ≤ Cε

((

3−
√
5

2

)m

+
1

m+ 1

)

, m ≥ 0.
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The above estimate suggests that the ghost force actually induces a negligible error on the

solution, which is as small as ε.
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