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Abstract

We present a new iterative reconstruction algorithm to improve the algebraic recon-

struction technique (ART) for the Single-Photon Emission Computed Tomography. Our

method is a generalization of the Kaczmarz iterative algorithm for solving linear systems

of equations and introduces exact and implicit attenuation correction derived from the

attenuated Radon transform operator at each step of the algorithm. The performances

of the presented algorithm have been tested upon various numerical experiments in pres-

ence of both strongly non-uniform attenuation and incomplete measurements data. We

also tested the ability of our algorithm to handle moderate noisy data. Simulation stud-

ies demonstrate that the proposed method has a significant improvement in the quality

of reconstructed images over ART. Moreover, convergence speed was improved and sta-

bility was established, facing noisy data, once we incorporate filtration procedure in our

algorithm.
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1. Introduction

1.1. The medical aspect

Single-Photon Emission Computed Tomography (SPECT) is a nuclear medical imaging
mechanism used to determine the concentration of some biologically active molecules in some
specific zone of a human body in terms of their activity distribution. Some radiopharmaceutical
product is first injected into the patient’s organ, with a Gamma-emitting isotope. The radiations
are trapped by a Gamma-camera with detectors which is materialized by an acquisition plane,
see Fig. 1.1, rotating about the patient along a grid of specific angles. The intensity of such
radiations is therefore measured in each direction orthogonal to the acquisition system plane in
various angular positions.

The measured quantities of traveling photons are the exponentially weighted averages of
the activity distribution along straight lines on their way from the source to the detector. The
reason for the exponential weight is the presence of a position-dependent attenuation coefficient
(see [12]) due to photon interaction with the organic tissue in which the radiations go through.
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1.2. The mathematical model

We will present here a two-dimensional model, so that the detector will be materialized
by a grid of collimators regularly spaced along a line C which modelizes the Gamma-camera.
Let (x, y) 7−→ f(x, y) denote the activity distribution and (x, y) 7−→ a(x, y) the position-
dependent attenuation coefficient. When the detector is positioned in order to register ra-
diations which propagate along lines L with direction θ⊥, the measured intensity g(θ, s(L))
corresponding to the radiation along such line distant from s = s(L) to the origin (the center
of the exploration zone) (see Figs. 1.1a and 1.1b), is given by the attenuated Radon transform
(θ, s) 7−→ Ra, θ[f ](s) defined as :

Ra,θ [f ](s) =
∫

〈(x,y), θ〉=s

exp
(
−

∫ +∞

0

a((x, y) + tθ⊥) dt
)

f(x, y) dλs,θ(x, y)

= g(θ, s). (1.1)

Here dλs,θ stands for the restriction of the Lebesgue area measure in R2 to the straight line
〈(x, y) , θ〉 = s, where

θ =
(

cos ϕ

sin ϕ

)
, θ⊥ =

( − sin ϕ

cosϕ

)
and 0 ≤ θ < ϕmax.

The unknown activity distribution is materialized in (1.1) by f . So the problem is to recover
f from the projections data g(θ, s), assuming of course some a priori information about the
tissue attenuation distribution a. When a is known, there are various direct (via analytic
formulas) or iterative techniques to recover f .

(a) (b)
Fig. 1.1. Scanner

1.3. Previous inversion methods

Direct analytic methods lie on explicit exact inversion formulas for the attenuated Radon
transform. When a ≡ 0, the problem is solved by the classical Radon inversion formulas in
dimension two (see Natterer [15] and Quinto [18] for more details about Radon’s inversion
formulas). When the attenuation tissue distribution a remains constant on the support of
f , then the attenuated Radon transform is reduced to the exponential Radon transform, for
which Tretiak and Metz [23] suggested an exact inversion formula. Nevertheless, none of these
analytical methods is accurate respect to the reconstruction of f in case of an arbitrary strongly
non-uniform attenuation tissue distribution, which is usually the case in any realistic SPECT
problem. Novikov [17] discovered an exact analytical inversion formula for the attenuated
Radon transform when a is an arbitrary tissue attenuation distribution. Another derivation of



Accurate Attenuation Correction For Algebraic Reconstruction Technique 403

a similar formula and numerical inversion were developed by Natterer [16]. See also [13] for
numerical applications.

On the other hand, there is a wide family of iterative methods involving linear algebra,
operator theory and statistical tools. One of the prominent iterative reconstruction methods for
emission tomography is Maximum Likelihood Reconstruction using the EM algorithm, which
stands for Expectation Maximization presented by Dempster et. al [5] in its full generality.
A practical implementation of the EM method in the setting of image reconstruction was
proposed by Shepp and Vardi [21], where a statistical framework for the problem is given.
However, classical EM algorithm, in itself, does not take into account the attenuation correction.
Many studies have been made to incorporate attenuation correction procedure in the main EM
algorithm. Tsui et. al [24] implemented an iterative EM algorithm with attenuation correction
using an attenuated projector-backprojector that uses the attenuation distribution to calculate
attenuation factors for each pixel along each projection and backprojection. See also [1] for
similar studies. A fast EM algorithm for image reconstruction from the attenuated projections
with Poisson noise was proposed in [9].

Some of the iterative algorithms involve evaluation of certain analytic formulas as a part
of the method. A multiplicative postprocessing technique was implemented by Chang [3] for
attenuation correction using an assumed constant attenuation coefficient. This technique was
modified to calculate the multiplicative attenuation compensation factor, based on a nonuniform
attenuation distribution, and combined iteratively with the filtered backprojection algorithm.
See Manglos et. al [14].

With the condition a = 0, there is a well known iterative method to solve (1.1) in order to
recover f from its projection g(θ, s) with no attenuation correction. This method is known as
Algebraic Reconstruction Technique and commonly denoted by ART. it is based on the well
known algorithm for solving linear systems of equations proposed by Kaczmarz in 1937 cite11
and later elucidated further by Tanabe [22]. The application of the ART in tomography was
introduced by Gordon et. al [7] in 1970. Later Herman [8] showed that ART can be computa-
tionally efficient by carefully arranging the order in which the collected data are accessed during
the iterative reconstruction procedure, and by adaptively adjusting the relaxation parameters.
ART consists in assuming that the activity distribution f is an array of unknowns, then setting
(1.1) as a system of algebraic equations for the unknowns in terms of the measured projection
data, and finally applying Kaczmarz method to solve the latter system. The classical ART does
not take into account the attenuation of the photons. In [4], Chen et. al proposed a method
for attenuation correction and combined it with the classical ART algorithm. However their
method was based on relation of attenuation coefficient and emission coefficient, which is not
always available in realistic models.

1.4. Plan of the article

In this paper we present an iterative reconstruction algorithm with implicit attenuation
correction. Our approach is a generalization of the classical ART algorithm. The paper is
organized as follows. In section 2 we review the general Kaczmarz method. In section 3 we
apply this method to solve the equation (1.1) and derive our iterative algorithm. The main idea
of our approach is based on expressing the attenuated Radon transform operator Ra,θ as the
decomposition of the Radon transform operator Rθ and a multiplication operator La,θ. This
leads to find an exact and implicit expression for the attenuation correction in the iterative
algorithm. In section 4 we illustrate various numerical tests performed with both optimal



404 E. NASR

and suboptimal data measurements using the present algorithm and the conventional ART
algorithm. These tests were done with several activity distribution phantoms and realistic
strongly nonuniform attenuation distribution. From this experiments one can see that an
algorithm that would not take into account the attenuation would be essentially inaccurate,
while our method significantly improves reconstruction results and accelerate convergence speed.
We also include in this section reconstruction from noisy data using a filtered version of our
algorithm. Finally, section 5 concludes our paper with discussions and comments.

2. Kaczmarz’s Method

Kaczmarz’s method is an iterative method for solving linear systems of equations. In this
section we will present a brief analysis of this method independently of computerized tomog-
raphy. This analysis will provide the theoretical support needed to compute the algorithm for
reconstruction of the activity distribution f from the emission data Ra[f ] with a known tissue
attenuation distribution a.

Let H and Hj for j = 1, . . . , p be real (or complex) Hilbert spaces, and let

Rj : H −→ Hj for j = 1, . . . , p

be p linear continuous maps from H onto Hj . Let also gj ∈ Hj be given and suppose one wants
to compute f ∈ H such that

Rjf = gj for j = 1, . . . , p. (2.1)

This linear system can also be written as Rf = g, with

R =




R1

...
Rp


 , g =




g1

...
gp


 for j = 1, . . . , p.

Let Pj be the orthogonal projection in H onto the affine subspace

{f ∈ H ; Rjf = gj}

with underlying vectorial subspace
Fj = Ker Rj .

We define the following operators such that

Pω
j = (1− ω)I + ωPj , Pω = Pω

p ◦ . . . ◦ Pω
1 ,

where ω is a relaxation parameter.
Then, Kaczmarz’s method with relaxation for the solution of the equation (2.1) is based on

the following inductive computation

fk = Pωfk−1 for k = 1, 2, . . . (2.2)

starting with f0 as an arbitrary initial guess. For ω = 1, we have the classical Kaczmarz’s
method. Its geometric interpretation is obvious. In fact starting with f0, we compute f1 by
successive orthogonal projections of f0 onto the affine subspaces {f ; Rjf = gj} for j = 1, . . . , p.
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In order to obtain f2, we apply the same process to f1, and so on to reach the kth iteration of
the algorithm.

Bellow we are going to give an explicit form for the equation (2.2) by evaluating Pjf for a
given f ∈ H. We suppose that the operators Rj for j = 1, . . . , p, are surjective. Hence their
adjoint operators R∗j : Hj −→ H are injective. Also the operators Rj ◦ R∗j for j = 1, . . . , p,
are injective since

〈Rj ◦R∗j [u] , u〉 = ‖R∗j [u]‖2 for any u ∈ Hj .

Assuming in addition that all operators Rj ◦R∗j for j = 1, . . . , p, have closed range, we conclude
that

Rj ◦R∗j : Hj −→ Hj , for j = 1, . . . , p ,

is bijective with a continuous inverse (Rj ◦R∗j )
−1.

One has
(Ker Rj)⊥ = Im R∗j , for j = 1, . . . , p ,

which implies that for each j = 1, . . . , p, there exists a sequence (uj,l(f))l ∈ Hj such that

Pjf − f = lim
l→+∞

(R∗j [uj,l(f)]) , for j = 1, . . . , p . (2.3)

On the other hand we have Rj [Pjf ] = gj , for j = 1, . . . , p, which leads by applying Rj on
both sides of (2.3), to

gj −Rjf = lim
l→∞

[Rj ◦R∗j (uj,l(f))] . (2.4)

Once applying the operator [Rj ◦ R∗j ]
−1 : Hj −→ Hj , we see that the sequence (uj,l(f))l

converges to (Rj ◦R∗j )
−1(gj −Rjf). Consequently,

Pjf = f + R∗j
[
(Rj ◦R∗j )

−1(gj −Rjf)
]
, for j = 1, . . . , p . (2.5)

This gives an alternative form to (2.2) and tells us how to compute fk+1 from fk. Therefore,
the iterative algorithm of Kaczmarz stands as

fk,0 = fk,

fk,j = Pω
j fk,j−1 = fk,j−1 + ω

[
R∗j ◦

[
Rj ◦R∗j

]−1(
gj −Rj fk,j−1

)]
, 1 ≤ j ≤ p

fk+1,0 = fk,p, (2.6)

with the initial condition f0 = f0,0.

3. Derivation of the Algorithm

In this section we adapt Kaczmarz’s iterative method to the tomographic problem which
consists in the inversion of the attenuated Radon transform and the retrieval of the unknown
source f from its attenuated projections defined in (1.1) when the attenuation tissue distribution
a is known. Since we are dealing with the reconstruction of cross sections of the human body,
we will only treat the bi-dimensional case.

In this setting, H is the following space

H = L2
C

(
D(0, 1), dxdy

)
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of mesurable image-functions in the unit closed disc D(0, 1) of R2, equipped with the area
Lebesgue measure dxdy.

Let a be a ”sufficiently smooth”, say at least continuous, complex valued function in D(0, 1)

a : D(0, 1) 7−→ C ,

which modelizes the known tissue attenuation distribution of a cross-section body materialized
by D(0, 1). For θ ∈ [0, 2π[, we define the following operator

Ra,θ : H −→ h := L2
C

(
[−1, 1],

ds√
1− s2

)
,

where Ra,θ is represented by the almost everywhere defined function in [−1, 1] with finite energy

s 7−→
∫

〈(x,y),θ〉=s

exp
(
−

∫ +∞

0

a((x, y) + tθ⊥) dt
)

I(x, y) dλs,θ(x, y) ,

and dλs,θ stands for the restriction of the Lebesgue area measure in R2 to the line
{

(x, y) ∈ R2 ; 〈(x, y), θ〉 = s

}
.

The operator Ra,θ can be written as the composition Rθ ◦ La,θ, where La,θ : H −→ H is the
multiplication operator by the following continuous function

Aa,θ : (x, y) 7−→ exp
(
−

∫ +∞

0

a((x, y) + tθ⊥) dt
)

(3.1)

and Rθ : H −→ h is the Radon f 7−→ R[f ](θ, ·) operator which assigns to f the function

s 7−→
∫

{〈(x,y),θ〉=s}
f(x, y) dλs,θ(x, y) .

Thus Ra,θ = Rθ ◦ La,θ is surjective since Rθ is surjective. the adjoint operator of Ra,θ is

R∗a,θ = L∗a,θ ◦R∗θ ,

where L∗a,θ is the adjoint operator of La,θ defined by the multiplication operator by the con-
tinuous function Aa,θ, and R∗a,θ is the adjoint operator of Rθ. We have (see Natterer [15], p.
18)

R∗θ : h 7−→ H,

g 7−→
(
(x, y) 7−→

[ g√
1− s2

]
s=〈(x,y) , θ〉

)
,

and Rθ ◦R∗θ = 2Idh (see Natterer [15], p. 144) since

Rθ ◦R∗θ [g](s) =
∫

{〈(x,y) , θ〉=s}

( g(s)√
1− s2

)
dλs,θ(x, y)

=
g(s)√
1− s2

× (2
√

1− s2) = 2g(s) . (3.2)
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Therefore, the operator
Ra,θ ◦R∗a,θ = Rθ ◦ La,θ ◦ L∗a,θ ◦R∗θ

is the operator which maps the function g ∈ h into the following one

s 7−→
∫

{〈(x,y) , θ〉=s}

g(s)√
1− s2

|Aa,θ(x, y)|2 dλs,θ(x, y)

=
g(s)√
1− s2

∫

{〈(x,y) , θ〉=s}
|Aa,θ(x, y)|2 dλs,θ(x, y)

=
g(s)√
1− s2

∫ √
1−s2

−√1−s2
exp

[
− 2Re

(∫

{0≤ξ≤√1−s2−t}
a(s θ + (t + ξ)θ⊥) dξ

)]
dt .

As we notice, Ra,θ ◦R∗a,θ is the multiplication operator by the strictly positive bounded function
Ba,θ defined by

s ∈ [−1, 1] 7−→

∫ √
1−s2

−√1−s2
exp

[
− 2Re

( ∫

{0≤ξ≤√1−s2−t}
a(s θ + (t + ξ)θ⊥) dξ

)]
dt

√
1− s2

=
Rθ

[|Aa,θ|2
]

√
1− s2

.

Such a multiplication operator is a continuous invertible operator of the space h in itself.
Consider distinct angles θj ∈ [0, 2π[ with j = 1, . . . , p, and p vectors g1, . . . , gp of the

Hilbert space h. One can make explicit the orthogonal projections

f ∈ H 7−→ Pω
a,jf ∈ H

onto the subspaces {f ; Ra,θj [f ] = gj} for j = 1, . . . , p. Therefore the operators Pω
a,j involved

in Kaczmarz’s iterative algorithm are given (using (2.5)) as

Pω
a,j f = f + ωR∗a,θj

◦ [
Ra,θj ◦R∗a,θj

]−1
(
gj −Ra,θj [f ]

)

= f + ω R∗a,θj

(gj −Ra,θj [f ]
Ba,θj

)

= f + ω Aa,θj ×
( gj −Ra,θj [f ]√

1− s2 Ba,θj

)
s=〈(x,y) , θj〉

= f + ω Aa,θj ×
( gj −Ra,θj [f ]

Rθj

[|Aa,θj |2
]
)

s=〈(x,y) , θj〉.

Using the expression of Pω
a,j in (2.6), Kaczmarz’s iterative algorithm in (2.6) can be written

explicitly as follows

fk,0 = fk,

fk,j = Pω
a,j fk,j−1 = fk,j−1 + ωAa,θj ×

(gj −Ra,θj [fk,j−1]
Rθj

[|Aa,θj |2
]

)
s=〈(x,y) , θj〉

, 1 ≤ j ≤ p

fk+1,0 = fk,p (3.3)

starting with an arbitrary initial data f0 = f0,0.
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4. Numerical Simulations

In order to test the performances of our algorithm in reconstructing images when the tissue
attenuation distribution is completely known, we simulated computer-generated phantoms for
both the distribution of the activity f and the tissue attenuation distribution a. We did
two numerical experiments with different image-phantoms using both optimal and strongly
suboptimal data sampling. The performance of our algorithm in correcting attenuation effects
was compared with the conventional ART algorithm. Also we tested the sensitivity of the
algorithm to additional Gaussian noise. In order to quantitatively evaluate the results, we
included L2 error estimates and compared profiles through the true activity to the corresponding
profiles of the reconstructed images.

4.1. Phantoms

We generated two activity models with MATLAB. The first one, denoted phantom 1 ( see
Fig. 4.1a) corresponds to the distribution

f(x, y) = µ1χE1(x, y) + µ2χE2(x, y) + µ3χE3(x, y)
where E1, E2, E3 are characteristic functions of three large ellipses and µ1, µ2, µ3 are given
strictly positive constants of approximatively the same size, such that µi ' µj i 6= j. The
attenuated projections gj of such an activity are strongly correlated. Thus the convergence of
ART can be seriously slowed. Therefore, this activity model will be used to test the ability of
our algorithm to reconstruct slowly varying spatial distributions that may reduce performances
of iterative algorithms.

The second one, denoted phantom 2 (see Fig. 4.1b) corresponds to an approximation of

f(x, y) =
M∑

k=1

νkδ(x− xk, y − yk)

realized as a linear combination of characteristic functions of small ellipses, the νk for k =
1, . . . , M , are random generated positive constants. Such kind of activity model will be used
to test the capacities of the algorithm to recover “accidents” and small details in discontinuous
activity distributions which may vary in a random way.

In order to perform a realistic model, we took a strongly non uniform tissue attenuation
distribution already used in [14]. The image of our phantom of the attenuation tissue distri-
bution (see Fig. 4.1c) across a section of a human body shows an ellipsoidal region with axes
of length 22.5 cm and 30 cm. Also Fig. 4.1c shows two smaller disjoint ellipsoidal zones with
axes of length respectively 10 and 8.8 cm and two circular disjoint regions of diameter 2.5 cm.
The circular and ellipsoidal regions are disjoint. The smaller ellipsoidal zones correspond to
lungs, while the circular regions correspond to bones. The attenuation distribution equals to
0.01 cm−1 within lungs and to 0.17 cm−1 within bones, while it equals 0.15 cm−1 within the
remainder part of the large ellipse.

In both experiments, all images were given on a N × N grid with N equals to 128. The
SPECT measurements were given by the attenuated Radon transform computed with Nτ pro-
jections equispaced between 0 and 2π. Here τ is equal to 360/Nτ , where the number Nτ of
projections was chosen in order to agree with the optimal sampling condition Nτ/N ' π/2 given
in [15] for transmission tomography using [0, π] as an angular range. Because of the involve-
ment in our case of some nonzero tissues attenuation distribution, the SPECT measurement
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(a) (b) (c)
Fig. 4.1. Model distributions: (a) activity phantom 1; (b) activity phantom 2; (c) attenuation.

are computed from 0 to 2π. Thus the optimal relation between N and Nτ becomes Nτ/N ' π,
which is satisfied taking Nτ = 400 projections into account. Since this ratio falls frequently in
practice much below the value π, we included numerical studies from suboptimal numbers of
projections corresponding to the ratio Nτ/N = π/5. This leads us to take only 80 equispaced
projections in consideration.

4.2. Reconstruction

In this section we perform the reconstruction of both phantom 1 and 2 using the algorithm
described in (3.3). The tissue attenuation distribution a is chosen as in the section 4.1.

In order to improve the stability of the reconstructed activity distribution, we will correct
the solution provided by our algorithm at each iteration taking into account natural constraints
which need to be fulfilled by the expected solution. Since we are dealing with the reconstruction
of a cross section of human body, a non-negativity constraint is required in order to provide
physical meaning to the solution (see [2] for more constraint schemes). Therefore, after each
iteration k of the algorithm, the approximated activity distribution fk which has been found will
be replaced by sup(fk, 0). It has been shown that the projection access order has an important
impact on the convergence rate and the stability of the ART methods. Thus several schemes
have been proposed in order to improve both convergence speed and reconstructed image quality
(see Intes et. al [10] for further details). The goal is to rearrange the measurements in such
a way that the projections are closest to perpendicularity. For this end, we chose a random
access scheme (see [25]) that gives better results relative to the sequential access scheme. The
sequential access scheme is the natural order access. It access to the projections with respect to
the order of the acquired experimental data. The relaxation parameter adjusts the projection
step at each iteration and its selection is most of the time done empirically. We have set w = 0.1
based on a previous studies such in Ros et. al [20]. Using iterative algorithms implies that the
solution f should be initialized with a constant value or a good start guess. Another common
starting guess is f0 = f0,0 = 0, which will be chosen for our numerical experiments.

Therefore, in the approach which is conducted here, the algorithm depends on two param-
eters, namely the step p of orthogonal projections on various subspaces {f ; Ra,θj f = gj} and
the number K of iterations. We performed two tests taking the values p = 1 as optimal value
using 400 projections and p = 5 as suboptimal value using only 80 projections, in order to see
how the choice of p,K affects the quality of the reconstruction where K = 1, . . . , 30 for both
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values of the parameter p. To quantitatively compare reconstructed activity densities fp,K

by our algorithm and the reconstructed activity densities fp,K
art by the classical ART with no

attenuation correction to the true one f , we define the following relative errors expressed in %

Ep,K =
‖f − fp,K‖

‖f‖ ∗ 100 and Ep,K
art =

‖f − fp,K
art ‖

‖f‖ ∗ 100

where ‖.‖ is the L2 norm.

4.2.1. Reconstruction in the case of slowly varying activity

The image displayed in Fig. 4.2a is the reconstructed image of the activity distribution phantom
1 with our algorithm after 10 iterations. Each iteration using a step p = 1 of orthogonal
projections, that is as many angles as used for the computation of the discrete attenuated
Radon transform. Here the corresponding L2 relative error is E1,10 = 0.54%. Fig. 4.2b
illustrates the reconstructed image by the classical ART algorithm using the same values for
the parameters p and K. The L2 relative error yielded is E1,10

art = 4.6%. The profiles drawn
along the horizontal axis y = 0 across the phantom 1 and the reconstructed images from both

(a) (b)
Fig. 4.2. Reconstruction of the activity “phantom 1” with p = 1 and K = 10 : (a) reconstructed image

fp,K ; (b) reconstructed image fp,K
art
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Fig. 4.3. Comparison results with p = 1 : (a) profiles of f (solid line) and the reconstructed activity

distribution densities : fp,K (dashed line), fp,K
art (dash-dotted line) for y = 0 ; (b) L2 relative error

Ep,K (dashed line) and Ep,K
art (dash-dotted line) for K = 1, . . . , 30.
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algorithms are shown respectively in Fig. 4.3a, while Fig. 4.3b shows the relative errors Ep,K

and Ep,K
art plotted as functions of the number of iterations.

Both L2 relative error and comparison of profiles show that the reconstructions obtained
by the classical ART algorithm without an attenuation correction differ significantly from the
original image even under optimal sampling conditions. Moreover, we notice that shadows can
be seen in the reconstructed image due to non corrected attenuation effects. On the other hand,
the present algorithm yields images which match perfectly the original phantom used in the
simulations and shows good stability results for the solutions when the number of iterations
increases. Furthermore, the strongly correlated measurements data didn’t affect the convergence
speed of our algorithm.

Also we conducted simulations when the measurements data suffered from a highly sub-
optimal ratio of the number between projections and the number of samples. The following
numerical experiment was computed taking the value Nτ/N ' π

5 as a sampling ratio which
corresponds to p = 5. In this case we have only 80 equispaced projections in the angular range
[0, 2π]. Figs. 4.4a and 4.4b show images computed using the present algorithm and the classical
ART method respectively after K = 10 iterations. L2 relative error was respectively equal to
E1,10 = 2.89% and E1,10

art = 7.5%.

In order to make a quantitative comparison, we show the profiles of reconstructions and
the true activity distribution , which are both taken across the horizontal axis y = 0, in Fig.
4.5a. Furthermore, we display the relative errors Ep,K and Ep,K

art as functions of number of
iterations K. In Fig. 4.5b K describes the interval [1, 30]. As shown in Figs. 4.4 and 4.5,
if the reconstruction is done in the presence of strongly varying attenuation distribution and
suboptimal sampling ratio,and if we do not correct or compensate the attenuation effect, then in
this case the smoothness of solutions will be deteriorated and the relative error of reconstruction
will linearly increase as the number of iterations increases. While using the proposed attenuation
correction method, it is possible to obtain a good reconstruction with a small relative error and
a stable behavior of solutions even in case of high suboptimal sampling ratio. On the other
hand, the strongly correlated measurements data do not affect the convergence speed of our
algorithm.

4.2.2. Reconstruction in the case of discontinuous activity distribution

In this section we implemented our algorithm starting with “phantom 2” as the activity dis-
tribution. Fig. 4.6a features the reconstructed activity distribution fp,K obtained with our
algorithm after 10 iterations, each iteration using a step p = 1 of orthogonal projections, that
is using all possible angles involved for the preliminary computation of the attenuated Radon
transform. Here the corresponding L2 relative error E1,10 is here almost equal to 0. Fig. 4.6b
shows the reconstructed activity distribution fp,K

art obtained with the classical ART algorithm
after 10 iterations and with the same step p = 1. In this case the relative error obtained is
E1,10

art = 5.7%. In Fig. 4.7a, we plotted both horizontal profiles taken at the center of the
original phantom and the reconstructed images. Fig. 4.7b features the variations of the func-
tions Ep,K and Ep,K

art for K between 1 and 30 and p equals to 1. In this case, E1,K decreases
much faster than E1,K

art . Moreover E1,K asymptotically converges to zero, while E1,K
art tends to

increase starting from the iteration K = 20.
The computational examples of this section prove that using an algorithm, which do not take

into account the attenuation correction in the reconstruction of distribution models, suffers of
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(a) (b)
Fig. 4.4. Reconstruction of the activity “phantom 1” with p = 5 and K = 10 : (a) reconstructed image

fp,K ; (b) reconstructed image fp,K
art .
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(a) (b)
Fig. 4.5. Comparison results with p = 5 : (a) profiles of f (solid line) and the reconstructed activity

distribution densities : fp,K (dashed line), fp,K
art (dash-dotted line) for y = 0 ; L2 relative error Ep,K

(dash line) and Ep,K
art (dash-dotted line) for K = 1, . . . , 30 .

lack in accuracy (poor details reconstruction) and loss of activity intensities and brilliance. Also
we noticed that oscillations appear in the reconstructed activities when these are yielded by the
conventional ART algorithm. This did not happen using our approach. In fact our algorithm
provides an exact reconstruction and a perfect contrast quality of phantoms containing fast
varying distributions. One can see from the profiles comparison that edges of the details were
reproduced accurately and perturbations didn’t occur in the reconstructed image.

As in the case of slow varying activity distribution, we performed reconstruction for phantom
2 with suboptimal sampling condition. The simulations displayed in Figs. 4.8 and 4.9 were
done by using 80 equispaced projections. For this end, we ran the algorithm setting p = 5.
The images shown in Figs. 4.8a and 4.8b illustrate the reconstructed activities fp,K and fp,K

art

respectively after 10 iterations. The corresponding L2 relatives errors were respectively 4.5%
and 22.6%. The profiles taken at the axis x = 0 through fp,K and fp,K

art are shown in Fig.
4.9a and superimposed with the corresponding profile through the true activity distribution f

for comparison. Figure 4.9b shows how Ep,K
art begins to slightly increase starting from the 19th

iteration, while Ep,K asymptotically decreases to 1.7%.

As one can see, we obtained impressive results applying our method of reconstruction. Our
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(a) (b)
Fig. 4.6. Reconstruction of the activity “phantom 2” with p = 1 and K = 10 : (a) reconstructed image

fp,K ; (b) reconstructed image fp,K
art .
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(a) (b)
Fig. 4.7. Comparison results with p = 1 : (a) profiles of f (solid line) and the reconstructed activity

distribution : fp,K (dashed line), fp,K
art (dash-dotted line) for y = 0 ; (b) L2 relative error Ep,K (dashed

line) and Ep,K
art (dash-dotted line) for K = 1, . . . , 30.

algorithm displays good stability and accuracy in face of insufficient number of projections
since there were no star-like artifacts in the reconstructed images. In fact the star-like artifact
is a pronounced phenomenon that appears when both attenuation and suboptimal number of
projection are present. Furthermore, all the details of the original phantom were reproduced.
On the other hand, and under the same circumstances, the ART algorithm, which do not
take into account the attenuation correction, produced low-contrast images that contain an
important amount of noise level.

4.3. Reconstruction from noisy data

We conclude our presentation by the reconstruction of the ”Shepp-Logan” phantom (see Fig.
4.10a) from noisy data. The Shepp-Logan phantom includes several fine objects with multiple
intensity levels (details with discontinuous geometry) and also large smooth areas. Thus such
an activity distribution simulates realistic models, so we used it to measure how the noisy data
affects the reconstruction in terms of spatial resolution and image contrast. At first time. First
the SPECT measurements were calculated by the attenuated radon transform using the same
attenuation distribution described in the previous section. Then in order to generate noisy
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(a) (b)
Fig. 4.8. Reconstruction of the activity “phantom 2” with p = 5 and K = 10 : (a) reconstructed image

fp,K ; (b) reconstructed image fp,K
art .
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(a) (b)
Fig. 4.9. Comparison results with p = 5 : (a) profiles of f (solid line) and the reconstructed activity

distribution : fp,K (dashed line), fp,K
art (dash-dotted line) for y = 0 ; L2 relative error Ep,K (dashed

line) and Ep,K
art (dash-dotted line) for K = 1, . . . , 30.

data, we added Gaussian noise with an average equals 0 and a deviance σ2 equals 0.1 to each
projection. The resulting data had a relative mean square error of 12%. In order to satisfy
practical conditions such the suboptimal sampling, we ran our algorithm with the noisy data
setting p = 5.

The image displayed in Fig. 4.10b was computed using the present algorithm without
additional filtration and after K = 10 iterations. Image in Fig. 4.10c was obtained using
our method with an application of a low-frequency filtration procedure. The filtered version
of our algorithm consists of two steps. At each iteration, we filtered the projections gj for
j = 1, . . . , 80 with the low-frequency filter Ŵ (ρ) given by

Ŵ (ρ) =

{
1
2 (1 + cos(πρ/ρcut-off)) |ρ| ≤ ρcut-off

0 |ρ| > ρcut-off.

where ρcut-off is the cut-off frequency, ρcut-off ≤ ρNyquist. Then after each full iteration, the
image fp,k is filtered using a 2-D median filter. Thus spikes from reconstruction noise are
removed without blurring the edges. Analyzing images presented in Fig. 4.10 one can observe
that the low-frequency filtration reduces oscillations in the reconstructed image with a moderate
loss of fine details.
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(a) (b) (c)
Fig. 4.10. Reconstruction of phantom ”Shepp-Logan” from noisy data : (a) original phantom ; (b)

reconstruction without filtering ; (c) reconstruction with filtering.
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(a) (b)
Fig. 4.11. Comparison results : (a) profiles of f (solid line), reconstructed activity without filtering

(dashed line) and reconstructed activity with filtering (dash-dotted line) for x = 0 ; (b) L2 relative

error evolution: without filtering (dashed line) and with filtering (dash-dotted line) for K = 1, . . . , 30.

In order to visualize how the filtration step modifies our algorithm behavior in term of the
reconstruction quality and the L2 relative error, we plotted profiles taken at the vertical axis
x = 0 across the phantom and the reconstructed images in Fig. 4.11a and we displayed Ep,K

as a function of K for K = 1, . . . , 30 in Fig. 4.11b. One can see from the graphs comparison
that the filtering procedure of our algorithm greatly improves the quality of reconstruction and
significantly reduces oscillations, while the relative error analysis shows a diverging behavior of
our method. On the other hand, when the reconstruction is done with the filtered version of
our algorithm, stable solutions occur and convergence is established.

5. Conclusion and Discussion

This paper presents a method to reconstruct emission activity by an algorithm incorporating
implicit and exact attenuation correction. We investigated the impact of the attenuation effects,
strongly correlated projections and insufficient measurements in our reconstruction approach.

The computer simulations show that the present method can indeed be used to improve
reconstructed images quality in case the of realistic arbitrary attenuation maps and gives better
results than the classical ART. The present algorithm displays an accuracy in reconstructing
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images that contain small details even when the data measurements suffer from high suboptimal
sampling. Since our algorithm need a small number of projections for accurate reconstruction,
then less computational time is required.

On the other hand, a strong correlated set of projections due to a slow varying activity
distribution seems to be controlled by our algorithm as it was shown by the L2 error estimate
studies.

The filtered version algorithm seems to handle oscillation problems when facing moderately
noisy data. We should note that it is possible to apply the present algorithm to real data,
however, there is a need for further investigation to increase numeric robustness. There should
be more investigations as well in both adapted filtering methods and finding the optimal choice
of relaxation parameters.

In our first approach, angles used for the reconstruction were regularly organized within
[0, 2π[. Nevertheless, our routine allows the possibility of choosing an arbitrary set of angles,
introducing for example some gaps in the list of selected angles. Since our approach will allow
us to avoid angular sectors in which the attenuation takes an important role in the projections,
it will be useful to accomplish studies on the reconstruction of the unknown source only when
we dispose of partial information about the attenuation map.
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