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Abstract

This paper presents and analyzes a monotone domain decomposition algorithm for

solving nonlinear singularly perturbed reaction-diffusion problems of parabolic type. To

solve the nonlinear weighted average finite difference scheme for the partial differential

equation, we construct a monotone domain decomposition algorithm based on a Schwarz

alternating method and a box-domain decomposition. This algorithm needs only to solve

linear discrete systems at each iterative step and converges monotonically to the exact

solution of the nonlinear discrete problem. The rate of convergence of the monotone

domain decomposition algorithm is estimated. Numerical experiments are presented.
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1. Introduction

We are interested in monotone iterative methods for solving nonlinear singularly perturbed

problems which correspond to a reaction-diffusion problem of parabolic type

−µ2 (uxx + uyy) + ut = −f(x, y, t, u), (1.1)

(x, y, t) ∈ Q = ω × (0, T ], ω = {0 < x < 1} × {0 < y < 1} ,

0 ≤ fu ≤ c∗ = const, (x, y, t, u) ∈ Q × (−∞,∞), (fu ≡ ∂f/∂u), (1.2)

where µ is a small positive parameter. The initial-boundary conditions are

u(x, y, 0) = u0(x, y), (x, y) ∈ ω,

u = g, (x, y, t) ∈ ∂ω × (0, T ],

where ∂ω is the boundary of ω. If f , g and u0 are sufficiently smooth, then under suitable

continuity and compatibility conditions on the data, a unique solution u of (1.1) exists [6]. We

mention that the assumption fu ≥ 0 in (1.1) can always be obtained via a change of variables.

For µ ≪ 1, the reaction-diffusion problem (1.1) is singularly perturbed and characterized

by the boundary layers of width O(µ| lnµ|) near ∂ω, see, e.g., [1].
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We shall employ the weighted average scheme for solving problem (1.1). This nonlinear

ten-point difference scheme can be regarded as taking a weighted average of the explicit and

implicit schemes. It was proved in [2] that, for certain piecewise equidistant spatial meshes,

the weighted average scheme converges µ-uniformly to the exact solution of problem (1.1). The

truncation error analysis of [4] proved µ-uniform convergence on special fitted piecewise uniform

and log-meshes.

In order to practically compute the nonlinear weighted average scheme, one requires a robust

and efficient algorithm. A fruitful method is the method of upper and lower solutions and its

associated monotone iterations. Since the initial data in the monotone iterative method is

either an upper or lower solution, constructed directly from the difference equations without

any knowledge of the exact solution, this method simplifies the search for the initial data

and thus gives a practical advantage over Newton’s method in the computation of numerical

solutions. Based on the method of upper and lower solutions, the monotone iterative method

of [2] converges µ-uniformly to the solution of problem (1.1) and only requires the solution of

linear systems at each iterative step. The numerical experiments of [2] and [4] confirmed the

theoretical rates of convergence on piecewise equidistant and log-meshes.

Iterative domain decomposition algorithms based on Schwarz-type alternating procedures

have received much attention for their potential as efficient algorithms for parallel computing. In

[3], we proposed an iterative algorithm for solving the nonlinear implicit finite difference scheme

approximation of the partial differential equation (1.1). This algorithm combines the monotone

approach and an iterative domain decomposition method based on the Schwarz alternating pro-

cedure. The spatial computational domain is partitioned into nonoverlapping box-subdomains.

At each horizontal and vertical boundary, a small interfacial subdomain is introduced and an

associated linear problem generates boundary values for the nonoverlapping box-subdomains.

Thus, this approach may be considered as a variant of a block Gauss-Seidel iteration (or in

the parallel context as a multicoloured algorithm) for the nonoverlapping box-subdomains with

a Dirichlet-Dirichlet coupling through the interface variables. In this paper, we generalize the

monotone box-domain decomposition algorithm of [3] from the nonlinear implicit scheme to the

nonlinear weighted average scheme.

The structure of the paper is as follows. In Section 2, we present the nonlinear weighted

average scheme and discuss the stability of two different weightings. Section 3 proposes a

monotone domain decomposition algorithm based on the box-domain decomposition from [3].

We develop estimates of the rate of convergence and prove that on the piecewise uniform meshes

the monotone domain decomposition algorithm converges µ-uniformly to the solution of (1.1).

The numerical experiments of Section 4 correlate the convergence behaviour of the algorithm

with the theoretical convergence parameter derived in Section 3. The experiments demonstrate

the surprising result that, for sufficiently small perturbation parameter µ, this paper’s domain

decomposition generalization of the algorithm from [2] executes more quickly than the original

undecomposed algorithm.

2. A Weighted Average Scheme

On Q introduce a rectangular mesh ωh × ωτ , ωh = ωhx × ωhy:

ωhx = {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx
= 1; hxi = xi+1 − xi} , (2.1a)

ωhy =
{
yj , 0 ≤ j ≤ Ny; y0 = 0, yNy

= 1; hyj = yj+1 − yj

}
, (2.1b)

ωτ = {tk = kτ, 0 ≤ k ≤ Nτ , Nτ τ = T } . (2.1c)
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For a mesh function U(P, t), P = (x, y) ∈ ωh, t ∈ ωτ , we use the weighted average or θ- method

θLhU(P, t) + (1 − θ)LhU(P, t − τ) +
1

τ
[U(P, t) − U(P, t − τ)] = −F , (2.2a)

F ≡ θf(P, t, U) + (1 − θ)f(P, t − τ, U), (P, t) ∈ ωh × ωτ , (2.2b)

U(P, 0) = u0(P ), P ∈ ωh, U(P, t) = g(P, t), (P, t) ∈ ∂ωh × ωτ , (2.2c)

where θ = const and, when no confusion arises, we write f(P, t, U(P, t)) = f(P, t, U). LhU is

defined by

LhU = −µ2
(
D2

xU + D2
yU
)
,

where D2
xU and D2

yU are the central difference approximations to the second derivatives

D2
xUk

ij = (~xi)
−1
[(

Uk
i+1,j − Uk

ij

)
(hxi)

−1 −
(
Uk

ij − Uk
i−1,j

)
(hx,i−1)

−1
]
,

D2
yUk

ij = (~yj)
−1
[(

Uk
i,j+1 − Uk

ij

)
(hyj)

−1 −
(
Uk

ij − Uk
i,j−1

)
(hy,j−1)

−1
]
,

~xi =
1

2
(hx,i−1 + hxi) , ~yj =

1

2
(hy,j−1 + hyj) ,

where Uk
ij ≡ U (xi, yj, tk).

This 10-point difference scheme can be regarded as taking a weighted average of the explicit

scheme (θ = 0) and the fully implicit scheme (θ = 1). We assume that we are using an average

with nonnegative weights, so that 0 ≤ θ ≤ 1.

Introduce the notation

vi = vl
xi + vr

xi, vl
xi = (~xi)

−1
(hx,i−1)

−1
, vr

xi = (~xi)
−1

(hxi)
−1

,

wj = wl
yj + wr

yj , wl
yj = (~yj)

−1 (hy,j−1)
−1 , wr

yj = (~yj)
−1 (hyj)

−1 , (2.3)

v̄ = max
1≤i≤Nx−1

vi, w̄ = max
1≤j≤Ny−1

wj .

We suppose that the time mesh spacing τ satisfies the constraint

τ(1 − θ) ≤ 1

µ2 (v̄ + w̄) + c∗
. (2.4)

The condition (2.4), known as the CFL condition, guarantees the discrete maximum principle

on the computational domain ωh × ωτ . This imposes no time step restriction on the implicit

scheme, for which θ = 1. A more interesting question is the stability of the Crank-Nicolson

scheme [5], for which θ = 0.5. For a linear problem (1.1) with constant coefficients, Fourier

analysis places no stability restriction on the Crank-Nicolson scheme, in contrast to condition

(2.4). One can see that the CFL condition (2.4) is sharp by considering the one-dimensional

linear problem −µ2uxx + ut = 0 with initial data

u0(x) = {2x, 0 ≤ x ≤ 0.5; 2(1− x), 0.5 ≤ x ≤ 1},

boundary conditions g(0, t) = g(1, t) = 0 and Nx = 2 mesh intervals [4].

Thus the maximum principle analysis can be viewed as an alternative means of obtaining

stability conditions. It has the advantage over Fourier analysis that it is easily extended to

problems with variable coefficients and to nonlinear problems. We mention that, in general, the

maximum principle analysis gives only sufficient conditions for stability of difference schemes.
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3. Monotone Domain Decomposition Algorithm

As in [3], we consider a rectangular decomposition of the spatial domain ω into (M × L)

nonoverlapping subdomains ωml, m = 1, · · · , M , l = 1, · · · , L:

ωml = (xm−1, xm) × (yl−1, yl), x0 = 0, xM = 1, y0 = 0, yL = 1.

We also introduce vertical interfacial subdomains ηm, m = 1, · · · , M − 1 (vertical strips):

ηm = ηx
m × ωy = {xb

m < x < xe
m} × {0 < y < 1}, ηm−1 ∩ ηm = ∅,

γb
m = {x = xb

m, 0 ≤ y ≤ 1}, γe
m = {x = xe

m, 0 ≤ y ≤ 1},
xb

m < xm < xe
m, γ0

m = ∂ω ∩ ∂ηm,

and horizontal interfacial subdomains ϑl, l = 1, · · · , L − 1 (horizontal strips):

ϑl = ωx × ϑy
l = {0 < x < 1} × {yb

l < y < ye
l }, ϑl−1 ∩ ϑl = ∅,

ρb
l = {0 ≤ x ≤ 1, y = yb

l }, ρe
l = {0 ≤ x ≤ 1, y = ye

l },
yb

l < yl < ye
l , ρ0

l = ∂ω ∩ ∂ϑl.

On ωml, m = 1, · · · , M , l = 1, · · · , L; ηm, m = 1, · · · , M −1 and ϑl, l = 1, · · · , L−1, introduce

meshes:

ωh
ml = ωml ∩ ωh, ηh

m = ηm ∩ ωh, ϑ
h

l = ϑl ∩ ωh,
{
xb

m, xm, xe
m

}M−1

m=1
∈ ωhx,

{
yb

l , yl, y
e
l

}L−1

l=1
∈ ωhy,

γh0,b,e
m = γ0,b,e

m ∩ ωh, ρh0,b,e
l = ρ0,b,e

l ∩ ωh,

where ωhx, ωhy are defined by (2.1).

3.1. Statement of the algorithm

We represent the difference equation from (2.2) in the equivalent form

G1 (P, t, U) + G2 (P, t − τ, U) = 0, (P, t) ∈ ωh × ωτ , (3.1a)

G1(P, t, U) ≡
(
θLh + τ−1

)
U(P, t) + θf(P, t, U), (3.1b)

G2(P, t − τ, U) ≡
[
(1 − θ)Lh − τ−1

]
U(P, t − τ) + (1 − θ)f(P, t − τ, U). (3.1c)

We say that on a time level t ∈ ωτ , V (P, t) is an upper solution with respect to a given function

V (P, t − τ) if it satisfies

G1

(
P, t, V

)
+ G2 (P, t − τ, V ) ≥ 0, (P, t) ∈ ωh × ωτ ,

V (P, t) = g(P, t), P ∈ ∂ωh.

Similarly, V (P, t) is called a lower solution with respect to a given function V (P, t − τ) if it

satisfies the reversed inequality and the boundary condition.

Introduce the following notation:

L ≡ θLh + τ−1 + θc∗, (3.2a)

G (V (P, t), W (P, t − τ)) ≡ G1(P, t, V ) + G2(P, t − τ, W ), (3.2b)

where c∗ is defined in (1.2).

On each time level t ∈ ωτ , we calculate n∗ iterates V (n)(P, t), P ∈ ωh, n = 1, · · · , n∗ as

follows.
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Step 0. On the whole mesh ωh choose an upper or lower solution V (0)(P, t) satisfying the

boundary condition V (0)(P, t) = g(P, t), P ∈ ∂ωh.

For n = 0 to n∗ − 1 do Steps 1-4

Step 1. For each subdomain ωh
ml, solve the linear problem

LZ
(n+1)
ml (P, t) = −G

(
V (n)(P, t), V (P, t − τ)

)
, P ∈ ωh

ml, (3.3)

with Z
(n+1)
ml (∂ωh

ml, t) = 0, where L and G are defined in (3.2).

Step 2. For each vertical interfacial subdomain ηh
m, solve the linear problem

LZ(n+1)
m (P, t) = −G

(
V (n)(P, t), V (P, t − τ)

)
, P ∈ ηh

m, (3.4)

with Z
(n+1)
m (∂ηh

m, t) defined by the mesh functions computed in Step 1.

Step 3. For each horizontal interfacial subdomain solve the linear problem

LZ̃
(n+1)
l (P, t) = −G

(
V (n)(P, t), V (P, t − τ)

)
, P ∈ ϑh

l , (3.5)

with Z̃
(n+1)
l (∂ϑh

l , t) defined by the mesh functions computed in Steps 1 and 2.

Step 4. Piece together the mesh functions from Steps 1 through 3:

V (n+1)(P, t) =





V (n)(P, t) + Z̃
(n+1)
l (P, t), P ∈ ϑ

h

l ;

V (n)(P, t) + Z
(n+1)
m (P, t), P ∈ ηh

m \ ϑ
h
;

V (n)(P, t) + Z
(n+1)
ml (P, t), P ∈ ωh

ml \
(
ηh ∪ ϑ

h
)

,

(3.6)

where we use the notation ηh =
⋃M−1

m=1 ηh
m, ϑ

h
=
⋃L−1

l=1 ϑ
h

l .

Step 5. Set up

V (P, t) = V (n∗)(P, t), P ∈ ωh. (3.7)

Algorithm (3.3)-(3.7) can be carried out by parallel processing. Steps 1, 2 and 3 must be

performed sequentially, but on each step, the independent subproblems may be assigned to

different computational nodes.

3.2. Monotone convergence of algorithm (3.3)-(3.7)

We have the following convergence property of algorithm (3.3)-(3.7).

Theorem 3.1. Let V (P, t − τ) be given and V
(0)

(P, t), V (0)(P, t) be upper and lower solu-

tions corresponding to V (P, t − τ). Suppose that f satisfies (1.2). Then the upper sequence

{V (n)
(P, t)} generated by (3.3)-(3.7) converges monotonically from above to the unique solution

V ∗(P, t) of the problem

G (V (P, t), V (P, t − τ)) = 0, P ∈ ωh,

V (P, t) = g(P, t), P ∈ ∂ωh,

and the lower sequence {V (n)(P, t)} generated by (3.3)-(3.7) converges monotonically from below
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to V ∗(P, t):

V ∗(P, t) ≤ V
(n+1)

(P, t) ≤ V
(n)

(P, t) ≤ V
(0)

(P, t), P ∈ ωh,

V (0)(P, t) ≤ V (n)(P, t) ≤ V (n+1)(P, t) ≤ V ∗(P, t), P ∈ ωh.

The proof of the theorem is similar to the proof of Theorem 1 from [3].

Remark 3.1. Consider the following approach for constructing initial upper and lower solu-

tions V
(0)

(P, t) and V (0)(P, t). Suppose that, for t fixed, a mesh function R(P, t) is defined

on ωh and satisfies the boundary condition R(P, t) = g(P, t) on ∂ωh. Introduce the following

difference problems:

(
θLh + τ−1

)
Z(0)

q (P, t) = q |G (R(P, t), V (P, t − τ))| , P ∈ ωh,

Z(0)
q (P, t) = 0, P ∈ ∂ωh, q = 1,−1.

(3.8)

Then the functions

V
(0)

(P, t) = R(P, t) + Z
(0)
1 (P, t)

and

V (0)(P, t) = R(P, t) + Z
(0)
−1 (P, t)

are upper and lower solutions, respectively. The proof of this result can be found in [2].

Remark 3.2. Since the initial iteration in the monotone domain decomposition algorithm

(3.3)-(3.7) is either an upper or lower solution which can be constructed directly from the

difference equation without any knowledge of the exact solution, as we have suggested in the

previous remark, this algorithm eliminates the search for the initial iteration as is often needed in

Newton’s method. This elimination offers a practical advantage in the computation of numerical

solutions.

3.3. Convergence analysis of algorithm (3.3)-(3.7)

On each time level, we consider the linear difference problem

LW (P, t) = F (P, t), P ∈ ωh, W (P, t) = W 0(P, t), P ∈ ∂ωh, (3.9)

where L is defined in (3.2). We now formulate a discrete maximum principle and give an

estimate on the solution to (3.9).

Lemma 3.1. (i) If W(P,t) satisfies the conditions

LW (P, t) − F (P, t) ≥ 0 (≤ 0), P ∈ ωh; W (P, t) ≥ 0 (≤ 0), P ∈ ∂ωh,

then W (P, t) ≥ 0 (≤ 0), P ∈ ωh.

(ii) The following estimate of the solution to (3.9) holds true

‖W (t)‖ωh ≤ max
[∥∥W 0(t)

∥∥
∂ωh , ‖F (t)‖ωh/

(
τ−1 + θc∗

)]
,

‖W 0(t)‖∂ωh ≡ max
P∈∂ωh

|W 0(P, t)|, ‖F (t)‖ωh ≡ max
P∈ωh

|F (P, t)|. (3.10)
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The proof of the lemma can be found in [8].

We now establish convergence properties of algorithm (3.3)-(3.7). If we denote

Z(n+1)(P, t) = V (n+1)(P, t) − V (n)(P, t), P ∈ ωh,

then from (3.3)-(3.6), Z(n+1) can be written in the form

Z(n+1)(P, t) =





Z
(n+1)
ml (P, t), P ∈ ωh

ml \
(
ηh ∪ ϑ

h
)

,

Z
(n+1)
m (P, t), P ∈ ηh

m \ ϑ
h
,

Z̃
(n+1)
l (P, t), P ∈ ϑ

h

l .

(3.11)

Introduce the notation

~
b,e
xm =

1

2

(
hb−,e−

xm + hb+,e+
xm

)
, ~

b,e
yl =

1

2

(
hb−,e−

yl + hb+,e+
yl

)
,

where hb±,e±
xm are the mesh step sizes on the right and left from points xb,e

m and hb±,e±
yl are the

mesh step sizes on the top and bottom from points yb,e
l , and

κb
xm ≡ θµ2

(θc∗ + τ−1) ~b
xmhb+

xm

, κe
xm ≡ θµ2

(θc∗ + τ−1) ~e
xmhe−

xm

,

κb
yl ≡

θµ2

(θc∗ + τ−1) ~b
ylh

b+
yl

, κe
yl ≡

θµ2

(θc∗ + τ−1) ~e
ylh

e−
yl

,

rI = max
1≤m≤M−1

{
κb

xm; κe
xm

}
, rII = max

1≤l≤L−1

{
κb

yl; κ
e
yl

}
.

On each time level t ∈ ωτ , we have the following convergence property of algorithm (3.3)-(3.7).

Theorem 3.2. For algorithm (3.3)-(3.7), the following estimate holds true

∥∥∥Z(n+1) (t)
∥∥∥

ωh
≤ r̃

∥∥∥Z(n) (t)
∥∥∥

ωh
, r̃ = r + rI + rII , t ∈ ωτ , (3.12)

where

Z(n)(P, t) = V (n)(P, t) − V (n−1)(P, t), r = θc∗/
(
θc∗ + τ−1

)
.

Proof. Suppose that the sequence
{
V (n)

}
generated by (3.3)-(3.6) is an upper sequence.

From (3.3), we use (3.10) to get the estimate

∥∥∥Z(n+1)
ml (t)

∥∥∥
ωh

ml

≤ 1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ωh
,

G(n)(P, t) ≡ G
(
V (n)(P, t), V (P, t − τ)

)
.

From here and estimating (3.4) by (3.10), we conclude that

∥∥∥Z(n+1)
m (t)

∥∥∥
ηh

m

≤ max

{
1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ωh
; max
1≤l≤L

[ ∥∥∥Z(n+1)
ml (t)

∥∥∥
γhb

ml

;

∥∥∥Z(n+1)
m+1,l(t)

∥∥∥
γhe

ml

]}
≤ 1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ωh
,

γhb
ml = γhb

m ∩ ωh
ml, γhe

ml = γhe
m ∩ ωh

m+1,l.
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Similarly, from here and (3.5), we can obtain the estimate
∥∥∥Z̃(n+1)

l (t)
∥∥∥

ϑ
h

l

≤ 1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ωh
.

Thus, by the definition of Z(n+1) in (3.11), we have
∥∥∥Z(n+1)(t)

∥∥∥
ωh

≤ 1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ωh
. (3.13)

From Lemma 3.1, by the maximum principle for the difference operator L, it follows that

Z
(n+1)
ml (P, t) ≤ 0, P ∈ ωh

ml. (3.14)

Using the mean-value theorem and the equation for Z
(n+1)
ml from (3.3), we have

G
(
V

(n+1)
ml , V

)
= −θ

(
c∗ − f

(n)
u,ml

)
Z

(n+1)
ml (P, t) ≥ 0, P ∈ ωh

ml,

f
(n)
u,ml ≡ fu

[
P, t, V (n)(P, t) + Θ

(n)
ml (P, t)Z

(n+1)
ml (P, t)

]
, 0 < Θ

(n)
ml (P, t) < 1,

(3.15)

where

V
(n+1)
ml = V (n) + Z

(n+1)
ml

and nonnegativeness of the right hand side follows from (1.2) and (3.14). If no confusion arises,

we write

G(S(P, t), W (P, t − τ)) = G(S, W ).

Taking into account (3.14) and V (n) is an upper solution, by the maximum principle in

Lemma 3.1, it follows from (3.4) and (3.5) that

Z(n+1)
m (P, t) ≤ 0, P ∈ ηh

m, m = 1, · · · , M − 1,

Z̃
(n+1)
l (P, t) ≤ 0, P ∈ ϑ

h

l , l = 1, · · · , L − 1.
(3.16)

Similar to (3.15), we obtain the difference problems for V
(n+1)
m = V (n) + Z

(n+1)
m

G
(
V (n+1)

m , V
)

= −θ
(
c∗ − f (n)

u,m

)
Z(n+1)

m (P, t) ≥ 0, P ∈ ηh
m, (3.17)

V (n+1)
m (P, t) =






g(P, t), P ∈ γh0
m ;

V
(n+1)
ml (P, t), P ∈ γhb

m ∩ ωh
ml;

V
(n+1)
m+1,l (P, t), P ∈ γhe

m ∩ ωh
m+1,l,

and for Ṽ
(n+1)
l = V (n) + Z̃

(n+1)
l

G
(
Ṽ

(n+1)
l , V

)
= −θ

(
c∗ − f

(n)
u,l

)
Z̃

(n+1)
l (P, t) ≥ 0, P ∈ ϑh

l ,

Ṽ
(n+1)
l (P, t) =





g(P, t), P ∈ ρh0
l ;

V
(n+1)
ml (P, t), P ∈ (ρhb

l \ ηh) ∩ ωh
ml;

V
(n+1)
m,l+1 (P, t), P ∈ (ρhe

l \ ηh) ∩ ωh
m,l+1;

V
(n+1)
m (P, t), P ∈ ∂ϑh

l ∩ ηh
m,

where nonnegativeness of the right hand sides of the difference equations follows from (1.2)

and (3.16). From here at the iterative step n, (3.15), (3.17) and using the definition of Z(n) in

(3.11), we represent G(n)(P, t) in the form

G(n)(P, t) = −θ
(
c∗ − f (n−1)

u

)
Z(n)(P, t), P ∈ ω̃h, ω̃h = ωh \

(
γ̃h ∪ ρh

)
,
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where γ̃h and ρh are defined as follows

γ̃hb,e
ml =

{
xi = xb,e

m , ye
l−1 < yj < yb

l

}
, γ̃hb,e

m =

L⋃

l=1

γ̃hb,e
ml , ye

0 = 0, yb
L = 1,

γ̃hb =

M−1⋃

m=1

γ̃hb
m , γ̃he =

M−1⋃

m=1

γ̃he
m , γ̃h = γ̃hb ∪ γ̃he,

ρhb =

L−1⋃

l=1

ρhb
l , ρhe =

L−1⋃

l=1

ρhe
l , ρh = ρhb ∪ ρhe.

By (1.2),
1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ω̃h
≤ r

∥∥∥Z(n)(t)
∥∥∥

ωh
. (3.18)

Now we estimate G(n)(P, t) on γ̃h. On γ̃hb
ml =

{
xi = xb

m, ye
l−1 < yj < yb

l

}
, we represent G(n)(P, t)

in the form

G(n)
(
P̃ b

m, t
)

= G
(
V

(n)
ml

(
P̃ b

m, t
)

, V
(
P̃ b

m, t − τ
))

− θµ2

~b
xmhb+

xm

(
V (n)

m

(
P̃ b+

m , t
)
− V

(n)
ml

(
P̃ b+

m , t
))

,

P̃ b
m =

(
xb

m, yj

)
∈ γ̃hb

ml, P̃ b+
m =

(
xb

m + hb+
xm, yj

)
.

From (3.14) at the iterative step n and the definition of V (n) in (3.6), we have

V
(n)
ml

(
P̃ b+

m , t
)
− V (n)

m

(
P̃ b+

m , t
)

≤ V (n−1)
(
P̃ b+

m , t
)
− V (n)

(
P̃ b+

m , t
)

= −Z(n)
(
P̃ b+

m , t
)

.

From here, (3.15) and taking into account that Z
(n)
ml (P, t) = Z(n)(P, t), P ∈ γ̃hb

ml, it follows that

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

γ̃hb
ml

≤
(
r + κb

xm

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

Similarly, we can prove the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

γ̃he
ml

≤ (r + κe
xm)

∥∥∥Z(n)(t)
∥∥∥

ωh
.

Thus, on γ̃h, we conclude the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

γ̃h
≤
(
r + rI

) ∥∥∥Z(n)(t)
∥∥∥

ωh
. (3.19)

On ρ̃hb
ml =

{
xe

m−1 < xi < xb
m, yj = yb

l

}
, we represent G(n)(P, t) in the form

G(n)
(
P b

l , t
)

= G
(
V

(n)
ml

(
P b

l , t
)
, V
(
P b

l , t − τ
))

− θµ2

~b
ylh

b+
yl

(
Ṽ

(n)
l

(
P b+

l , t
)
− V

(n)
ml

(
P b+

l , t
))

,

P b
l =

(
xi, y

b
l

)
∈ ρ̃hb

ml, P b+
l =

(
xi, y

b
l + hb+

yl

)
.
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From (3.14) at the iterative step n and the definition of V (n) in (3.6), we have

V
(n)
ml

(
P b+

l , t
)
− Ṽ

(n)
l

(
P b+

l , t
)

≤ V (n−1)
(
P b+

l , t
)
− V (n)

(
P b+

l , t
)

= −Z(n)
(
P b+

l , t
)
.

From here and (3.15), and taking into account that Z
(n)
ml (P, t) = Z(n)(P, t), P ∈ ρ̃hb

ml, we get

the estimate
1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ρ̃hb
ml

≤
(
r + κb

yl

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

Similarly, we can prove the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ρ̃he
ml

≤
(
r + κe

yl

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

On ρ̂hb
ml =

{
xb

m < xi < xe
m, yj = yb

l

}
, we represent G(n)(P, t) in the form

G(n)
(
P b

l , t
)

= G
(
V (n)

m

(
P b

l , t
)
, V
(
P b

l , t − τ
))

− θµ2

~b
ylh

b+
yl

(
Ṽ

(n)
l

(
P b+

l , t
)
− V (n)

m

(
P b+

l , t
))

,

P b
l =

(
xi, y

b
l

)
∈ ρ̂hb

ml, P b+
l =

(
xi, y

b
l + hb+

yl

)
.

From (3.16) at the iterative step n and the definition of V (n) in (3.6), we have

V (n)
m

(
P b+

l , t
)
− Ṽ

(n)
l

(
P b+

l , t
)

≤ V (n−1)
(
P b+

l , t
)
− V (n)

(
P b+

l , t
)

= −Z(n)
(
P b+

l , t
)
.

From here and (3.17), and taking into account that Z
(n)
m (P, t) = Z(n)(P, t), P ∈ ρ̂hb

ml, we get

the estimate
1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ρ̂hb
ml

≤
(
r + κb

yl

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

Similarly, we can prove the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ρ̂he
ml

≤
(
r + κe

yl

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

At P b
ml =

(
xb

m, yb
l

)
, we represent G(n)(P, t) in the form

G(n)
(
P b

ml, t
)

= G
(
V

(n)
ml

(
P b

ml, t
)
, V
(
P b

ml, t − τ
))

− θµ2

~b
xmhb+

xm

(
V (n)

m

(
P bx+

ml , t
)

−V
(n)
ml

(
P bx+

ml , t
))

− θµ2

~b
ylh

b+
yl

(
Ṽ

(n)
l

(
P by+

ml , t
)
− V

(n)
ml

(
P by+

ml , t
))

,

P bx+
ml =

(
xb

m + hb+
xm, yb

l

)
, P by+

ml =
(
xb

m, yb
l + hb+

yl

)
.

From (3.14) at the iterative step n and the definition of V (n) in (3.6), we have

V
(n)
ml

(
P bx+

ml , t
)
− V (n)

m

(
P bx+

ml , t
)

≤ V (n−1)
(
P bx+

ml , t
)
− V (n)

(
P bx+

ml , t
)

= −Z(n)
(
P bx+

ml , t
)
,

V
(n)
ml

(
P by+

ml , t
)
− Ṽ

(n)
l

(
P by+

ml , t
)

≤ V (n−1)
(
P by+

ml , t
)
− V (n)

(
P by+

ml , t
)

= −Z(n)
(
P by+

ml , t
)

.
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From here and (3.15), and taking into account that Z
(n)
ml

(
P b

ml, t
)

= Z(n)
(
P b

ml, t
)
, we get the

estimate
1

θc∗ + τ−1

∣∣∣G(n)(t)
(
P b

ml, t
)∣∣∣ ≤

(
r + κb

xm + κb
yl

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

By the same reasonings, the following estimate holds true

1

θc∗ + τ−1

∣∣∣G(n)(t)
(
P e

m−1,l

)∣∣∣ ≤
(
r + κe

x,m−1 + κb
yl

) ∥∥∥Z(n)(t)
∥∥∥

ωh
,

P e
m−1,l =

(
xe

m−1, y
b
l

)
.

On ρhb
l , we conclude the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ρhb
l

≤
(
r + rI + rII

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

The same estimate holds true on ρhe
l , and on ρh we get the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ρh
≤
(
r + rI + rII

) ∥∥∥Z(n)(t)
∥∥∥

ωh
.

From here, (3.18) and (3.19), we conclude the estimate

1

θc∗ + τ−1

∥∥∥G(n)(t)
∥∥∥

ωh
≤
(
r + rI + rII

) ∥∥∥Z(n)(t)
∥∥∥

ωh
, (3.20)

and by (3.13), prove the theorem. �

Theorem 3.3. Let V (0)(P, t) be an upper or lower solution in the domain decomposition al-

gorithm (3.3)-(3.7), and let f satisfy (1.2). If the CFL condition (2.4) holds true, then the

following estimate on convergence rate holds

max
tk∈ωτ

‖V (tk) − U (tk)‖ ≤ C
(
θc∗ + τ−1

)
r̃n∗ , (3.21)

where r̃ is defined in (3.12), U(P, t) is the solution to (2.2) and the constant C is independent

of τ . Furthermore, the sequence
{
V (n)(P, t)

}
converges monotonically on each time level.

Proof. The difference problem (2.2) can be represented in the form

G (U (P, t) , U (P, t − τ)) = 0, P ∈ ωh,

U (P, t) = g (P, t) , P ∈ ∂ωh.

If we add and subtract the term G (V (P, t) , V (P, t − τ)) on the left hand side of the equation

then, by the mean-value theorem, we get the difference problem for W (P, t) = U (P, t)−V (P, t)

(
θL̃h(P, t) + τ−1

)
W (P, t)

= −
[
(1 − θ)L̃h(P, t − τ) − τ−1

]
W (P, t − τ) − G

(
V (n∗)(P, t), V (P, t − τ)

)
, P ∈ ωh,

W (P, t) = 0, P ∈ ∂ωh, L̃h(P, t) ≡ Lh + fu(P, t),

where

fu(P, t) ≡ fu [P, t, V (P, t) + Θ(P, t)W (P, t)] , 0 < Θ(P, t) < 1
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and V (P, t) = V (n∗)(P, t). At the mesh point (xi, yj , tk), represent the above difference equation

in the following equivalent form

(
1 + θsk

ij

)
W k

ij = θ
[
Mx

(
W k

ij

)
+ My

(
W k

ij

)]
+ (1 − θ)

[
Mx

(
W k−1

ij

)
+ My

(
W k−1

ij

)]

+
[
1 − (1 − θ)sk−1

ij

]
W k−1

ij − τG(n∗),k
ij ,

sk
ij = τµ2 (vi + wj) + τfk

u,ij , Mx

(
W k

ij

)
≡ τµ2

(
vr

xiW
k
i+1,j + vl

xiW
k
i−1,j

)
,

My

(
W k

ij

)
≡ τµ2

(
wr

yjW
k
i,j+1 + wl

yjW
k
i,j−1

)
,

where we use the notation from (2.3). Under the hypotheses of the theorem, all the coefficients

on the right hand side of the difference equation are nonnegative, and we conclude the estimate

‖W (t)‖ωh ≤ ‖W (t − τ)‖ωh + τ
∥∥∥G(n∗)(t)

∥∥∥
ωh

.

Taking into account W (P, 0) = 0, from (3.12) and (3.20), it follows that

‖W (tk)‖ ≤
(

k∑

l=1

ζl

)
τ
(
θc∗ + τ−1

)
r̃n∗ , k = 1, · · · , Nτ ; ζl =

∥∥∥Z(1)(tl)
∥∥∥

ωh
.

Applying (3.10) to estimate consecutively Z
(1)
ml (P, t), Z

(1)
m (P, t) and Z̃

(1)
l (P, t) from (3.3)-(3.5),

respectively, and using the definition of Z(1)(P, t) in (3.11), we get

∥∥∥Z(1)(tl)
∥∥∥

ωh
≤ τ

∥∥∥G
(
V (0)(tl), V (tl − τ)

)∥∥∥
ωh

≤ Cl, (3.22)

where Cl is independent of τ . Denoting

C0 = max
1≤l≤Nτ

Cl,

and taking into account that Nτ τ = T , we prove the estimate (3.21) with C = TC0. �

Remark 3.3. For the undecomposed algorithm, with M = 1 and L = 1, one has ω̃h = ωh in

(3.18) which together with (3.13) gives estimate (3.21) with r̃ = r < 1, where (see, e.g., [2])

r = θc∗/(θc∗ + τ−1) ≤ θc∗τ.

3.4. Estimates on the convergence rate of algorithm (3.3)-(3.7)

We now analyze the convergence rate of algorithm (3.3)-(3.7) defined on piecewise uniform

meshes of Shishkin-type [7].

The piecewise equidistant mesh of Shishkin-type is formed by the following manner. We

divide each of the intervals ωx = [0, 1] and ωy = [0, 1] into three parts each [0, σx], [σx, 1 −
σx], [1 − σx, 1], and [0, σy], [σy , 1 − σy], [1 − σy, 1], respectively. Assuming that Nx, Ny are

divisible by 4, in the parts [0, σx], [1−σx, 1] and [0, σy], [1−σy, 1] we use uniform meshes with

Nx/4 + 1 and Ny/4 + 1 mesh points, respectively, and in the parts [σx, 1 − σx], [σy , 1 − σy] we

use uniform meshes with Nx/2 + 1 and Ny/2 + 1 mesh points, respectively. This defines the

piecewise equidistant meshes in the x- and y-directions condensed in the boundary layers at



88 I. BOGLAEV AND M. HARDY

x = 0, 1 and y = 0, 1:

xi =





ihxµ, i = 0, 1, · · · , Nx/4,

σx + (i − Nx/4)hx, i = Nx/4 + 1, · · · , 3Nx/4,

1 − σx + (i − 3Nx/4)hxµ, i = 3Nx/4 + 1, · · · , Nx,

yj =





jhyµ, j = 0, 1, · · · , Ny/4,

σy + (j − Ny/4)hy, j = Ny/4 + 1, · · · , 3Ny/4,

1 − σy + (j − 3Ny/4)hyµ, j = 3Ny/4 + 1, · · · , Ny,

hx = 2(1 − 2σx)N−1
x , hxµ = 4σxN−1

x , hy = 2(1 − 2σy)N−1
y , hyµ = 4σyN−1

y ,

where hxµ, hyµ and hx, hy are the step sizes inside and outside the boundary layers, respectively.

We choose the transition points σx, (1 − σx) and σy, (1 − σy) in Shishkin’s sense (see [7] for

details), i.e.,

σx = min
{
4−1, υ1µ lnNx

}
, σy = min

{
4−1, υ2µ lnNy

}
,

where υ1 and υ2 are positive constants. If σx,y = 1/4, then N−1
x,y are very small relative to µ,

and in this case the difference scheme (2.2) can be analyzed using standard techniques. We

therefore assume that

σx = υ1µ lnNx, σy = υ2µ lnNy.

In this case the meshes ωhx and ωhy are piecewise equidistant with the step sizes

N−1
x < hx < 2N−1

x , hxµ = 4υ1µN−1
x lnNx,

N−1
y < hy < 2N−1

y , hyµ = 4υ2µN−1
y lnNy.

(3.23)

In [4], we proved that if the time mesh spacing τ satisfies the CFL condition (2.4), then the

difference scheme (2.2) on the piecewise uniform mesh (3.23) converges µ-uniformly to the

solution of (1.1):

max
t∈ωτ

‖U(t) − u(t)‖ωh ≤ D
(
N−1 lnN + |θ − 0.5|τ + τ2

)
, (3.24)

where N = min {Nx, Ny} and constant D is independent of µ, N and τ .

Theorem 3.4. Let the interfacial subdomains ηh
m, m = 1, · · · , M − 1 and ϑ

h

l , l = 1, · · · , L −
1 be located in the x- and y-directions, respectively, outside the boundary layers (unbalanced

decomposition). Suppose that µ ≤ µ0 ≪ 1, and that the following conditions are satisfied

N ≤ 1

µ0
, N = max {Nx, Ny} , θτ ≤ 1

2 + c∗
.

If the number of iterates n∗ ≥ 2, then for the monotone domain decomposition algorithm (3.3)-

(3.7) on the piecewise uniform mesh (3.23), the estimate (3.21) becomes

max
t∈ωτ

‖V (t) − U (t)‖ ≤ Cθ (2 + c∗) r̃n∗−1, r̃ < θτ (2 + c∗) ≤ 1,

where the constant C is independent of τ .

Proof. Since the interfacial subdomains are located outside the boundary layers, where the

step sizes hx and hy are in use, then under the above assumption on N , with the notation from

(3.12), we have

(
θc∗ + τ−1

) (
r + rI + rII

)
< θ (2 + c∗) , r̃ < θτ (2 + c∗) .
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Thus, if

θτ ≤ (2 + c∗)
−1

,

as assumed in the theorem, then r̃ < 1, and we prove the theorem. �

Remark 3.4. From (3.24), we conclude that the Crank-Nicolson difference scheme (2.2), θ =

0.5, is of second order with respect to τ . Thus, to guarantee the consistency of the global

errors in the Crank-Nicolson difference scheme and in the monotone domain decomposition

algorithm (3.3)-(3.7) with θ = 0.5, we can choose n∗ = 3. Similarly, for the fully implicit

scheme (2.2), θ = 1, we can choose n∗ = 2.

Remark 3.5. Such domain decompositions, in which the interfacial subdomains are outside

the boundary layers, are said to be unbalanced, since the distribution of mesh points among the

nonoverlapping main subdomains is uneven. By contrast, a balanced domain decomposition is

one in which the mesh points are equally distributed among the main subdomains. For balanced

decompositions, the first and last interfacial subdomains each overlap the boundary layer.

3.5. Uniform convergence of algorithm (3.3)-(3.7)

Without loss of generality, we assume that the boundary condition g(P, t) = 0. This as-

sumption can always be obtained by a change of variables. On each time level let an initial

function V (0)(P, t) be chosen in the form of (3.8), i.e., V (0)(P, t) is the solution of the difference

problem

(
θLh + τ−1

)
V (0)(P, t) = q |G (0, V (P, t − τ))| , P ∈ ωh,

V (0)(P, t) = 0, P ∈ ∂ωh, q = 1,−1,
(3.25)

where R(P, t) = 0. Then V
(0)

(P, t), V (0)(P, t) corresponding to q = 1 and q = −1, respectively,

are upper and lower solutions.

Theorem 3.5. Let the assumptions of Theorem 3.4 hold true. Suppose that V (0) is chosen in

the form of (3.25). Then the monotone domain decomposition algorithm (3.3)-(3.7) converges

µ-uniformly to the solution of the continuous problem (1.1):

max
t∈ωτ

‖V (t) − u (t)‖ ≤ K
(
N−1 lnN + |θ − 0.5|τ + τ2 + θr̃n∗−1

)
,

where here and throughout K denotes a generic constant which is independent of µ, Nx, Ny

and τ .

Proof. From (3.25), by (3.10),

∥∥∥V (0) (t)
∥∥∥

ωh
≤ τ ‖G (0, V (t − τ))‖ωh . (3.26)

Using the mean-value theorem, (3.25) and (1.2), it follows from (3.22) that

∥∥∥Z(1) (tl)
∥∥∥

ωh

≤ τ
[ ∥∥∥
(
θLh + τ−1

)
V (0) (tl)

∥∥∥
ωh

+ θc∗
∥∥∥V (0) (tl)

∥∥∥
ωh

+ ‖G (0, V (tl − τ))‖ωh

]

≤
(
2τ + θc∗τ2

)
[θ ‖f (P, tl, 0)‖ωh + ‖G2 (V (tl−1))‖ωh ] ≤ Cl,
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where we use (3.1) and (3.2) with G1(P, tl, 0) = θf (P, tl, 0).

If τ ‖G2 (V (tl − τ))‖ωh is independent of µ, Nx, Ny and τ , then all constants Cl are inde-

pendent of µ, Nx, Ny and τ , where we assume τ ≤ τ0. We prove this result by induction.

For l = 1, V (P, 0) = u0(P ), and

G2

(
P, 0, u0(P )

)
=
[
(1 − θ)Lh − τ−1

]
u0(P ) + (1 − θ)f(P, 0, u0).

In [4], we proved the following estimates:

∥∥µ2D2
x

(
u0
)∥∥

ωh ≤
∥∥∥∥µ

2 ∂2u0

∂x2

∥∥∥∥
ω

,
∥∥µ2D2

y

(
u0
)∥∥

ωh
≤
∥∥∥∥µ

2 ∂2u0

∂y2

∥∥∥∥
ω

.

It means that
∥∥Lhu0(P )

∥∥
ωh is µ-uniformly bounded. Thus,

τ
∥∥G2

(
u0
)∥∥

ωh ≤ K. (3.27)

Hence, C1 is bounded independently of µ, Nx, Ny and τ . From (3.3)-(3.6), we have

(
θLh + τ−1 + θc∗

)
V (n+1)(P, t)

= θc∗V (n)(P, t) − θf
(
P, t, V (n)

)
− G2 (P, t − τ, V ) , (3.28)

P ∈ ω̃h, ω̃h = ωh \
(
γ̃h ∪ ρh

)
.

Using the same reasonings as in Theorem 3.2, we can get the difference problem on γ̃h ∪ ρh in

the following form

(
θLh + τ−1 + θc∗

)
V (n+1)(P, t)

= θc∗V (n)(P, t) − θf
(
P, t, V (n)

)
− G2 (P, t − τ, V ) + ∆(n)(P, t), (3.29)

P ∈ γ̃h ∪ ρh,
∥∥∥∆(n)(t)

∥∥∥
ωh

≤
(
rI + rII

) ∥∥∥G(n)(t)
∥∥∥

ωh
,

where rI and rII are defined in (3.12), and

G(n)(P, t) ≡ G
(
V (n)(P, t), V (P, t − τ)

)
.

From (3.28) and (3.29), by (3.10),
∥∥∥V (n+1)(t)

∥∥∥
ωh

≤ τθ
(
c∗
∥∥∥V (n)(t)

∥∥∥
ωh

+
∥∥∥f
(
P, t, V (n)

)∥∥∥
ωh

)
+

τ
(
‖G2(V (t − τ))‖ωh +

(
rI + rII

) ∥∥∥G(n)(t)
∥∥∥

ωh

)
. (3.30)

At t = t1, from (3.25), (3.26) and (3.27), by (3.10), we have
∥∥∥V (0)(t1)

∥∥∥
ωh

≤ K, τ
∥∥∥LhV (0)(t1)

∥∥∥
ωh

≤ K. (3.31)

From here, it follows that

τG1

(
P, t1, V

(0)
)

= τ
(
θLh + τ−1

)
V (0)(P, t1) + τθf

(
P, t1, V

(0)
)

is bounded independently of µ, Nx, Ny and τ . Taking into account

τG(0) (P, t1) = τG1

(
P, t1, V

(0)
)

+ τG2

(
P, 0, u0

)
,
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and (3.27), we conclude that

τ
∥∥∥G(0)(t1)

∥∥∥
ωh

≤ K.

Since the interfacial subdomains are located outside the boundary layers, where the step sizes

hx and hy are in use, then under the above assumption on N in Theorem 3.4, we have

rI + rII < 2τθ ≤ 2τ0.

From (3.30) at t = t1 and n = 0, (3.31) and the last estimate, by (3.10), we conclude
∥∥∥V (1)(t1)

∥∥∥
ωh

≤ K.

From here and (3.28), (3.29) at t = t1 and n = 0, by (3.10), we have

τ
∥∥∥LhV (1)(t1)

∥∥∥
ωh

≤ K.

Now, by induction on n, we prove that V (P, t1) = V (n∗) (P, t1) satisfies the following estimates

‖V (t1)‖ωh ≤ K, τ ‖LhV (t1)‖ωh ≤ K.

Using these estimates, we conclude that

τG2 (P, t1, V (P, t1))

= τ
[
(1 − θ)Lh − τ−1

]
V (P, t1) + τ(1 − θ)f(P, t1, V )

is bounded independently of µ, Nx, Ny and τ . Now, by induction on l, we prove that

τ ‖G2 (V (tl − τ))‖ωh is bounded independently of µ, Nx, Ny and τ . Hence, the constant C

in Theorems 3.3 and 3.4 is independent of µ, Nx, Ny and τ , and we prove the theorem. �

4. Numerical Experiments

In [4], for the weighted average method we investigated µ-uniform numerical order of conver-

gence with respect to N−1 and τ on the piecewise uniform mesh (3.23). For each of the implicit

and Crank-Nicolson schemes, we found that the numerical order of convergence with respect to

N−1 is between one and two. The numerical order of convergence with respect to τ is one for

the implicit scheme and two for the Crank-Nicolson scheme. It was also found that the CFL

condition (2.4) could be violated by an order of magnitude without loss of stability. For the ex-

periments of [4], the nonlinear difference scheme was solved with the undecomposed monotone

iterative algorithm (M = 1, L = 1). In this section, we are interested in the convergence and

execution time of the monotone domain decomposition algorithm (3.3)-(3.7). For our numerical

experiments, we take Nx = Ny = N . Because the mesh is only piecewise continuous, the linear

systems can be nonsymmetric. Therefore, we employ the restarted GMRES algorithm from [9],

suitable for nonsymmetric systems.

We consider the model problem

−µ2(uxx + uyy) + ut = −u − 4

5 − u
,

(x, y, t) ∈ ω × (0, 1], ω = {0 < x < 1} × {0 < y < 1} ,

with the initial and boundary conditions:

u(ω, 0) = 0, u(∂ω, 0) = 1, u(∂ω, t) = 1, t ∈ (0, 1].
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The steady state solution to the reduced problem (µ = 0) is ur = 4. For µ ≪ 1 the problem is

singularly perturbed and the steady state solution increases sharply from u = 1 on ∂ω to u = 4

on the interior. The solution to the parabolic problem approaches this steady state with time.

Consider first the implicit scheme, for which θ = 1. The numerical solution at t = 0 is given

by the initial condition

V (ωh, 0) = 0, V (∂ωh, 0) = 1.

The mesh function V (0)(P, t1) defined by V (0)(P, t1) = V (P, 0) is clearly a lower solution with

respect to V (P, 0). We initiate the algorithm with V (0)(P, t1) and thus generate a sequence of

lower solutions. At each time level tk, we define a converged solution V (P, tk) = V (n∗)(P, tk)

with n∗ = n∗(tk) minimal subject to

‖V (n∗)(tk) − V (n∗−1)(tk)‖ωh < δ,

where δ is a specified tolerance. At the next time level, tk+1, we require an initial iterate

that is a lower solution with respect to V (P, tk). Since the boundary condition and function

f(u) = (u − 4)/(5 − u) are independent of time, and because of Theorem 3.1, we may choose

V (0)(P, tk+1) = V (P, tk). Now, again from Theorem 3.1, it follows by induction on k that the

mesh function V (P, tk+1) defined by

V (ωh, tk+1) = 4, V (∂ωh, tk+1) = 1

is an upper solution with respect to V (P, tk) and thus our computed mesh functions satisfy

0 ≤ V (n)(P, tk) ≤ 4, P ∈ ωh, 0 ≤ n ≤ n∗, 0 ≤ k ≤ Nτ . (4.1)

Hence we may suppose that fu = 1/(5 − u)2 is bounded below and above by c∗ = 1/25 and

c∗ = 1, respectively.

For the Crank-Nicolson scheme with θ = 0.5, the mesh function V (0)(P, tk+1) = V (P, tk)

does not provide a lower solution with respect to V (P, tk). To generate an initial lower solution

on time level tk+1 we solve (3.8) with R(P, tk+1) = V (P, tk). We then define the initial lower

solution by

V (0)(P, tk+1) = V (P, tk) + Z
(0)
−1(P, tk+1).

Although the initial iterate V (0) can be negative, violating (4.1), our numerical experiments

indicate that the choice c∗ = 1 is an upper bound on fu for all computed iterates and that (4.1)

is satisfied for all n ≥ 1.

In all experiments, we take as our convergence tolerance δ = 10−5. This choice necessitated

at least four iterations on each time step, thus guaranteeing the consistency of algorithm (3.3)-

(3.7) and the corresponding nonlinear weighted average scheme (2.2) (see Remark 3.4).

We present results from balanced and unbalanced domain decompositions on the piecewise

uniform mesh (3.23) with υ1,2 = 1/
√

c∗ = 5. We consider the implicit (θ = 1) and Crank-

Nicolson (θ = 0.5) schemes over the parameter ranges µ = 10−2, 10−3, 10−4, N = 128, 256,

512 and {M, L} ⊂ {1, 4, 8, 16, 32}. For balanced domain decompositions, where there is some

choice for the interfacial subdomain widths, we choose them to be all minimal or all maximal.

For unbalanced decompositions, we choose the interfacial subdomains to be minimal. Each

simulation comprises ten time steps of size τ = 0.1.

Shown in Table 4.1 is the convergence parameter r̃ for all experiments of this paper. The

value of r̃ is independent of the widths of the interfacial subdomains and depends only on
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Table 4.1: The convergence parameter r̃ (balanced) and r̃ (unbalanced) for the implicit scheme and

Crank-Nicolson scheme under balanced and unbalanced domain decomposition. The domain can be

decomposed in none, one or both of the x- and y- directions.

M >1 Implicit scheme Crank-Nicolson scheme

µ L > 1 N = 128 N = 256 N = 512 N = 128 N = 256 N = 512

0 0.09;0.09 0.09;0.09 0.09;0.09 0.05;0.05 0.05;0.05 0.05;0.05

10−2 1 0.25;0.23 0.69;0.69 2.47;2.47 0.13;0.12 0.36;0.36 1.30;1.30

2 0.41;0.37 1.28;1.28 4.86;4.86 0.21;0.19 0.67;0.67 2.54;2.54

0 0.09;0.09 0.09;0.09 0.09;0.09 0.05;0.05 0.05;0.05 0.05;0.05

≤10−3 1 0.25;0.09 0.58;0.09 1.62;0.09 0.13;0.05 0.36;0.05 1.30;0.05

2 0.41;0.09 1.06;0.09 3.15;0.09 0.21;0.05 0.56;0.05 1.65;0.05

Table 4.2: Average convergence iteration count of the implicit (θ = 1.0) and Crank-Nicolson (θ = 0.5)

schemes under balanced domain decomposition.

θ M 1 4 4 8 8 8 16 16 16 16 32 32 32 32 32
µ N\L 1 1 4 1 4 8 1 4 8 16 1 4 8 16 32

128 5.0
6.0
5.0

6.7
5.0

6.0
5.0

7.0
5.0

7.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.0

6.0
5.2

7.0
5.2

7.0
5.2

7.0
5.2

7.0
6.01.0

10−2 256 5.0
8.0
5.0

9.0
5.0

8.0
5.0

9.0
5.0

9.0
5.0

8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

512 5.0
13.0
5.0

16.0
5.0

13.0
5.0

16.0
5.0

16.0
5.0

13.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

13.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

16.0
5.0

128 5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

6.0
5.2

6.0
5.2

7.0
5.2

7.0
5.2

7.0
6.01.0

10−3 256 5.0
6.0
5.0

6.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

9.0
5.0

7.7
5.0

8.0
5.0

9.0
5.0

9.0
5.0

9.0
5.0

512 5.0
7.0
5.0

7.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

128 5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

6.0
5.2

6.0
5.2

7.0
5.2

7.0
5.2

7.0
6.01.0

10−4 256 5.0
6.0
5.0

6.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

7.6
5.0

7.6
5.0

9.0
5.0

9.0
5.0

7.7
5.0

7.7
5.0

9.0
5.0

9.0
5.0

9.0
5.0

512 5.0
6.0
5.0

6.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

11.0
5.0

11.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

128 5.0
5.1
5.0

6.0
5.0

5.1
5.0

6.0
5.0

6.0
5.0

5.1
5.0

6.0
5.0

6.0
5.0

6.0
5.0

5.1
5.0

6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.00.5

10−2 256 5.0
6.7
5.0

7.0
5.0

6.7
5.0

7.0
5.0

7.0
5.0

6.7
5.0

7.0
5.0

7.0
5.0

7.0
5.0

6.9
5.0

7.0
5.0

7.0
5.0

7.0
5.0

7.0
5.0

512 5.0
10.3
5.0

12.0
5.0

10.3
5.0

12.0
5.0

12.0
5.0

10.3
5.0

12.0
5.0

12.0
5.0

12.0
5.0

10.3
5.0

12.0
5.0

12.0
5.0

12.0
5.0

12.0
5.0

128 5.0
5.0
5.0

5.0
5.0

5.1
5.0

5.1
5.0

6.0
5.0

5.1
5.0

5.1
5.0

6.0
5.0

6.0
5.0

5.1
5.0

5.9
5.0

6.0
5.0

6.0
5.0

6.0
5.00.5

10−3 256 5.0
5.5
5.0

6.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.0

512 5.0
6.0
5.0

6.0
5.0

9.0
5.0

9.0
5.0

10.0
5.0

9.0
5.0

9.0
5.0

10.0
5.0

10.0
5.0

9.0
5.0

9.0
5.0

10.0
5.0

10.0
5.0

10.0
5.0

128 5.0
5.0
5.0

5.0
5.0

5.1
5.0

5.1
5.0

6.0
5.0

5.1
5.0

5.1
5.0

6.0
5.0

6.0
5.0

5.1
5.0

5.7
5.0

6.0
5.0

6.0
5.0

6.0
5.00.5

10−4 256 5.0
5.2
5.0

5.7
5.0

6.0
5.0

6.0
5.0

7.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

6.0
5.0

6.0
5.0

7.0
5.0

7.0
5.0

7.0
5.0

512 5.0
6.0
5.0

6.0
5.0

9.0
5.0

9.0
5.0

10.0
5.0

9.0
5.0

9.0
5.0

10.0
5.0

10.0
5.0

9.0
5.0

9.0
5.0

10.0
5.0

10.0
5.0

10.0
5.0

µ, N , whether the domain is decomposed in none, one or two directions and whether the

decomposition is balanced or unbalanced.

In Tables 4.2-4.5 we give results for all M ×L decompositions in which M ≥ L. We mention

that interchanging M and L gives an identical convergence iteration count and very similar

execution time. Table 4.2 shows the average convergence iteration count per time step for

balanced decompositions. From Table 4.1 we see that the value of r̃ for the Crank-Nicolson
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scheme on a given decomposition is about half of the corresponding value for the implicit

scheme. For example, with µ = 10−4, N = 512 and the balanced, 16 × 16, minimal interfacial

subdomain decomposition, the implicit scheme has r̃ = 3.15 while the Crank-Nicolson scheme

has r̃ = 1.65. These table entries are shown in bold. We know from Theorem 3.1 that the

sequence V (n)(P, t) converges at each time level t ∈ ωτ . Although the convergence estimate

(3.12) is of no formal use when r̃ ≥ 1, the value of r̃ is reflected in the convergence behaviour of

the algorithm if the interfacial subdomains are minimal. Thus, in Table 4.2 the corresponding

average convergence iteration counts for the implicit and Crank-Nicolson schemes (shown in

bold) are 13.0 and 10.0, respectively. On the other hand, if the interfacial subdomains are

maximal then the parameter r̃ is not reflected in the convergence behaviour; the convergence

iteration count is very close to that of the undecomposed algorithm.

Although maximal interfacial subdomains entail fewer global iterations, the problems on

Steps 2 and 3 of the algorithm are larger than the main subdomain problems of Step 1. Hence,

in Table 4.3 we find that the algorithm executes more quickly when the interfacial subdomains

are chosen minimally.

Table 4.3: Execution time of the implicit (θ = 1.0) and Crank-Nicolson (θ = 0.5) schemes under

balanced domain decomposition.

θ M 1 4 4 8 8 8 16 16 16 16 32 32 32 32 32
µ N\L 1 1 4 1 4 8 1 4 8 16 1 4 8 16 32

128 1.0
1.2
1.5

1.2
2.1

1.0
1.5

1.2
2.1

1.2
2.1

1.0
1.4

1.2
2.0

1.3
2.1

1.3
2.0

0.9
1.1

1.2
2.0

1.3
2.0

1.2
2.0

1.1
1.91.0

10−2 256 7.4
14.9
15.2

15.0
21.7

13.1
14.6

13.7
20.9

12.4
20.4

10.1
12.4

12.2
19.4

12.4
19.6

12.1
18.1

8.1
9.4

11.2
18.1

11.6
18.6

11.3
17.0

9.0
14.7

512 68.0
250
167

315
241

251
182

251
247

227
245

228
168

224
229

209
239

192
228

147
115

198
198

184
208

174
203

151
168

128 1.3
1.1
1.6

0.8
2.0

1.0
1.5

0.8
2.0

1.0
2.0

0.9
1.3

0.8
1.9

1.0
1.9

1.0
1.8

0.9
1.1

0.8
1.7

1.0
1.7

1.0
1.7

1.0
1.81.0

10−3 256 9.4
9.7
13.5

5.9
16.1

10.2
12.1

6.7
15.4

7.6
14.7

9.0
10.8

6.2
14.8

7.8
14.6

7.5
13.8

7.9
8.9

5.9
13.1

6.9
12.9

7.1
12.8

6.7
11.4

512 75.5
94.7
114

71.1
142

140
125

89.2
145

95.7
153

129
117

79.8
140

89.0
149

82.0
146

98.1
91.1

61.1
119

73.8
131

72.8
128

65.3
109

128 1.3
1.1
1.6

0.8
2.0

1.0
1.5

0.8
2.0

1.0
2.0

0.9
1.4

0.8
1.9

1.0
1.9

1.0
1.8

0.9
1.1

0.8
1.7

0.9
1.7

1.0
1.7

0.9
1.71.0

10−4 256 9.4
9.7
13.6

5.8
16.0

10.2
11.9

6.6
15.3

7.5
14.7

9.0
10.8

6.1
14.6

7.4
14.4

7.4
13.7

7.9
8.9

5.5
13.0

6.6
12.8

6.7
12.4

6.1
11.2

512 78.6
82.3
120

61.0
148

140
125

81.4
148

94.8
154

129
122

74.6
145

87.3
149

80.7
145

96.4
91.0

56.8
122

71.1
128

68.9
128

59.3
107

128 1.2
1.2
1.7

1.3
2.3

1.1
1.7

1.3
2.4

1.4
2.4

1.1
1.7

1.3
2.4

1.4
2.4

1.4
2.3

1.1
1.4

1.3
2.2

1.3
2.2

1.4
2.2

1.4
2.00.5

10−2 256 7.3
11.0
13.0

10.9
17.5

9.7
12.6

10.3
17.5

9.9
17.5

9.2
11.7

10.0
17.1

9.9
17.4

9.9
17.0

8.1
9.8

9.4
15.6

10.0
16.3

9.9
16.2

8.9
14.8

512 71.6
163
136

197
192

163
150

157
190

146
200

153
148

147
187

139
196

127
194

107
103

133
160

123
168

124
169

112
143

128 1.3
1.1
1.8

1.0
2.2

1.1
1.7

1.0
2.2

1.2
2.2

1.1
1.6

1.0
2.2

1.2
2.2

1.2
2.2

1.1
1.5

1.1
2.0

1.2
2.1

1.3
2.0

1.3
1.90.5

10−3 256 8.7
8.6
12.2

6.9
14.8

8.4
11.2

6.6
14.5

7.3
14.2

7.9
10.6

6.4
14.1

7.3
14.0

7.4
13.9

7.1
9.6

6.1
13.2

7.3
13.2

7.3
13.1

7.1
12.4

512 63.5
71.2
94.2

55.5
119

95.1
100

63.8
120

67.4
122

87.8
96.3

60.2
120

65.0
122

61.1
119

71.6
78.7

53.1
104

58.4
109

59.3
108

56.2
97.2

128 1.3
1.2
1.8

1.0
2.2

1.1
1.7

1.0
2.2

1.2
2.2

1.1
1.6

1.0
2.2

1.2
2.2

1.2
2.2

1.1
1.5

1.1
2.0

1.2
2.0

1.2
2.0

1.2
1.90.5

10−4 256 8.8
8.3
12.3

6.6
14.8

8.2
11.5

6.5
14.4

7.2
14.1

7.8
10.7

6.4
14.1

7.2
13.9

7.3
14.0

7.2
9.7

6.1
13.3

7.2
13.1

7.2
13.0

7.0
12.1

512 65.8
71.5
95.3

54.9
120

93.6
102

62.5
119

66.7
122

89.8
96.8

58.4
120

64.0
120

60.7
121

71.7
78.8

52.0
105

57.8
108

58.7
108

55.3
96.3

Consider again the problem with µ = 10−4, N = 512 on the balanced, 16 × 16, minimal

interfacial subdomain decomposition. In Table 4.3, the corresponding execution times are shown
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Table 4.4: Average convergence iteration count of the implicit (θ = 1.0) and Crank-Nicolson (θ = 0.5)

schemes under unbalanced domain decomposition.

θ M 1 4 4 8 8 8 16 16 16 16 32 32 32 32 32
µ N\L 1 1 4 1 4 8 1 4 8 16 1 4 8 16 32

128 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0
1.0

10−2 256 5.0 8.0 9.0 8.0 9.0 9.0 8.0 9.0 9.0 9.0 8.0 9.0 9.0 9.0 10.0

512 5.0 13.0 16.0 13.0 16.0 16.0 13.0 16.0 16.0 16.0 13.3 17.0 17.0 17.0 17.0

128 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1.0

10−3 256 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

512 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

128 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1.0

10−4 256 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

512 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

128 5.0 5.0 6.0 5.0 6.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
0.5

10−2 256 5.0 6.7 7.0 6.7 7.0 7.0 6.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.2

512 5.0 10.3 12.0 10.3 12.0 12.0 10.3 12.0 12.0 12.0 10.3 12.0 12.0 12.0 13.0

128 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0.5

10−3 256 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

512 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

128 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0.5

10−4 256 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

512 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

in bold for both the implicit and Crank-Nicolson schemes. The implicit scheme requires 80.7

seconds to execute 13 global iterations per time step. The Crank-Nicolson scheme requires 60.7

seconds to execute 10 global iterations per time step. In addition to these iterations, an initial

iterate must be found on each time step. At Step 1 of the algorithm, we solve the following

linear problems on the main subdomains ωh
ml,

[
θLh +

1

τ
+ θc∗

]
V

(n+1)
ml (P, t)

= θc∗V (n)(P, t) − θf(P, t, V (n)) − G2(P, t − τ, V ).

Let us classify the main subdomains as F-F, F-C or C-C according to whether the mesh spacing

is, respectively, fine in both the x- and y- directions, fine in one direction and coarse in the

other direction or coarse in both directions. For the implicit scheme, the condition number of

the matrix
[
θLh + τ−1 + θc∗

]
is 12.84, 7.006 and 1.000 for the main subdomains of class F-F,

F-C and C-C, respectively. For the Crank-Nicolson scheme, these condition numbers are 7.287,

4.168 and 1.000, respectively. Thus, the main subdomain problems are more easily solved and

the algorithm requires less time per global iteration when applied to the Crank-Nicolson scheme.

Notwithstanding the need to compute the initial iterate on each time step, the Crank-Nicolson

scheme requires fewer subsequent iterations and these are more easily computed. Thus, for

µ = 10−4, N = 512 and the balanced 16 × 16, minimal interfacial subdomain decomposition,

the algorithm solves the Crank-Nicolson scheme significantly more quickly than it does the

implicit scheme. This is generally true of all balanced decompositions on the piecewise uniform

mesh when µ ≤ 10−3 and N = 512.



96 I. BOGLAEV AND M. HARDY

Table 4.5: Execution time of the implicit (θ = 1.0) and Crank-Nicolson (θ = 0.5) schemes under

unbalanced domain decomposition.

θ M 1 4 4 8 8 8 16 16 16 16 32 32 32 32 32
µ N\L 1 1 4 1 4 8 1 4 8 16 1 4 8 16 32

128 1.0 1.2 1.0 1.1 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.1 1.1
1.0

10−2 256 7.4 15.0 14.6 13.3 13.8 13.3 11.7 13.2 12.7 11.6 10.7 12.1 11.8 11.0 11.2

512 68.1 249 322 245 271 241 201 256 227 219 176 249 228 227 189

128 1.2 0.9 0.7 0.9 0.7 0.7 0.9 0.7 0.8 0.8 0.9 0.8 0.8 0.8 0.9
1.0

10−3 256 9.4 7.6 5.0 7.1 5.0 4.8 6.8 5.0 4.9 4.9 6.7 5.0 4.9 5.0 5.1

512 75.5 68.0 54.2 67.7 47.3 43.6 64.5 46.2 43.2 42.8 61.2 45.8 42.8 46.5 42.2

128 1.3 0.9 0.7 0.9 0.7 0.7 0.9 0.7 0.8 0.8 0.9 0.8 0.8 0.8 0.9
1.0

10−4 256 9.4 8.1 4.9 7.5 4.8 4.7 7.3 4.9 4.8 4.8 7.2 4.9 4.9 5.0 5.1

512 75.9 68.2 55.6 67.8 48.2 44.4 64.0 47.2 44.1 43.4 61.4 46.8 44.0 47.0 42.2

128 1.2 1.1 1.3 1.1 1.3 1.3 1.1 1.3 1.3 1.3 1.2 1.3 1.3 1.3 1.3
0.5

10−2 256 7.3 11.0 10.8 10.3 10.5 10.3 9.4 10.2 10.1 9.6 9.3 9.8 9.7 9.4 9.2

512 71.7 163 194 161 172 157 135 164 151 144 123 153 143 137 135

128 1.3 1.1 1.0 1.1 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2
0.5

10−3 256 8.6 7.5 5.9 7.2 5.9 5.8 7.1 5.9 5.9 5.9 7.1 6.0 6.0 6.1 6.1

512 63.1 58.2 47.7 58.2 45.4 43.4 55.4 45.0 43.0 42.5 54.1 44.9 43.2 42.5 42.9

128 1.3 1.1 1.0 1.1 1.0 1.0 1.1 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.2
0.5

10−4 256 8.7 7.6 6.1 7.2 6.0 5.9 7.1 6.0 6.0 6.1 7.1 6.1 6.1 6.2 6.3

512 65.2 59.1 47.9 58.9 45.8 44.3 56.1 45.9 43.8 43.3 54.4 45.6 44.2 43.5 43.5

Considering those balanced decompositions of Table 4.3 for which N ≥ 256, the unde-

composed algorithm solves each scheme fastest when µ = 10−2 while it the 32 × 4, minimal

interfacial subdomain decomposition that is most efficient when µ ≤ 10−3.

Consider now the results from unbalanced domain decomposition, in which the interfacial

subdomains are located outside the boundary layers. For µ = 10−2 and N ≥ 256, σx,y = 0.25

and thus the mesh is uniform and the values of r̃ for balanced and unbalanced decomposition

in Table 4.1 are the same. For µ ≤ 10−3 we find that r̃ is independent of decomposition,

as are the corresponding convergence iteration counts of Table 4.4. From Table 4.5 we see

that if µ ≤ 10−3 then all unbalanced domain decompositions reduce the execution time below

that of the undecomposed algorithm. By comparing Table 4.5 (unbalanced decomposition) and

Table 4.3 (balanced decomposition) we see that, if µ ≤ 10−3, the algorithm executes more

quickly when the decomposition is unbalanced.

5. Conclusions

We make the following observations from the results of this work:

• Although the convergence estimate (3.12) is of no formal use when r̃ ≥ 1, we find that, for

balanced decompositions in which the interfacial subdomains are minimal, the convergence

parameter r̃ is reflected in the convergence behaviour of the algorithm.

• If µ ≤ 10−3 and N = 512, the Crank-Nicolson scheme is computed significantly more

quickly than the implicit scheme on all balanced domain decompositions, including the

case M = 1, L = 1; the undecomposed algorithm from [2].
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• For unbalanced domain decompositions, the convergence iteration count is independent

of M and L and minimal interfacial subdomains are sufficient. If µ ≤ 10−3 then all

unbalanced decompositions reduce the execution time below that of the undecomposed

algorithm. For µ ≤ 10−3 and N = 512, the minimum execution time over all unbalanced

decompositions is between 15 % and 30 % lower than the minimum execution time over

all balanced decompositions.
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