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Abstract

In this paper we investigate the performance of the weighted essential non-oscillatory

(WENO) methods based on different numerical fluxes, with the objective of obtaining

better performance for the shallow water equations by choosing suitable numerical fluxes.

We consider six numerical fluxes, i.e., Lax-Friedrichs, local Lax-Friedrichs, Engquist-Osher,

Harten-Lax-van Leer, HLLC and the first-order centered fluxes, with the WENO finite

volume method and TVD Runge-Kutta time discretization for the shallow water equations.

The detailed numerical study is performed for both one-dimensional and two-dimensional

shallow water equations by addressing the issues of CPU cost, accuracy, non-oscillatory

property, and resolution of discontinuities.
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1. Introduction

In this paper, we investigate the performance of the WENO methods based on different
numerical fluxes for the shallow water equations, with the objective of obtaining better perfor-
mance by choosing suitable numerical fluxes. The weighted essential non-oscillatory (WENO)
scheme [10,14] is a procedure of spatial discretization; namely, it is a procedure to approximate
the spatial derivative terms. The WENO scheme uses the idea of adaptive stencils in the recon-
struction procedure based on the local smoothness of the numerical solution to automatically
achieve high order accuracy and a non-oscillatory property near discontinuities. The WENO
method has been developed in recent years as a class of high order method for the shallow water
equations [3, 5, 26, 27], which gives sharp, non-oscillatory discontinuity transitions and at the
same time provides high order accurate resolutions for the smooth part of the solution. The
WENO schemes are widely studied after the structure of the finite difference WENO schemes
were proposed from the ENO schemes by Jiang and Shu in 1996 [10]. The construction of finite
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volume WENO methods on unstructured meshes was presented by Friedrichs [6]. Instead of
constructing two-dimensional finite volume WENO schemes with dimensional by dimensional
methods, Hu and Shu [9] proposed a full dimensional reconstruction methodology for the third
order WENO schemes by using a combination of two-dimensional linear polynomials and the
third and fourth order WENO schemes by using a combination of two-dimensional quadratic
polynomials. Then the WENO schemes were used in the shallow water flows simulations. Xing
and Shu [27] developed a treatment for the bed slope source term of the shallow water equa-
tions using the fifth-order finite difference WENO scheme. In [26], Vukovic and Sopta used the
finite difference ENO and WENO to solve the one-dimensional shallow water flows in order to
maintain genuine high-order accuracy. Both finite volume WENO and central WENO schemes
were used in [5] to solve the shallow water equations; high accuracy and well balancing are
obtained in the paper.

An important component of the WENO methods for the shallow water equations is the nu-
merical flux based on exact or approximate Riemann solvers. In most of the WENO methods,
Lax-Friedrichs (LF) numerical flux is used due to its simplicity. However, there exist many
other numerical fluxes based on exact or approximate Riemann solvers documented in the book
of Toro [23,24], which could also be used in the context of the WENO method. The high-order
accurate WENO schemes and the HLLC approximate Riemann solver are used in compressible
multicomponent flow problems [11]. A comparison is made between the difference schemes of
Engquist, Fisher, and Roe fluxes with Galerkin methods for approximating hyperbolic conser-
vation laws [16]. The Godunov flux [7, 23,24] is based on exact Riemann solver, which has the
smallest viscosity among all the monotone numerical fluxes, but it often lacks explicit formulas
and relies on iterative procedures. In this paper, we will consider six numerical fluxes except
the Godunov flux based on approximate Riemann solvers, which are LF flux, local LF (LLF)
flux, EO flux, Harten-Lax-van Leer (HLL) flux, HLLC flux, the first-order centered (Force)
flux, and compare the performance of the WENO methods based on these numerical fluxes for
the shallow water equations, with the objective of obtaining better performance by choosing
suitable numerical fluxes. We review and describe the details of the numerical fluxes under
consideration in section 2, and present extensive numerical tests in section 3 to compare their
performance for the shallow water equations. The detailed numerical study is performed for the
one-dimensional and two-dimensional shallow water equations. Concluding remarks are given
in section 4.

2. Review and Implementation of the Numerical Fluxes for the

WENO Method

In this section, we review the WENO method for the shallow water equations and the
numerical fluxes under consideration of the WENO method. We mainly describe the WENO
method for the one-dimensional case. Consider the one-dimensional shallow water equations:

Ut + F (U)x = S(U), (2.1)

with
U = [h, hu]T , F (U) = [hu, hu2 +

1
2
gh2]T , S = [0,−ghbx]T ,

where U is the vector of conservative variables, F is the flux vector, S is the source term
relative to the bottom slope, t is the time, x is the space, h is the water height, u is the
vertically averaged velocity, g is the gravity, and b is the bottom elevation.
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Spatial discretization of the computational domain is based on a spatial step ∆x, a uniformly
spaced mesh defined by xi = (i + 1

2 )∆x. Denote Ii = [xi− 1
2
, xi+ 1

2
] be the ith cell, centered on

xi. The updating conservative formula for (2.1) is

d

dt
Ūi +

1
∆x

[F̂ (Ui+ 1
2 ,L, Ui+ 1

2 ,R)− F̂ (Ui− 1
2 ,L, Ui− 1

2 ,R)] = S̄i, (2.2)

where Ui+ 1
2 ,L, Ui+ 1

2 ,R are the left and the right reconstructions of the discontinuous solution at

the cell interface xi+ 1
2
; F̂ (UL, UR) is the numerical flux based on exact or approximate Riemann

solvers, which will be mainly discussed in this paper; Ūi, S̄i are the cell-averaged terms. The
semi-discrete scheme (2.2) is discretized in time by the third order nonlinear stable Runge-Kutta
time discretization. The fifth order WENO finite volume scheme is used for the reconstruction
for one-dimensional cases, and the third order is used for two-dimensional cases. The details of
the WENO on unstructured meshes can be found in [9].

We now review the numerical fluxes under consideration, and the comparison of their per-
formance will be given in the next section.

2.1. The Lax-Friedrichs (LF) flux and the local LF (LLF) flux [13,18,23]

The LF flux is one of the simplest and most widely used. However, the numerical viscosity
of the LF flux is also the largest among monotone numerical fluxes. The LF or the LLF is
defined by:

F̂LF (UL, UR) =
1
2

(
F (UL) + F (UR)− α(UR − UL)

)
, (2.3)

where for the LF flux, α is taken as an upper bound over the whole line for |F ′(U)| in the scalar
case, or for the absolute value of eigenvalues of the Jacobian for the system case, and for the
LLF flux α is taken as an upper bound between UL and UR.

2.2. The Engquist-Osher (EO) flux and the Osher-Solomon flux [13,24]

The EO flux for the scalar case and its extension to systems (often referred to as the Osher-
Solomon flux) are based on the approximate Riemann solvers; they have the advantage of
explicit formulas for the scalar case and many systems. For given initial data UL and UR, it is
conventional in the EO scheme to define: U0 = UL, U1 = UR. The intersection points U 1

3
and

U 2
3

are found to be:

h 1
3

=
(

1
2
(aL + aR)− 1

4
(uR − uL)

)2

/g, u 1
3

=
1
2
(uL + uR) + aL − aR, v 1

3
= v0;

h 2
3

=
(

1
2
(aL + aR − 1

4
(uR − uL)

)2

/g, u 2
3

=
1
2
t(uL + uR + aL − aR), v 2

3
= v1.

with a =
√

gh. The sonic points are found to be:

uS0 =
1
3
(u0 + 2a0), aS0 = uS0, hS0 = a2

S0/g, vS0 = v0;

uS1 =
1
3
(u1 − 2a1), aS1 = −uS1, hS1 = a2

S1/g, vS1 = v1.

To compute the numerical flux using the EO Riemann solver for the shallow water equations,
one must form the flux as the summation of all the partial fluxes in the appropriate entry of
Table 2.1, where a total of 16 cases need to take care of, with u∗ = 1

2 (uL + uR) + aL − aR.
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Table 2.1: The Engquist-Osher flux formula for the shallow water equations, with FK ≡ F (UK).

u0 − a0 ≥ 0 u0 − a0 ≥ 0 u0 − a0 ≤ 0 u0 − a0 ≤ 0

u1 + a1 ≥ 0 u1 + a1 ≤ 0 u1 + a1 ≥ 0 u1 + a1 ≤ 0

u∗ ≥ 0, u∗ − a 1
3
≥ 0 F0 F0 + F1 − FS1 FS0 FS0 − FS1 + F1

u∗ ≥ 0, u∗ − a 1
3
≤ 0 F0 − FS0 + F 1

3
F0 − FS0 + F 1

3
− FS1 + F1 F 1

3
F1 + F 1

3
− FS1

u∗ ≤ 0, u∗ + a 2
3
≥ 0 F0 − FS0 + F 2

3
F0 − FS0 + F 2

3
− FS1 + F1 F 2

3
F1 + F 2

3
− FS1

u∗ ≤ 0, u∗ + a 2
3
≤ 0 F0 − FS0 + FS1 F0 − FS0 + F1 FS1 F1

2.3. The Harten-Lax-van Leer (HLL) flux [23–25]

The HLL flux is based on the approximate Riemann solver with three constant states sep-
arated by two waves. The evaluation of the HLL flux is simple and fast, however it has the
shortcoming of poor resolution for contact discontinuities, shear waves and material interfaces.
The HLL flux for the shallow water equations is given by:

F̂HLL(UL, UR) =





F (UL) sL ≥ 0
sRF (UL)− sLF (UR) + sRsL(UR − UL)

sR − sL
sL ≤ 0 ≤ sR

F (UR) sR ≥ 0

, (2.4)

where the lower and upper bounds of the speed, sL and sR, have several possible choices
available. The following choice of wave speed estimates leads to accuracy and robust scheme:

sL = uL − aLqL, sR = uR − aRqR, (2.5)

where qK(K = L,R) is given by:

qK =





√
1
2
[
(h∗ + hK)h∗

h2
K

] h∗ ≥ hK

1 h∗ < hK

, (2.6)

with

h∗ =
1
g

(
1
2
(aL + aR) +

1
4
(uL − uR)

)2

. (2.7)

2.4. The HLLC flux—a modification of the HLL flux [2, 8, 24]

The HLLC flux based on the approximate Riemann solver is a modification to account for
the shortcoming of the HLL flux, offset the influence of intermediate waves. In addition to the
wave speed estimates sL and sR in the HLL solver, an estimate s∗ for the speed of the middle
wave is need. The HLLC flux for the shallow water equations is given by:

F̂HLLC(UL, UR) =





F (UL) sL ≥ 0,

F (UL) + sL(U∗L − UL) sL ≤ 0 ≤ s∗,
F (UR) + sR(U∗R − UR) s∗ ≤ 0 ≤ sR,

F (UR) sR ≤ 0,

(2.8)

where

U∗K = hK(
sK − uK

sK − s∗
)




1
s∗
vK


 , s∗ =

sLhR(uR − sR)− sRhL(uL − sL)
hR(uR − sR)− hL(uL − sL)

, (2.9)
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and the definitions of sL and sR are given in (2.5).

2.5. The first-order centered (FORCE) flux [23,24]

The FORCE flux is given by:

F̂FORCE(UL, UR) =
1
2
(
F̂LF (UL, UR) + F̂LW2(UL, UR)

)
, (2.10)

where F̂LF (UL, UR) is the LF flux and F̂LW2(UL, UR) is the Richemyer or two-step Lax-
Wendroff flux, i.e.,

F̂LW2(UL, UR) = F (ULW2), (2.11)

with

ULW2 =
1
2

(
UL + UR +

∆t

∆x
(F (UL)− F (UR))

)
. (2.12)

The FORCE flux is the average of the LF flux and the Lax-Wendroff flux; hence its viscosity
is smaller than that of the LF flux.

3. Numerical Results

In this section, we make extensive numerical tests to compare the performance of the WENO
finite volume methods based on the six numerical fluxes outlined in the previous section. The
detailed numerical study is mainly performed for the one-dimensional system case, addressing
the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities.
Numerical tests are also performed for the two-dimensional systems.

For non-flat bed shallow flows, we adopt the ideas of Rogers et al. [20], who presented
an algebraic technique for balancing flux gradients and source terms. We describe it in one-
dimensional case simply. The vector of conserved variables U is given by

U = Ueq + U ′,

where U ′ is the deviation of U from the equilibrium or still water value such that ∂Ueq/∂t = 0.
Actually, for still water values, the shallow water convenient properties are ζ = u = 0, and

Ueq = [D, 0]T , U ′ = U − Ueq = [ζ, uh]T , (3.1)

where ζ is the free water height above the still water level D, h = ζ + D is the total water
depth. The approach taken in the paper is to use the still water level as the datum D. It
is perfectly reasonable to choose a fixed horizontal datum elsewhere and derive the balanced
hyperbolic equations using a stage-discharge approach.

The shallow water equations are transformed to

U ′
t + F ′(U)x = S′, (3.2)

with

U ′ = [ζ, uh]T , F ′ = [uh, (hu)2/(ζ + D) + g(ζ2 + 2Dζ)/2]T , S′ = [0,−gζbx]T . (3.3)

We can see that the Jacobian and the discretization of (3.2) is the same as that of (2.1).
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For CPU time comparison, all the computations are performed on a personal computer,
Core (TM) 2 CPU 4400 @ 2.00 GHz with 512 MB ram. We denote the WENO scheme with
the numerical flux ”X” as WENO-X, such as WENO-LF for the WENO scheme with the LF
flux. In our numerical experiments, we use the fifth-order WENO scheme for one-dimensional
cases, and the third-order for two-dimensional cases on unstructure (triangle) meshes. The
CFL number is taken as 0.6, the gravitation constant is taken as 9.812m/s2, the small positive
constant in the WENO weight formula is taken as ε = 10−6, except for the small pulse problem.

Example 3.1.
An accuracy test over a sinusoidal hump [3, 27]. The bottom elevation is described by the

following function:
b(x) = sin2(πx), x ∈ [0, 1], (3.4)

with initial conditions:

h(x, 0) = 5 + ecos(2πx), hu(x, 0) = sin(cos(2πx)). (3.5)

Periodic boundary conditions are assumed. We take the still level D as D(x) = 5 − b(x). We
compute up to t = 0.1 when the solution is still smooth. This test case can not be solved
analytically and therefore a numerical solution computed by the WENO-LF on a mesh with
25,600 cells is adopted as the reference solution.
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Fig. 3.1. An accuracy test over a sinusoidal hump. Error ratio of the L1 numerical error for h (top

left) and hu (top right) and of the L∞ numerical error for h (bottom left) and hu (bottom right)

by the WENO methods based on different fluxes to that by the WENO-LF method on meshes with

N = 25 · 2L−1, (L = 1, 2, ...6) cells.
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Fig. 3.2. An accuracy test over a sinusoidal hump. The L1 numerical error and the CPU time (unit:

second) using the log scale for h (left) and hu (right) by the WENO methods based on different fluxes

on meshes with N = 25 · 2L−1, (L = 1, 2, ...6) cells .

Table 3.1: An accuracy test over a sinusoidal hump. CPU time on meshes with N cells using the

WENO methods based on different fluxes (unit: second).

N LF LLF FORCE HLL HLLC EO

200 6.13 6.18 6.77 7.30 7.38 7.17

400 38.73 39.02 42.67 46.10 46.50 45.30

800 245.81 247.42 271.22 291.53 294.67 287.44

To demonstrate the performance of these numerical fluxes, we show the error ratio of the
L1 and L∞ numerical error to that of the WENO-LF scheme in Figure 3.1 for different meshes,
where the cell number is N = 25 · 2L−1, L = 1, · · · , 6. The comparison of CPU time is shown
in Table 3.1. We also show the L1 numerical errors against the CPU time in Figure 3.2 for
WENO schemes with different fluxes on different meshes.

On the numerical errors, the errors by all the other schemes are about 85-95% of that by
the WENO-LF scheme for all the meshes concerned, and the performance of the WENO-HLLC
scheme is almost the same as that of the WENO-HLL and WENO-EO schemes, followed by the
WENO-FORCE and the WENO-LLF schemes, then the WENO-LF scheme; the error ratio of
the WENO-LLF scheme is better than that of the WENO-FORCE scheme when the mesh is
refined after N = 25 · 23−1. All schemes achieve their designed orders of accuracy, as expected,
which are not shown here.

On the CPU time, in Table 3.1 we can see that the WENO-LF method costs the least CPU
time, the WENO-LLF, WENO-FORCE schemes cost a little more than that of the WENO-
LF scheme. The WENO-EO, WENO-HLL, WENO-HLLC schemes cost about 20% more than
that of the WENO-LF scheme, and the WENO-EO scheme costs the least hereinto. While the
distinction of the L1 numerical error against the CPU time for different fluxes is not so clear
in Figure 3.2 except for N = 25. Of course, the CPU time comparison depends on our specific
implementation of these fluxes and also on the specific test case, but it does give the correct
ball-park of the relative CPU costs of the WENO methods using these different numerical fluxes
for the shallow water equations.

Example 3.2. Dam break on a flat bed. The dam-break problem is the most common test to
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evaluate the performance of shock capturing schemes in shallow flows, such as [15]. The bottom
is flat b(x) = 0 and the initial conditions are taken as:

h(x, 0) =
{

h1 x < 0,

h2 x ≥ 0,
hu(x, 0) = 0. (3.6)

We take the computational domain as [−1, 1], h1 = 1m and h2 = 0.1m. The simulation is
performed up to time t = 0.1s.

The surface level h and the discharge hu using the WENO schemes with different numerical
fluxes on a mesh with 200 uniform cells are plotted in Figure ??, which show very good agree-
ment with the exact solution in [22]. In order to compare the quality of different numerical
fluxes, we also show the L1 numerical errors against the CPU time in Figure 3.4 for different
numerical fluxes on different meshes, we run 10 times for every program as the CPU time. We
can see from the figure that the line of the WENO-FORCE scheme almost keep lower side in
this case, followed by that of the WENO-LLF scheme. The WENO-LF scheme keeps the upper
side, which means that the WENO-LF scheme costs the most CPU time among all at the same
error level.
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Fig. 3.3. Dam break on a flat bed at t = 0.1s. Left: the surface level h+b; Right: the discharge hu. Solid

lines: the exact solution; hollow square: the results computed by the WENO-LF scheme; plus symbols:

results computed by the (a)WENO-LLF, (b)WENO-FORCE, (c)WENO-HLL, (d)WENO-HLLC, and

(e)WENO-EO.
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Fig. 3.4. Dam break on a flat bed. The L1 numerical error and the CPU time (unit: second) using the

log scale for h (left) and hu (right) by the WENO methods based on different fluxes on meshes with

N = 200, 300, 400, 500, 600, 700 cells .

The bottom elevation is described by the following function:

b(x) =
{

0.2− 0.05(x− 10)2 8 ≤ x ≤ 12,

0 otherwise,
(3.7)
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Fig. 3.5. Steady trans-critical flow over a hump without a shock. The discharge hu. Solid lines:

the exact solution; hollow square: the results computed by the WENO-LF scheme; plus symbols:

results computed by the WENO-LLF (top left), WENO-FORCE (top right), WENO-HLL (middle

left), WENO-HLLC (middle right), and WENO-EO (bottom).

where x ∈ [0, 25]. The initial conditions are taken as:

h(x, 0) = 0.5− b(x), hu(x, 0) = 0. (3.8)

Example 3.3. Steady discontinuous flow over a parabolic hump. The purpose of the test is to
study the convergence in time towards steady flows on non-flat bed involving trans-critical and
sub-critical flows; it is widely used to test numerical schemes for the shallow water equations,
such as [3, 19,27].
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Fig. 3.6. Steady trans-critical flow over a hump without a shock. The L1 numerical error (left) and

the L∞ numerical error for hu and the CPU time (unit: second) using the log scale by the WENO

methods based on different numerical fluxes on meshes with N = 200, 300, 400, 500, 600, 700 cells .

Different steady solutions can be computed involving fully sub-critical and smooth trans-
critical flow and trans-critical flow with a shock. We simulate the problem until time t = 200s

with two boundary conditions. We take the still level D as D(x) = 0.5− b(x).

(a) Trans-critical flow without a shock.
Upstream: The discharge hu = 1.53m3/s is imposed. Downstream: The water height

h = 0.66m is imposed when the flow is sub-critical.
This is a transition from sub-critical to trans-critical. As the computed results of surface

level h + b by the WENO schemes with different fluxes are similar and comparable to the
analysis, we do not show them to save space. In Figures 3.5, the computed discharge hu (which
should be constant and equal to 1.53 everywhere) are plotted against the numerical solution
computed by the WENO-LF scheme on a mesh with 200 uniform cells. We can see that the
result computed by the WENO-LF is the worst, and the results by WENO-EO, WENO-HLL
and WENO-HLLC are comparable and better than that by WENO-LLF. The L1 numerical
errors against the CPU time of different fluxes for different meshes are displayed in Figure
3.6. We can see that the two lines of the WENO-LF scheme and the WENO-LLF scheme are
above that of others almost everywhere, it also means that the WENO-LF scheme and the
WENO-LLF scheme cost the more CPU time than the others at the same error level, hence
the WENO-LF scheme and the WENO-LLF are less efficient than the others.

(b) Sub-critical flow with a shock.
Upstream: The discharge hu = 4.42m3/s is imposed. Downstream: The water height

h = 2m is imposed. The imposed conditions and the bottom elevation cause the purely sub-
critical flow over the whole domain.

The comparison of the discharge (which should be constant and equal to 4.42 everywhere)
using the WENO-LF scheme with the other schemes on a mesh with 200 cells are shown in
Figures 3.7. The L1 numerical errors against the CPU time of different fluxes for different
meshes are shown in Figure 3.8. In this case, the lines of the WENO-LF scheme, the WENO-
LLF scheme and the WENO-FORCE scheme keep in bottom layer, while the WENO-HLLC
scheme and the WENO-HLL scheme stay in top layer.

From the results, we also can see that the results using the WENO-EO, WENO-HLL,



818 C.N. LU, J.X. QIU AND R.Y. WANG

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+
+

+

+
+
+++++++++++++++++++++++

+
+

+

+

++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

D
is

ch
ar

g
e

hu

0 5 10 15 20 25
4.417

4.418

4.419

4.42

4.421

4.422

4.423

Exact
LF
LLF+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+
+

+

+
+
+++++++++++++++++++++++

+
+

+

+

++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

D
is

ch
ar

g
e

hu

0 5 10 15 20 25
4.417

4.418

4.419

4.42

4.421

4.422

4.423

Exact
LF
EO+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+
+

+

+
+
+++++++++++++++++++++++

+
+

+

+

++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

D
is

ch
ar

g
e

hu

0 5 10 15 20 25
4.417

4.418

4.419

4.42

4.421

4.422

4.423

Exact
LF
HLL+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+
+

+

+
+
+++++++++++++++++++++++

+
+

+

+

++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

D
is

ch
ar

g
e

hu

0 5 10 15 20 25
4.417

4.418

4.419

4.42

4.421

4.422

4.423

Exact
LF
HLLC+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+
+

+

+
+
+++++++++++++++++++++++

+
+

+

+

++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

D
is

ch
ar

g
e

hu

0 5 10 15 20 25
4.417

4.418

4.419

4.42

4.421

4.422

4.423

Exact
LF
FORCE+

Fig. 3.7. Steady sub-critical flow over a hump. The discharge hu. Solid lines: the exact solution;

hollow square: the results computed by the WENO-LF scheme; plus symbols: results computed by

the WENO-LLF (top left), WENO-EO (top right), WENO-HLL (middle left), WENO-HLLC (middle

right), and WENO-FORCE (bottom).

WENO-HLLC schemes are better for these situations. The numerical errors computed by the
WENO-LLF are almost the same as that of the WENO-LF scheme for the discharge. On the
test case (a), the numerical results computed by the WENO-EO, WENO-HLL, WENO-HLLC
schemes are better than that by the WENO-LF scheme, while small difference between the
results of those schemes and that of the WENO-LF scheme on the test case (b) is observed.



WENO Schemes with Different Fluxes for Shallow Water Equations 819

#

#

#

#

#

#

*

*

*

*

*

*

CPU time

E
rr

or
of

hu

50 100

2E-05

4E-05
LF
LLF
FORCE
HLL
HLLC
EO

#

*

Fig. 3.8. Steady sub-critical flow over a hump. The L1 numerical error for hu and the CPU time (unit:

second) using the log scale by the WENO methods based on different numerical fluxes on meshes with

N = 200, 300, 400, 500, 600, 700 cells .

Example 3.4. Pulse over a hump [12, 17, 27]. We compute the solutions obtained when a
small perturbation of the initially still water arises. In this way we test whether the numerical
schemes obtain the correct wave speed propagation. The bottom elevation is described by the
following function:

b(x) =
{

0.25(cos(10π(x− 1.5)) + 1) 1.4 ≤ x ≤ 1.6,

0 otherwise,
(3.9)

where x ∈ [0, 2]. The initial conditions are taken as:

h(x, 0) =
{

1− b(x) + β 1.1 ≤ x ≤ 1.2,

1− b(x) otherwise,
hu(x, 0) = 0. (3.10)

The duration of the simulation is 0.2s for the small pulse β = 0.001. For this small pulse
problem, we take the small constant in the WENO weight formula ε = 10−12, such that it is
smaller than the square of the perturbation. We take the still level D as D(x) = 1− b(x).

The initial disturbance is split in two waves. The left-going wave leaves the domain undis-
turbed. The right-going wave interacts with the hump.

In Figures 3.9-3.10, the computed surface level h + b and discharge hu with 200 uniform
cells are plotted against the reference solution computed by WENO-LF with 3000 cells and
against the numerical solution computed by the WENO-LF scheme on the same mesh. We can
see that the results computed by the WENO-LF, WENO-EO, WENO-HLL and WENO-HLLC
are comparable, and an overall good behavior of these schemes is shown. This demonstrates
the good balancing between source term and flux gradient in unsteady problems.
Example 3.5. Asymmetric breaks of a dam. We consider the sudden break of a dam separating
two basins with heights 5m and 10m in the two-dimensional shallow water equations. The length
of the breach is 75m and it starts at y = 95m. The dam is positioned at x = 100m. The dam
breaks asymmetrically at t = 0 and we simulate the problem until time t = 7.2s. Reflective
boundary conditions are applied on all the edges of the domain. The test was used in [4,17,22].

We show the results obtained by the WENO schemes with different numerical fluxes in
Figure 3.11 in terms of surface level contours on the same unstructured meshes with 17658
cells, the details of the WENO scheme on unstructured meshes see in [9]. The contour plots
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Fig. 3.9. Pulse over a hump. The surface level h + b. Solid lines: the reference solution; hollow square:

the results computed by the WENO-LF scheme; plus symbols: the results computed by the WENO-

LLF (top left), WENO-FORCE (top right), WENO-HLL (middle left), WENO-HLLC (middle right),

and WENO-EO (bottom).

show that these schemes compute in a very smooth way the water acceleration on the left of
the dam, while the water wave moving to the right is very sharp and monotone in all of the
results. The reflection of this wave on the upper wall of the domain is clearly visible.

In Table 3.2, the CPU time comparison is reported. On the CPU time, almost the same
conclusion of the one-dimensional case is got except that the WENO-EO scheme costs a little
more CPU time than the WENO-HLLC scheme, while the WENO-HLLC scheme costs a little
more CPU time than the WENO-EO scheme in one-dimensional case, as there are more states
for the WENO-EO scheme in two-dimensional case.
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Fig. 3.10. Pulse over a hump. The discharge hu. Solid lines: the reference solution; hollow square: the

results computed by the WENO-LF scheme; plus symbols: the results computed by the WENO-LLF

(top left), WENO-FORCE (top right), WENO-HLL (middle left), WENO-HLLC (middle right), and

WENO-EO (bottom).

Example 3.6. Trans-critical breaks of a circular dam. We simulate the break of a circular
dam [8, 19] separating with water levels 10m and 1m. The radius of the initial discontinuity
is r = 22. Due to the difference in water height, the flow becomes rapidly trans-critical. This
is an axially symmetric flow; we divide the domain with regular triangle meshes to keep the
symmetry. Reflective boundary conditions are applied on all the edges of the domain. The
simulations have been run using the WENO schemes with different numerical fluxes until time
t = 0.69s. The comparisons of the surface level distributing along the line y = 25 from x = 25
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Fig. 3.11. Asymmetric break of a dam. Surface level contours at time t = 7.2s. 15 contours between

4 and 9.5. The WENO-LF (top left), WENO-LLF (top right), WENO-FORCE (middle left), WENO-

HLL (middle right), WENO-HLLC (bottom left), and WENO-EO (bottom right).

to x = 50 using the WENO-LF scheme with the other schemes are reported in Figure 3.12. The
numerical solutions obtained on a mesh of 1m-longth-sides cells; the reference solution obtained
on a mesh of 1

8m-length-sides cells.

We can see from the figures that the numerical results using the WENO-EO, WENO-HLL,
WENO-HLLC schemes fit the reference solution better than those by the WENO-LLF, WENO-
FORCE and WENO-LF schemes.
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Fig. 3.12. Trans-critical break of a circular dam at t = 0.69s. The surface level distributing along the

line y = 25 from x = 25 to x = 50. Heavy solid lines: the reference solution; Solid lines: the results

computed by the WENO-LF scheme; Dashed line: the results computed by the WENO-LLF (top left),

WENO-FORCE (top right), WENO-HLL (middle left), WENO-HLLC (middle right), and WENO-EO

(bottom).

4. Concluding Remarks

In this paper, we have studied a few numerical fluxes for the WENO schemes for the one-
dimensional and two-dimensional shallow water flows. The numerical results indicate that the
WENO-LF scheme costs the least CPU time, but the numerical errors and resolution of solutions
on the discontinuities are the worst among all. The WENO-LLF and WENO-FORCE schemes
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Table 3.2: Asymmetric break of a dam. CPU time on the unstructured meshes using the WENO

methods based on different fluxes (unit: second).

LF LLF FORCE HLL HLLC EO

CPU time 83.9 86.3 100.5 106.0 110.4 121.6

cost a little more CPU time and have a little goodness on errors than that of the WENO-LF
scheme. The WENO-HLL, WENO-HLLC and WENO-EO schemes cost more CPU time than
the WENO-LF scheme, while the WENO-HLL and WENO-HLLC schemes cost a little more
than the WENO-EO scheme for the one-dimensional cases. However, the WENO-EO scheme
costs the most hereinto for the two-dimensional cases. The cost time by the WENO-HLL,
WENO-HLLC and WENO-EO schemes is worthy for the great resolution of solutions on the
discontinuities and less errors than the WENO-LF scheme especially for the tests with shocks
and discontinuities. As a result, the HLL, HLLC and EO numerical fluxes are good choices as
the numerical fluxes with the WENO schemes for the shallow water equations.
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