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Abstract

This paper presents and analyzes a monotone domain decomposition algorithm for
solving nonlinear singularly perturbed reaction-diffusion problems of parabolic type. To
solve the nonlinear weighted average finite difference scheme for the partial differential
equation, we construct a monotone domain decomposition algorithm based on a Schwarz
alternating method and a box-domain decomposition. This algorithm needs only to solve
linear discrete systems at each iterative step and converges monotonically to the exact
solution of the nonlinear discrete problem. The rate of convergence of the monotone
domain decomposition algorithm is estimated. Numerical experiments are presented.
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1. Introduction

We are interested in monotone iterative methods for solving nonlinear singularly perturbed
problems which correspond to a reaction-diffusion problem of parabolic type

— 1 (U + Uyy) +up = —f(2,y,t,u), (1.1)
(,y,) €eQ=wx (0,T], w={0<z<1}x{0<y<l1},
0< fu<c =const, (2,9,6,0) QX (~00,00), (fu=0f/0w),  (12)

where p is a small positive parameter. The initial-boundary conditions are

u(z,y,0) = u’(z,y), (v,y) €,
u=g, (x,9,t)€ 0w x (0,77,

where Ow is the boundary of @. If f, g and u® are sufficiently smooth, then under suitable
continuity and compatibility conditions on the data, a unique solution w of (1.1) exists [6]. We
mention that the assumption f,, > 0 in (1.1) can always be obtained via a change of variables.

For p < 1, the reaction-diffusion problem (1.1) is singularly perturbed and characterized
by the boundary layers of width O(u|In p|) near dw, see, e.g., [1].
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We shall employ the weighted average scheme for solving problem (1.1). This nonlinear
ten-point difference scheme can be regarded as taking a weighted average of the explicit and
implicit schemes. It was proved in [2] that, for certain piecewise equidistant spatial meshes,
the weighted average scheme converges p-uniformly to the exact solution of problem (1.1). The
truncation error analysis of [4] proved p-uniform convergence on special fitted piecewise uniform
and log-meshes.

In order to practically compute the nonlinear weighted average scheme, one requires a robust
and efficient algorithm. A fruitful method is the method of upper and lower solutions and its
associated monotone iterations. Since the initial data in the monotone iterative method is
either an upper or lower solution, constructed directly from the difference equations without
any knowledge of the exact solution, this method simplifies the search for the initial data
and thus gives a practical advantage over Newton’s method in the computation of numerical
solutions. Based on the method of upper and lower solutions, the monotone iterative method
of [2] converges p-uniformly to the solution of problem (1.1) and only requires the solution of
linear systems at each iterative step. The numerical experiments of [2] and [4] confirmed the
theoretical rates of convergence on piecewise equidistant and log-meshes.

Iterative domain decomposition algorithms based on Schwarz-type alternating procedures
have received much attention for their potential as efficient algorithms for parallel computing. In
[3], we proposed an iterative algorithm for solving the nonlinear implicit finite difference scheme
approximation of the partial differential equation (1.1). This algorithm combines the monotone
approach and an iterative domain decomposition method based on the Schwarz alternating pro-
cedure. The spatial computational domain is partitioned into nonoverlapping box-subdomains.
At each horizontal and vertical boundary, a small interfacial subdomain is introduced and an
associated linear problem generates boundary values for the nonoverlapping box-subdomains.
Thus, this approach may be considered as a variant of a block Gauss-Seidel iteration (or in
the parallel context as a multicoloured algorithm) for the nonoverlapping box-subdomains with
a Dirichlet-Dirichlet coupling through the interface variables. In this paper, we generalize the
monotone box-domain decomposition algorithm of [3] from the nonlinear implicit scheme to the
nonlinear weighted average scheme.

The structure of the paper is as follows. In Section 2, we present the nonlinear weighted
average scheme and discuss the stability of two different weightings. Section 3 proposes a
monotone domain decomposition algorithm based on the box-domain decomposition from [3].
We develop estimates of the rate of convergence and prove that on the piecewise uniform meshes
the monotone domain decomposition algorithm converges p-uniformly to the solution of (1.1).
The numerical experiments of Section 4 correlate the convergence behaviour of the algorithm
with the theoretical convergence parameter derived in Section 3. The experiments demonstrate
the surprising result that, for sufficiently small perturbation parameter pu, this paper’s domain
decomposition generalization of the algorithm from [2] executes more quickly than the original
undecomposed algorithm.

2. A Weighted Average Scheme

On Q introduce a rectangular mesh @" x @", @" = T"* x T"Y:
whz = {Zi; 0 § Z § Nm, g = 0, INZ = ]., h:m = I'iJrl — QL'Z'}, (21&)
" = {y;, 0< <Ny yo=0, yn, =1; hyj = yji1 — Y5} (2.1b)

wT:{tk:kT; OSkSNT) NTT:T}' (216)
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For a mesh function U(P,t), P = (x,y) € @', t €W", we use the weighted average or - method

| —

OLLU(Pt) + (1 — 0)LyU(P,t — 1) +

fz@f(P,t,U)Jr(lfﬁ)f(Pt nU), (Pot) € wh x w (2.2b)
U(P,0) =u(P), Pca", U(Pt) =g(Pt), (Pt)c 8wh X w’, (2.2¢)

[U(P,t)—UPt—1)] =-F,  (2.2a)

V\]

where § = const and, when no confusion arises, we write f(P,t,U(P,t)) = f(P,t,U). LU is
defined by
LyU = —p* (DU + DU),

where D2U and DgU are the central difference approximations to the second derivatives

—1 —1
D2US = (hae) ™ | (U = UE) (hat) ™" = (U = U1 ) (i) ]
-1 1 -1
D20k = (hyy) ™ [(UF 0 = UE) ()™ = (Ul = UK, ()7
1 1
hai = 5 (hojio1 +hai), hyj = 5 (hyj-1+hy;),
where Ul = U (24,5, tr).

This 10-point difference scheme can be regarded as taking a weighted average of the explicit
scheme (6 = 0) and the fully implicit scheme (§ = 1). We assume that we are using an average
with nonnegative weights, so that 0 < 6 < 1.

Introduce the notation

Vi = U i T Vi Ulm‘ = (hxi)71 (hz,ifl)il S (hzi)71 (hxi)il )

-1 -1 -1 -1
wj = wy; +wyy,  wy; = () (hyg—1) ", wpy = () (hyy) ™ (23)
v=_max v;, W= _max wj.

1<i<N,—1 1<G<Ny—1

We suppose that the time mesh spacing 7 satisfies the constraint

1

- < ————.
T1-9) < w2 (v +w) + c*

(2.4)

The condition (2.4), known as the CFL condition, guarantees the discrete maximum principle
on the computational domain @" x @". This imposes no time step restriction on the implicit
scheme, for which 8 = 1. A more interesting question is the stability of the Crank-Nicolson
scheme [5], for which # = 0.5. For a linear problem (1.1) with constant coefficients, Fourier
analysis places no stability restriction on the Crank-Nicolson scheme, in contrast to condition
(2.4). One can see that the CFL condition (2.4) is sharp by considering the one-dimensional

linear problem 7u2um + uy = 0 with initial data
u’(z) = {22,0 <2 <0.5;2(1 — 2),0.5 <z < 1},

boundary conditions ¢g(0,¢) = g(1,t) = 0 and N, = 2 mesh intervals [4].

Thus the maximum principle analysis can be viewed as an alternative means of obtaining
stability conditions. It has the advantage over Fourier analysis that it is easily extended to
problems with variable coefficients and to nonlinear problems. We mention that, in general, the
maximum principle analysis gives only sufficient conditions for stability of difference schemes.
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3. Monotone Domain Decomposition Algorithm

As in [3], we consider a rectangular decomposition of the spatial domain @ into (M x L)

nonoverlapping subdomains W,,;, m=1,--- , M, =1,--- | L:

Wml = (Im_1,$m) X (yl—17yl)a To = 0) TMmM = 17 Yo = 0) yL = 1.

We also introduce vertical interfacial subdomains 7,,, m =1,--- | M — 1 (vertical strips):
nm:naxwy:{xfn<z<zfn}x{0<y<1}, 77m71ﬁ77m:®,
Tm={r=a7,0<y <1}, o ={r=a7,0<y <1},

2l <, <2l A0 = 0w N I,

and horizontal interfacial subdomains 9, { = 1,--- , L — 1 (horizontal strips):

V=w" x99 ={0<a<1}x{y <y<y}, d-1n9 =0,
p={0<e<lLy=y}, pi={0<z<ly=y},
y<uy <yf, p)=0wnov.

Onwy,,m=1,--- M, l=1,--- | L;7,,,m=1,--- M—1and 9,1 =1,---,L—1, introduce

meshes:

_ _ _ _ _ _ —h =
wﬁﬂ =T N, nfil:nmﬂwh, Y, =9, N,
b e \M-1 hx b exl—1 hy
{xm,xm,xm}mzl cw, {yl,yl,yl }1:1 cw,
h0,b,e __ _0,b,e ~ —h h0,b,e _ 0,b,e ~ —h
f}/m - Im nw ) pl - pl Nw )

where w"®, W'Y are defined by (2.1).

3.1. Statement of the algorithm
We represent the difference equation from (2.2) in the equivalent form
G (P,t,U)+ Go (Pt —7,U) =0, (Pt)€w"xuw, (3.1a)
Gi(Pt,U) = (9£h+771) U(Pt)+0f(P,t,U), (3.1b)
Go(Pt—7,U)=[(1-0)Lp —7 ' |UPt—T)+(1-0)f(P,t—7,U). (3.1c)
We say that on a time level t € W7, V(P7 t) is an upper solution with respect to a given function
V(P,t — 1) if it satisfies
G (Pt,V)+ G (Pt—1,V) >0, (Pt)ew xuwT,

V(P,t) = g(P,t), P ¢cau"

Similarly, V (P, t) is called a lower solution with respect to a given function V (Pt — 7) if it
satisfies the reversed inequality and the boundary condition.
Introduce the following notation:

L=0Ly,+ 71 +0c", (3.2a)
G(V(Pt),W(Pit—1))=G(Pt,V)+Ga(Pt — 1, W), (3.2b)

where ¢* is defined in (1.2).
On each time level t € w™, we calculate n, iterates V(™ (Pt), Pec@, n=1--,n, as

follows.



80 1. BOGLAEV AND M. HARDY

Step 0. On the whole mesh @" choose an upper or lower solution V(O)(P, t) satisfying the
boundary condition V(O (P, t) = g(P,t), P € dw".
Forn =0 ton, —1 do Steps 1-4

Step 1. For each subdomain @"

mi» Solve the linear problem

ml»

ez (Pt = -G (VO (P, V(P =7)), Peul (3.3)

with ZT(,ZH) (Owh

ml?

t) = 0, where £ and G are defined in (3.2).

Step 2. For each vertical interfacial subdomain 7”,, solve the linear problem

EZT();LJFD (P, t) = *g (V(n) (Pa t)v V(Pvt - T)) ’ Pe nﬁl’ (34)

with Zr(,?'irl)((()ng17 t) defined by the mesh functions computed in Step 1.

Step 3. For each horizontal interfacial subdomain solve the linear problem
Z(n+1) _ (n) B h
LZ, (Pt)=—-G(V™(Pt),V(Pt—T)), Pev, (3.5)

with Z}”*”(aﬁf, t) defined by the mesh functions computed in Steps 1 and 2.
Step 4. Piece together the mesh functions from Steps 1 through 3:

V(Pt)+ 2"V (Pt), Pe 57;
VO (P = VO(P )+ 28T (P, Peqi \ T (3.6)
n _ _ —h
V(P + 20V (P, Pety\ (77 UT"),

M-1—p =h L—1—5h
w0 =UZ 90

where we use the notation 7 = J,,_; T,

Step 5. Set up
V(P t)=V™)(Pt), Pew (3.7)

Algorithm (3.3)-(3.7) can be carried out by parallel processing. Steps 1, 2 and 3 must be
performed sequentially, but on each step, the independent subproblems may be assigned to
different computational nodes.

3.2. Monotone convergence of algorithm (3.3)-(3.7)
We have the following convergence property of algorithm (3.3)-(3.7).
Theorem 3.1. Let V(P,t — 7) be given and V(O)(P,t), K(O)(P,t) be upper and lower solu-

tions corresponding to V(P,t — 7). Suppose that [ satisfies (1.2). Then the upper sequence

{V(n) (P,t)} generated by (3.3)-(3.7) converges monotonically from above to the unique solution
V*(P,t) of the problem

G(V(Pt),V(Pt—71)) =0, Pecuwh
V(Pt) = g(P,t), P ciu",

and the lower sequence {V ™) (P, t)} generated by (3.3)-(3.7) converges monotonically from below
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to V*(P,t):

Ve <V <V (e <VV(Pt), Pedh

VOP ) <v™(pt) <v™I(Pt) <VH(Pt), Pew”
The proof of the theorem is similar to the proof of Theorem 1 from [3].

Remark 3.1. Consider the following approach for constructing initial upper and lower solu-
tions V(O) (P,t) and K(O)(P,t). Suppose that, for ¢ fixed, a mesh function R(P,t) is defined
on @" and satisfies the boundary condition R(P,t) = g(P,t) on dw". Introduce the following
difference problems:

(G‘Ch + 7—71) Z(SO)(Pa t) =q |g (R(Pa t)a V(Pat - T))| ) Pe Wha

3.8
ZO(Pt) =0, Pedw", q=1,-1. (3:8)

Then the functions

VOt = r(P1) + 29 (P,1)

and
vO(Pt) = R(P,t) + 2O (P,t)

are upper and lower solutions, respectively. The proof of this result can be found in [2].

Remark 3.2. Since the initial iteration in the monotone domain decomposition algorithm
(3.3)-(3.7) is either an upper or lower solution which can be constructed directly from the
difference equation without any knowledge of the exact solution, as we have suggested in the
previous remark, this algorithm eliminates the search for the initial iteration as is often needed in
Newton’s method. This elimination offers a practical advantage in the computation of numerical
solutions.

3.3. Convergence analysis of algorithm (3.3)-(3.7)
On each time level, we consider the linear difference problem

LW(P,t) = F(P,t), Pcuw", W(Pt) =W'Pt), Pciu", (3.9)

where £ is defined in (3.2). We now formulate a discrete maximum principle and give an
estimate on the solution to (3.9).

Lemma 3.1. (i) If W(P,t) satisfies the conditions
LW(P,t) = F(P,t) >0 (<0), Pedu"; W(Pt)>0(<0), Peas,

then W(P,t) >0 (<0), P € @".
(ii) The following estimate of the solution to (3.9) holds true
IW (@)l < max [0, IE@/ (7 +067)]

[WO(t)|lpwr = max [WO(P,t)|, |F(t)||,» = max |[F(P,t)]. (3.10)
Pecowh Pewh
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The proof of the lemma can be found in [8].
We now establish convergence properties of algorithm (3.3)-(3.7). If we denote

ZoH (P ity =Vt (p ) —vV(Pt), Pewh
then from (3.3)-(3.6), Z(™*Y can be written in the form
_ . h
Z5(P), Pedhy\ (1 ud"),
2Py =4 20 (P, Peqh \ T, (3.11)
ZM Py, e

Introduce the notation

Lo e be L (ib—em | btet
B = 5 (W™ + Bty i = o (W het),

where h2E:¢% are the mesh step sizes on the right and left from points z%¢ and hzli’ei are the
mesh step sizes on the top and bottom from points yl , and
b op? . O
- y Ko = —,
O YRS b (O + ) B hem
b op? . op?
Ky = Ko =
U ety (e G ’
I b
r’ = max {Iiwm; Ii;m} .ot {ﬁyl, yl}

1<m<M—1 1<l<L 1

On each time level ¢ € w™, we have the following convergence property of algorithm (3.3)-(3.7).
Theorem 3.2. For algorithm (3.3)-(3.7), the following estimate holds true
Gl

§77HZ(")(1€)‘ , T=r+rl 4 tew, (3.12)

@ wh

where
ZM(Pt)y =vm(Pt) - vT(Pt), r=0c/ (0 +171).

Proof. Suppose that the sequence {V(”)} generated by (3.3)-(3.6) is an upper sequence.
From (3.3), we use (3.10) to get the estimate

’
wh

HZ(n+1 ‘

o

<
oh = Qo 471

Wint

GNP ) =g (V<”>(P, £),V(Pt— T)) .

From here and estimating (3.4) by (3.10), we conclude that
< S — IO ’
T e { fc* 4+ 771 Hg

<= g™ ‘
}} 90*+T 1 Hg
he he

hb __ _hb ~—=h _
Tml = Tm N Wity Tml = Tm Nw wm-l—l l

Hzgwrl)(t)‘

. (n+1) ‘
max |20 0)

n+1)
|zsiho),

wh
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Similarly, from here and (3.5), we can obtain the estimate

~(n+1) n)
HZl (t)‘ oy~ fe* +T—1 Hg ‘wh
Thus, by the definition of Z(™*1) in (3.11), we have
|z < 74% — e, (3.13)

From Lemma 3.1, by the maximum principle for the difference operator L, it follows that
ZUH(pty <0, Pewl, (3.14)
Using the mean-value theorem and the equation for annlﬂ) from (3.3), we have

G (Vi) = =0 (¢ = £) 28R 20, Peut,

(3.15)

uml_

S = Fu [PV (P + 00 POz (], o<l (P <1

where
(n+1) _ n (n+1)
vt =y 4z

and nonnegativeness of the right hand side follows from (1.2) and (3.14). If no confusion arises,
we write

g(S(Pv t)a W(Pat - T)) - g(Sa W)

Taking into account (3.14) and V() is an upper solution, by the maximum principle in
Lemma 3.1, it follows from (3.4) and (3.5) that

Z7(7?+1)(Pﬂt)§0a Peﬁfna m:]-a"'aMf]-a

B _ (3.16)
Z[(n+1)(Pat)§0a Peﬁ?, l=1,---,L-1
Similar to (3.15), we obtain the difference problems for Vit — ) 4 zlnt D)
G (Vi V) = (¢ ) 25 P 200 Penl, (37
9(P;t), P e
Vit(pt) = VTP, Peqltnal;

+1 e
V,f:;l z)( Pit), Peqlnwh.,,
and for V(n+1) v 4 Z(n+1)
G (VO V) = (¢~ 1)) 2Py 0, Ped),

g(P,t), Pep®

WB@UPeWWﬂmm

anz+1 (P,t), Pe(ppe\n") mw?n,l+1;
<"+1>(P, t), Peddrnnh,

V(P =

where nonnegativeness of the right hand sides of the difference equations follows from (1.2)
and (3.16). From here at the iterative step n, (3.15), (3.17) and using the definition of Z(™ in
(3.11), we represent G(™(P,t) in the form

GM(Pt)=—0 (c* - f1§"*1>) zZM(Ppt), Ped", o"=uwh\GFuph),
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where 7" and p" are defined as follows

L
~ ~hb,
e = Lay = abe yr <y <yb}, A=A, ws=0, 48 =1,
=1
M—-1
:y'hb: U U A,Y'T};Le, ~h :A,y'hbufy'he
m=1
-1 -
P =" o= U pre, pt=p"upt
=1 1
By (1.2),
S — 1O H <rHZ<"> ¢ ‘ 3.18
s 4R0) I AT (3.18)

Now we estimate g(”)(P t)ony". On7 ’sz = {xi =ab, Y <y; < ylb}, we represent Q(”)(P7 t)
in the form
g (Phot) =G (Vi3 (Bht) v (Phst = 7))

op? b (n) ( pb
i, (0 (Pere) = (Pire)),
ﬁrbn: (I?nayj) G’lev Pr};:r_ (I +hgm7yj)
From (3.14) at the iterative step n and the definition of V(™ in (3.6), we have
v (ﬁfj, t) — v (ﬁfj, t)
< =1 (ﬁ,’;jr,t) —ym (ﬁgj,t) =—zm (ﬁgj,t) .
From here, (3.15) and taking into account that Zf:l) (P,t) = ZM(P,t), P € 3", it follows that

n)
s @], <

0 (r+x2,,) HZ(”)(t)‘
ml

oh

Oc* +T—1

Similarly, we can prove the estimate

= |lgm¢ ‘
Oc* +T—1 Hg

Thus, on 7", we conclude the estimate

e (3.19)

o]

< (r+1h) HZ(”)(t)‘

O + T_l Fh

On phb = {:L'm L <ap<ab iy =y } we represent G()(P,t) in the form

g (Prt) =G (VP (B),V (PLt = 7))
o
hb Yy

PP = (wi,4)) € s B = (%yf’ +h(ﬂ) .

(V7 (B0 = vl (BP0
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From (3.14) at the iterative step n and the definition of V(™ in (3.6), we have
Vol (B 0) = V™ (PP 1)
< V(n—l) (P)lb+7t) _ V(n) (P)lb+,t) — _Z(n) (Plb"r, t) .

From here and (3.15), and taking into account that Zﬁ:l)(P, t) = ZM(P,t), P € p'%, we get

ml>
the estimate

h

< (r+sl) HZ(”)(t)‘

~hb —
Pl

o |90

Similarly, we can prove the estimate

w

1
[ (n) e (n)
Oc* + 71 Hg ®) phe = (TJF Hyl) HZ (t)‘ oh
On ﬁfé’l = {xﬁ’n <z <@y, Y; = ylb}, we represent G(™ (P, t) in the form

G (PPt) =G (Vi (1) V (PEt = 7))
hb by

PP = (wi,4)) € prs B = (%yf’ +h(ﬂ) .

(‘Z(n) (Plb+a t) _ Vn(@n) (1*_);)—',-7 t)) ,

From (3.16) at the iterative step n and the definition of V(™ in (3.6), we have
V’rﬁln) (Plb+a t) _ ‘72(”) (I_)lb+7 t)
< V(n—l) (.Plb+,t) _ V(n) (.Plb+,t) _ 7z(n) (Plb+,t) .

From here and (3.17), and taking into account that Z,g?)(P, t) = ZM(Pt), P € phY, we get

ml»

the estimate 1

Oc* + 71
Similarly, we can prove the estimate

g |90

=

< (7‘ + “Zl) HZ(n)(t)‘

~hb =h
pm,l w

< (r+55) HZ(”)(t)‘

she =h "
pm,l w

At P, = (2%,,y?), we represent G (P,¢) in the form
n Op?
G (Pb, 1) =G (vngg (Pbyt) v (Pt — r)> _ # (V,%") (Ph+ 1)
xm' LM
n T eu 17(n n
D e 0) < e (7 () v ().
L'y

b. b b b by+ b b b
Pma;-‘r = (xm +hxi;_wyl)7 Pmyl = (xmayl +hy-li_) :

2

From (3.14) at the iterative step n and the definition of V() in (3.6), we have

AR (Pber t) _ Vrsln) (Pb:v+ t)

ml ml ml
<VOTD (Bt t) = VO (Pt ) = =20 (Pt
v (ijl* ,t) -y (ijl* ,t)

<yt (Pbyl+,t) —ym (Pbyl""t) — _zn) (Pbyl-i_,t) .
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From here and (3.15), and taking into account that Z(n) (Pt t) =z (P

ml>

t), we get the
estimate
‘g(") Pbl7 ‘ < ( r—i—/@lm—i—/@ HZ(") ‘

oh

Hc* + 71

By the same reasonings, the following estimate holds true
1

Oc + 71

Pﬁku = (fﬂfnqayz) .

‘g(n)()( m—1,1 ‘< T+Kazm 1+I€ Hz(n) )‘

’
wh

On p;”’, we conclude the estimate

hb

G (1 }
4]

< (r+r" 4+ HZ(”)(t)}

90*+T 1 H

wh

The same estimate holds true on plhe7 and on p" we get the estimate

CACI
<

- (r—i—rl—i—rﬂ) HZ(")(t)‘

96*+7‘1‘ h’

w

From here, (3.18) and (3.19), we conclude the estimate

gl < (r+rf 407 HZ(")(t)‘

Hwh Iy (3.20)

Hc*JrT 1 H

and by (3.13), prove the theorem. O

Theorem 3.3. Let V(O)(P, t) be an upper or lower solution in the domain decomposition al-
gorithm (3.3)-(3.7), and let f satisfy (1.2). If the CFL condition (2.4) holds true, then the
following estimate on convergence rate holds

max ||V (t;) = U (tx)|| < C (6c* +771) 7™, (3.21)

trEw

where T is defined in (3.12), U(P,t) is the solution to (2.2) and the constant C is independent
of T. Furthermore, the sequence {V(”)(P,t)} converges monotonically on each time level.

Proof. The difference problem (2.2) can be represented in the form

GWU(Pt),U(Pt—71))=0, Pecuw"
U(Pt)=g(Pt), Pcou"

If we add and subtract the term G (V (P,t),V (P,t — 7)) on the left hand side of the equation
then, by the mean-value theorem, we get the difference problem for W (P,t) = U (P,t)—V (P,t)

(oih(P, £) +r*1) W (P,t)
S [(1 ) Lp(Pt—7) — 7—1} W(Pt—7)—G (V(”*)(P, 1), V(P t — r)> , Peuwh
W(P,t) =0, Pedul, Ly(Pt)=Ly+ fulPt),

where
fu(Pt) = fu [P, V(P,t) + O(P,t)W(Pt)], 0<O(Pt)<1
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and V(P,t) = V("<)(P,t). At the mesh point (z;,y;, %), represent the above difference equation
in the following equivalent form

(1+0s) Wi = 0 [My (W) + My, (W] + (1= 6) [My (W) + M, (W]
+ 1= (1)t Wh L gk,
sfj =71u? (vi +wj) + Tfjfﬂ-j, M, (WZ;) = 7u° (v;iWiﬁLj + viiWik,Lj) ,

M, (Wf) = 7> (w;ijjH +wl WF ),

J yj i,y —1

where we use the notation from (2.3). Under the hypotheses of the theorem, all the coefficients
on the right hand side of the difference equation are nonnegative, and we conclude the estimate

IW ()l < IW (= )lgn + 7 6 )]

wh

Taking into account W (P,0) = 0, from (3.12) and (3.20), it follows that

k
W ()l < (ZQ> T(0c + 771, k=1, Ny G = HZ(I)(U)‘
=1

wh

Applying (3.10) to estimate consecutively Zfil) (P,t), Zy(,%)(P, t) and Zl(l)(P, t) from (3.3)-(3.5),
respectively, and using the definition of Z(M)(P,t) in (3.11), we get

20w, <7 |l¢ (vOw v -n)| , <c. (3.22)

©
where C is independent of 7. Denoting

Co = max (,
1<I<N-,

and taking into account that N,7 = T, we prove the estimate (3.21) with C =TCy. O

Remark 3.3. For the undecomposed algorithm, with M = 1 and L = 1, one has @" = w" in
(3.18) which together with (3.13) gives estimate (3.21) with ¥ = r < 1, where (see, e.g., [2])

r=0c*/(0c" + 771 < Oc*r.

3.4. Estimates on the convergence rate of algorithm (3.3)-(3.7)

We now analyze the convergence rate of algorithm (3.3)-(3.7) defined on piecewise uniform
meshes of Shishkin-type [7].

The piecewise equidistant mesh of Shishkin-type is formed by the following manner. We
divide each of the intervals @* = [0,1] and @Y = [0,1] into three parts each [0,0,], [0z, 1 —
oz, [1 —o04,1], and [0,0,], [0y,1 — oy], [1 — oy, 1], respectively. Assuming that N,, N, are
divisible by 4, in the parts [0, 0], [1 — 04, 1] and [0, 0], [1 — 0y, 1] we use uniform meshes with
N,/4+1 and N, /4 + 1 mesh points, respectively, and in the parts 04,1 — 03], [0y, 1 — 0] we
use uniform meshes with N, /2 4+ 1 and N,/2 4+ 1 mesh points, respectively. This defines the
piecewise equidistant meshes in the z- and y-directions condensed in the boundary layers at
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r=0,1and y=0,1:

iha;;u ZZO;L 7N:C/47

T; = 0z + (i — Nz /4)h,, i=N;/4+1,--- 3N, /4,
1—0g+ (1 —3Ny/4)hgy, t=3Ny/4+1,--- Ny,
jhym ,7:0)17 7Ny/4a

Yj = Uer(j*Ny/ZL)hya j:Ny/4+]—7"'a3Ny/47

1—o0y+ (j —3Ny/4hyu, j=3Ny/4+1, - Ny,
he =2(1 —20,)N; ", hey =40,N; "', hy=2(1—20,)N, ', hy, =40,N, ",

where hgy, by, and by, hy are the step sizes inside and outside the boundary layers, respectively.
We choose the transition points o, (1 —0,) and oy, (1 —o,) in Shishkin’s sense (see [7] for
details), i.e.,

0, = min {471, vl,ulan} , Oy =min {471, vg,ulnNy} ,
where vy and vy are positive constants. If o, , = 1/4, then N, ; are very small relative to p,

and in this case the difference scheme (2.2) can be analyzed using standard techniques. We
therefore assume that

oz =vipIn Ny, oy = voplnNy.
In this case the meshes @"* and @" are piecewise equidistant with the step sizes

N;' < hy <2N; ', hyy =4viuN; ' In N,

—1 —1 —1 (323)
N, ' <hy <2N; b, hy, = 4vopN;  In N,

In [4], we proved that if the time mesh spacing 7 satisfies the CFL condition (2.4), then the
difference scheme (2.2) on the piecewise uniform mesh (3.23) converges p-uniformly to the
solution of (1.1):

max |U®) —u(t)|on <D (N"'InN + 1[0 — 057 +72), (3.24)

where N = min {N,, N, } and constant D is independent of 4, N and 7.

. . . —h
Theorem 3.4. Let the interfacial subdomains ﬁfn, m=1,--- M —-1and¥,, l=1,--- L —
1 be located in the x- and y-directions, respectively, outside the boundary layers (unbalanced
decomposition). Suppose that pn < pg < 1, and that the following conditions are satisfied
1

N<— N= N,. N, or < )
_N07 maX{ D) y}’a 7'_2+C*

If the number of iterates n, > 2, then for the monotone domain decomposition algorithm (3.3)-
(3.7) on the piecewise uniform mesh (3.23), the estimate (3.21) becomes

ga§||V(t) ~U@<COR+c)™ L F<Or(2+c) <1,

where the constant C' is independent of T.

Proof. Since the interfacial subdomains are located outside the boundary layers, where the
step sizes h, and h, are in use, then under the above assumption on N, with the notation from
(3.12), we have

(Oc" +771) (r+rl+r!T) <02+, F<Or(2+C).
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Thus, if
or < (2+c)7 ",

as assumed in the theorem, then 7 < 1, and we prove the theorem. [

Remark 3.4. From (3.24), we conclude that the Crank-Nicolson difference scheme (2.2), 6 =
0.5, is of second order with respect to 7. Thus, to guarantee the consistency of the global
errors in the Crank-Nicolson difference scheme and in the monotone domain decomposition
algorithm (3.3)-(3.7) with # = 0.5, we can choose n, = 3. Similarly, for the fully implicit
scheme (2.2), § = 1, we can choose n, = 2.

Remark 3.5. Such domain decompositions, in which the interfacial subdomains are outside
the boundary layers, are said to be unbalanced, since the distribution of mesh points among the
nonoverlapping main subdomains is uneven. By contrast, a balanced domain decomposition is
one in which the mesh points are equally distributed among the main subdomains. For balanced
decompositions, the first and last interfacial subdomains each overlap the boundary layer.

3.5. Uniform convergence of algorithm (3.3)-(3.7)

Without loss of generality, we assume that the boundary condition g(P,t) = 0. This as-
sumption can always be obtained by a change of variables. On each time level let an initial
function V(©)(P,t) be chosen in the form of (3.8), i.e., V(®)(P,t) is the solution of the difference
problem

(0L, + 7 HYVOP ) =q|G(0,V(Pt—7))|, Peuwh

3.25
vOP ) =0, Pecau, ¢g=1,-1, (3.25)

where R(P,t) = 0. Then V(O) (P,t), v (P,t) corresponding to ¢ = 1 and ¢ = —1, respectively,
are upper and lower solutions.

Theorem 3.5. Let the assumptions of Theorem 3.4 hold true. Suppose that V() is chosen in
the form of (3.25). Then the monotone domain decomposition algorithm (3.3)-(3.7) converges
w-uniformly to the solution of the continuous problem (1.1):

max ||V (t) —u(t)| < K (N"'InN + |0 — 0.5|7 + 72 + 07 1),

where here and throughout K denotes a generic constant which is independent of pn, Ny, N,
and T.

Proof. From (3.25), by (3.10),

(3.26)

wh

Hv<0> (t)Hwh <TG (0,V(t 7))l

Using the mean-value theorem, (3.25) and (1.2), it follows from (3.22) that

h

oo

<[z vO @) +oet [vO w)|, + 16 0.V~ )l
< (27 +0c*2) [0 11 (Pt1,0)lgn + G2 (V (ti1)) ] < i,
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where we use (3.1) and (3.2) with G;(P,¢;,0) = 0f (P, #;,0).

If 7{|Ga (V (t; — 7))/ ,» is independent of p, N, N, and 7, then all constants C; are inde-
pendent of u, N, Ny and 7, where we assume 7 < 79. We prove this result by induction.

For I =1, V(P,0) = u°(P), and

Ga (P,0,u’(P)) = [(1 = 0)Lp, — 7' ]u’(P) + (1= 0) f(P,0,u°).

In [4], we proved the following estimates:

62 0 62 0
122 () < |25 |+ I3 ) < 5]
It means that HE}lU’O(P)Hwh is p-uniformly bounded. Thus,
716> (w)]|.n < K. (3.27)

Hence, C is bounded independently of p, Ny, N, and 7. From (3.3)-(3.6), we have
0Ly + 771 + 0c*) V(P )
— V(P 1) — Of (P, ¢, V<”>) G (Pt —T,V), (3.28)
Pcah Tuh:wh\ﬁhUph).

Using the same reasonings as in Theorem 3.2, we can get the difference problem on 3" U p" in
the following form

0Ly + 771+ 0c") VD (Pt
= 0V (Pt) — Of (P, ¢, V<”>) Gy (Pt — 7, V) + AM(P1), (3.29)

)

peFtugh, [[am )

< (r' + 07 HQ(")(t)‘

wh wh

where 7! and r!! are defined in (3.12), and
GM (Pt =g (V<”>(P,t), V(Pt— r)) .

From (3.28) and (3.29), by (3.10),

[resne], < oo (e veol, + |7 (peave)] )+
7 (19:(V (¢ = P)llon + (7 4+ 517) 00| )- (3.30)
At t = ty, from (3.25), (3.26) and (3.27), by (3.10), we have
Hv<0>(t1)H <K, 7 thv<0>(t1)H < K. (3.31)

w wh

From here, it follows that
7G1 (P, VO) =7 (0L +77) VO(P 1) 4+ 70f (P2, V)
is bounded independently of ;, N, N, and 7. Taking into account

GO (P, t)) =76 (PJH, V(O)) +7Gs (P,0,u°),
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and (3.27), we conclude that
ool <

Since the interfacial subdomains are located outside the boundary layers, where the step sizes
hy and h, are in use, then under the above assumption on N in Theorem 3.4, we have

rl 4+l <276 < 2719.
From (3.30) at t =¢; and n =0, (3.31) and the last estimate, by (3.10), we conclude

o], <

w

From here and (3.28), (3.29) at ¢ = ¢t; and n = 0, by (3.10), we have

e, < x
.

Now, by induction on n, we prove that V (P,t;) = V("+) (P, t;) satisfies the following estimates

VD <K, 71LaV ()]0 < K.

wh >

Using these estimates, we conclude that

7Ga (P, t1, V(P t1))
=7[1=0)Lh =77 V(P t1) +T(1 = 0) f(P,t1,V)

is bounded independently of p, N, N, and 7. Now, by induction on [, we prove that
7G2 (V (t1 — 7))||,» is bounded independently of u, N,, N, and 7. Hence, the constant C
in Theorems 3.3 and 3.4 is independent of i, N, N, and 7, and we prove the theorem. [

4. Numerical Experiments

In [4], for the weighted average method we investigated p-uniform numerical order of conver-
gence with respect to N~! and 7 on the piecewise uniform mesh (3.23). For each of the implicit
and Crank-Nicolson schemes, we found that the numerical order of convergence with respect to
N1 is between one and two. The numerical order of convergence with respect to 7 is one for
the implicit scheme and two for the Crank-Nicolson scheme. It was also found that the CFL
condition (2.4) could be violated by an order of magnitude without loss of stability. For the ex-
periments of [4], the nonlinear difference scheme was solved with the undecomposed monotone
iterative algorithm (M = 1, L = 1). In this section, we are interested in the convergence and
execution time of the monotone domain decomposition algorithm (3.3)-(3.7). For our numerical
experiments, we take N, = N, = N. Because the mesh is only piecewise continuous, the linear
systems can be nonsymmetric. Therefore, we employ the restarted GMRES algorithm from [9],
suitable for nonsymmetric systems.

We consider the model problem
u—4
5—u’

(z,y,t) ewx (0,1, w={0<zx<1}x{0<y<1},

_MQ(“M + Uyy) +up = —

with the initial and boundary conditions:

w(w,0) =0, w(Ow,0)=1, u(dw,t)=1, ¢e€(0,1].
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The steady state solution to the reduced problem (u = 0) is u, = 4. For y < 1 the problem is
singularly perturbed and the steady state solution increases sharply from v = 1 on dw to u =4
on the interior. The solution to the parabolic problem approaches this steady state with time.
Consider first the implicit scheme, for which § = 1. The numerical solution at ¢ = 0 is given
by the initial condition
V(W 0)=0, V(0" 0)=1.

The mesh function V(O (P, ;) defined by VO (P, ;) = V(P,0) is clearly a lower solution with
respect to V(P,0). We initiate the algorithm with v© (P, t1) and thus generate a sequence of
lower solutions. At each time level ¢, we define a converged solution V (P, ;) = K("*)(P, tr)
with n. = n.(t;) minimal subject to

") () = V0D () e < 6,

where ¢§ is a specified tolerance. At the next time level, t;;1, we require an initial iterate
that is a lower solution with respect to V(P,tx). Since the boundary condition and function
f(u) = (u—4)/(5 — u) are independent of time, and because of Theorem 3.1, we may choose
K(O)(P7 ti+1) = V(P tx). Now, again from Theorem 3.1, it follows by induction on k that the
mesh function V (P, tj41) defined by

V(" tes1) =4, V(0w typ) =1
is an upper solution with respect to V (P, tx) and thus our computed mesh functions satisfy
0<V™(Pt)<4, Ped", 0<n<n, 0<k<N,. (4.1)

Hence we may suppose that f, = 1/(5 — u)? is bounded below and above by ¢, = 1/25 and
c* =1, respectively.

For the Crank-Nicolson scheme with § = 0.5, the mesh function V(O (P t;,,) = V(P,ty)
does not provide a lower solution with respect to V(P, ). To generate an initial lower solution
on time level t541 we solve (3.8) with R(P,tr11) = V(P,tx). We then define the initial lower
solution by

VOUP tegr) = V(P tg) + ZO(P, trsn).

Although the initial iterate K(O) can be negative, violating (4.1), our numerical experiments
indicate that the choice ¢* = 1 is an upper bound on f,, for all computed iterates and that (4.1)
is satisfied for all n > 1.

In all experiments, we take as our convergence tolerance § = 10~°. This choice necessitated
at least four iterations on each time step, thus guaranteeing the consistency of algorithm (3.3)-
(3.7) and the corresponding nonlinear weighted average scheme (2.2) (see Remark 3.4).

We present results from balanced and unbalanced domain decompositions on the piecewise
uniform mesh (3.23) with vy 2 = 1/,/c; = 5. We consider the implicit (§ = 1) and Crank-
Nicolson (6 = 0.5) schemes over the parameter ranges p = 1072, 1073, 1074, N = 128, 256,
512 and {M, L} C {1,4,8,16,32}. For balanced domain decompositions, where there is some
choice for the interfacial subdomain widths, we choose them to be all minimal or all maximal.
For unbalanced decompositions, we choose the interfacial subdomains to be minimal. Each
simulation comprises ten time steps of size 7 = 0.1.

Shown in Table 4.1 is the convergence parameter 7 for all experiments of this paper. The
value of 7 is independent of the widths of the interfacial subdomains and depends only on
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Table 4.1: The convergence parameter 7 (balanced) and 7 (unbalanced) for the implicit scheme and
Crank-Nicolson scheme under balanced and unbalanced domain decomposition. The domain can be
decomposed in none, one or both of the z- and y- directions.

M>1 Implicit scheme Crank-Nicolson scheme
I L>1|N=128 | N=256 | N=512 N=128 | N =256 | N =512
0.09;0.09 | 0.09;0.09 | 0.09;0.09 | 0.05;0.05 | 0.05;0.05 | 0.05;0.05

1072 [ 1 [0.250.23 ] 0.69;0.69 | 2.47;2.47 | 0.13;0.12 | 0.36;0.36 | 1.30;1.30
2 | 0.41;0.37 | 1.28;1.28 | 4.86;4.86 | 0.21;0.19 | 0.67;0.67 | 2.54;2.54
0 |0.09:0.09 | 0.09;0.09 | 0.09;0.09 | 0.05;0.05 | 0.05;0.05 | 0.05;0.05
<1073 1 [0.25;0.09 ] 0.58;0.09 | 1.62;0.09 | 0.13;0.05 | 0.36;0.05 | 1.30;0.05
2 | 0.41;0.09 | 1.06;0.09 |3.15;0.09| 0.21;0.05 | 0.56;0.05 | 1.65;0.05

Table 4.2: Average convergence iteration count of the implicit (f = 1.0) and Crank-Nicolson (6 = 0.5)
schemes under balanced domain decomposition.

0 M | 1|44 8|8 |8 ]16|16(16|16|32|32|32|32]|32
B OIN\L| 1| 1|4 |14 8|14 |8]|16]1|4]|8]|16]32
198 | 5060 |67[60] 7.0 7.0[607.0[70][70][6.0]70][70][70]|70

1.0 50|50 |50|50|50|50|50|50|50]|52]|52]|52]|52]56.0
956 | 50| 80| 90|80 [9.0|90|80]90]90]|90/80|90|9.0]|90]9.0
102 50|50 |50|50|50|50|50]|50|50]|50]50]5.0]5.0]5.0
512 | 5.0 |13.0]16.0]13.0(16.0|16.0|13.0| 16.0| 16.0|16.013.0 | 16.0| 16.0| 16.0| 16.0

5.0 | 5.0 |50 |50|50|50]|50]|5.0|50]|50]|50]|50]|50]5.0

128 | 50 | &0 | 6.0 6.0 § 6.0} 7.0 | 6.0 | 6.0 | 7.0 | 7.0 | 6.0 | 6.0 | 7.0 | 7.0 | 7.0

1.0 50 |50|50|50|50|50|50|50|50]|52]|52]|52]5.2]6.0
" | 256 | 50| 60| 6.0| 7676|9076 |76|90|90|77|80|9.0]9.0]9.0
10-3 50 |50|50|50|50|50|50]|50]|50]|50]50]5.0]5.0]5.0
512 | 50 | Z0 | 7.0 [11.0]11.0|13.0|11.0{ 11.0{ 13.0{ 13.0 [ 11.0 | 11.0 | 13.0| 13.0 | 13.0

5.0 | 5.0 | 5.0 | 50|50 |50]|50]|50 50|50 |50 |50 |50 5.0

198 | 5.0 | 60 [6:0 |60 60|70 60|60 |70 |70 6060|070 70
1.0 50|50 |50|50|50|50|50|50|50]|52]|52]|52]|52]56.0
956 | 5.0 60|60 |76 7.6|90|76|76]90]|90|77|77|9.0]|90]9.0
10—4 50|50 |50|50|50|50|50|50]|50]|50]|50]5.0]5.0]5.0
512 | 5.0 | 60 | 60 |11.0(11.0]13.0|11.0| 11.0|13.018.0|11.0| 1.0 13.0 | 13.0 | 13.0

5.0 | 5.0 |50 |50|50|50]|50]|5.0]|50]|50]|50]|5.0]5.0]5.0

128 | 50|21 6051 60|60 51]60 606051 [60][60|60]c0
0.5 5.0 |50|50|50|50|50|50]|50]|50]|50]50]5.0]5.0]5.0
256 | 5.0 | 87| 70|67|70|70]|67|70|70]|70]|69]|70]|70]|70]|70

102 50 |50|50|50|50|50|50]|50|50]|50]50]5.0]5.0]5.0
512 | 50 |10:3]12.0]10.3]12.0|12.0|10.3|12.0| 12.0{12.0 [ 103 | 12.0 | 12.0| 12.0| 12.0

5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0

128 | 50| 20| 50|51 51)6.0)51}51])6.0)6.0]5.1|59)6.0)86.016.0

0.5 50|50 |50|50|50|50|50]|50]|50]|50]50]5.0]5.0]5.0
256 | 5.0 | 25| 60 6.016.0 7.0} 6.0|6.0}70)70]6.0]6.070]70)70

10-3 50 |50|50|50|50|50|50]|50]|50]|50]50]5.0]5.0]5.0
512 | 5.0 | &0 | 60 9.0 9.0 /10.0| 9.0 | 9.0 110.0|10.0| 9.0 | 9.0 110.010.0] 10.0
5.0|50|50|50|50|50][50]|5.0]|50]|50]|50]|5.0]5.0]5.0

198 | 5.0 | 20 [ 5:0 [ 51 [51 ] 60 [ 51 |51 | 6.0 [ 6.0 [51 |57 |60 | 6.0 | 6.0
0.5 50|50 |50|50|50|50|50]|50|50]|50]50]5.0]5.0]5.0
’ 256 | 5.0 |22 |57|60|6.0)70]6.0/60]|70)70]|6.0]6.0]|70]70]7.0
10—4 50|50 |50|50|50|50|50/|50|50]|50]50]50]5.0]5.0
512 | 50| 60| 60| 90901009090 |10.0[10.0/ 9.0 | 9.0 10.0|10.0{10.0
50|50 |50]|50|50]|50]|50]|5.0|50]|50]|50]|50 50|50

w, N, whether the domain is decomposed in none, one or two directions and whether the
decomposition is balanced or unbalanced.

In Tables 4.2-4.5 we give results for all M x L decompositions in which M > L. We mention
that interchanging M and L gives an identical convergence iteration count and very similar
execution time. Table 4.2 shows the average convergence iteration count per time step for
balanced decompositions. From Table 4.1 we see that the value of 7 for the Crank-Nicolson
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scheme on a given decomposition is about half of the corresponding value for the implicit
scheme. For example, with ¢ = 10~%, N = 512 and the balanced, 16 x 16, minimal interfacial
subdomain decomposition, the implicit scheme has 7 = 3.15 while the Crank-Nicolson scheme
has 7 = 1.65. These table entries are shown in bold. We know from Theorem 3.1 that the
sequence Z(”)(P, t) converges at each time level ¢ € w”. Although the convergence estimate
(3.12) is of no formal use when 7 > 1, the value of 7 is reflected in the convergence behaviour of
the algorithm if the interfacial subdomains are minimal. Thus, in Table 4.2 the corresponding
average convergence iteration counts for the implicit and Crank-Nicolson schemes (shown in
bold) are 13.0 and 10.0, respectively. On the other hand, if the interfacial subdomains are
maximal then the parameter 7 is not reflected in the convergence behaviour; the convergence
iteration count is very close to that of the undecomposed algorithm.

Although maximal interfacial subdomains entail fewer global iterations, the problems on
Steps 2 and 3 of the algorithm are larger than the main subdomain problems of Step 1. Hence,
in Table 4.3 we find that the algorithm executes more quickly when the interfacial subdomains
are chosen minimally.

Table 4.3: Execution time of the implicit (§ = 1.0) and Crank-Nicolson (# = 0.5) schemes under
balanced domain decomposition.

g | M |1 |4|4|8 |8 |8 |16|16|16|16|32|32|32|32]32
B OIN\L| 1| 1|4 |1]|4]|8|1]|4|8]|16]1|4]|8]|16]32
198 | 10| L2220 t2)12]10[L2|13[13[09|1l2]L3|L2]1l
1.0 Y115 |21|15|21|21|14|20|21|20]|1.1|20]|20|20] 19
: 956 | 7.4 |14:9]15.0|13.1|13.7|12.4|10.1|12.2| 12.4 | 12.1| 8.1 |1L.2|1L6|1L.3| 9.0
10-2 % 115.2|21.7|14.6|20.9|20.4|12.4|19.4|19.6 |18.1| 9.4 |18.1|18.6 |17.0 | 14.7
512 |6s.0| 230 | 815 | 251 | 251 | 227 | 228 | 224 | 209 | 192 | 147 | 198 | 184 | 174 | 151
Y1167 | 241 | 182 | 247 | 245 | 168 | 229 | 239 | 228 | 115 | 198 | 208 | 203 | 168
128 | 15 | L1 08| L0 [ 0.8 | 1.0 0.9 | 0.8 |1.0|L0{0.9 08101010
1.0 2 116|20|15|20|20|13|190|1T90 |18 |11 |17 |17 |17 |18
: 256 | 94 |27 |5.9|10.2]| 6.7 | 7.6 | 9.0 | 62 | 7.8 | 7.5 | 7.9 | 5.9 | 6.9 | 7.1 | 6.7
10-3 “*1135|16.1|12.1|15.4|14.7|10.8 | 14.8|14.6 |13.8| 8.9 |13.1|12.9|12.8|11.4
512 |75.5(94.7| 711 | 140 |89.2195.7 | 120 | 79.8|89.0 | 82.0 | 98.1|61.1| 73.8 | 72.8| 65.3
| 114 | 142 | 125 | 145 | 153 | 117 | 140 | 149 | 146 |91.1 | 119 | 131 | 128 | 109
198 | 15|11 f08[Lofo08|1.0[09]08|1.0[L0[0.9]08]09]L0]09
1.0 2 116|20|15|20|20|14|19 |19 |18 |11 |17 |17 |17 |17
: 956 | 94 |27 | 5.8 10.2]| 6.6 | 7.5 | 9.0 | 6.1 | 7.4 | 7.4 | 7.9 | 5.5 | 6.6 | 6.7 | 6.1
104 % 113.6|16.0|11.9|15.3|14.7|10.8|14.6 | 14.4 |13.7| 8.9 |13.0 |12.8|12.4 |1L.2
512 |78.6|82:3|61.0| 140 |81.4|94.8 | 120 | 74.6 | 87.3 |80.7 | 96.4 | 56.8 | 71.1 | 68.9 | 59.3
01720 | 148 | 125 | 148 | 154 | 122 | 145 | 149 | 145 |91.0 | 122 | 128 | 128 | 107
198 | 1ol 2t a i 1a|ta|a o [ 13|13 | 14|14
0.5 “ 117 |23|17|24|24|17|24|24|23|14|22|22|22]|20
: 956 | 7.3 |11.0]10.9| 9.7 |10.3] 9.9 | 9.2 |10.0| 9.9 | 9.9 | 8.1 | 9.4 [10.0| 9.9 | 8.9
102 9 113.0|17.5|12.6|17.5|17.5|11.7|17.1|17.4|17.0| 9.8 |15.6 | 16.3 | 16.2 | 14.8
512 |71.6|163 | 197 | 163 | 157 | 146 | 153 | 147 | 139 | 127 | 107 | 133 | 123 | 124 | 112
01136 | 1792 | 150 | 190 | 200 | 148 | 187 | 196 | 194 | 103 | 160 | 168 | 169 | 143
198 | 1a Ll lofLifrof12] Ll |Lof12 |12l |1l|12]L3]13
0.5 ©118|22|17|22|22|16|22|22|22|15|20|21|20/|109
: 956 | g7 |8:6 6.9 |84]|66|73|79|64|73]|74|71|61|73)|73]|71
10-3 1 1122|14.8|11.2|14.5|14.2|10.6 | 14.1|14.0 |13.9| 9.6 |13.2|13.2|13.1|12.4
| 71.2|55.5|95.1|63.8|67.4|87.8(60.2|65.0|61.1|71.6|53.1|58.4|59.3|56.2
512 [63.5|&02 (222 228 | DL2) 802 D28 | D92 | DL | LoD | 990 | 982 | 995 | 90-5
©194.2 | 119 | 100 | 120 | 122 | 96.3 | 120 | 122 | 119 |78.7 | 104 | 109 | 108 | 97.2
198 |13 L2 /201 tof12f1aifLof12 |12l |Ll1]L2]L2]12
0.5 S lT18|22|17|22 (22|16 22|22 (22|15 |20]|20]|20] T8
: 256 | g5 | B:3 |66 (82|65 72| 78]|64]|72|73|72|61|7.2|72]|7.
10—4 ©112.3|14.8|11.5|14.4|14.1|10.7|14.1|13.9|14.0| 9.7 |13.3|13.1|13.0 |12.1
71.5|54.9|93.6 | 62.5 | 66.7 | 89.8 | 58.4 | 64.0 |60.7 | 71.7 | 52.0 | 57.8 | 58.7 | 55.3

512 |65.8 S 55 | 5o | o 120 | 120 | 721 | 78.8 | 705 | 108 | 108
°195.3| 120 | 102 | 119 | 122 | 96.8 | 120 | 120 | 121 |78.8 | 105 | 108 | 108 | 96.3

Consider again the problem with ¢ = 1074, N = 512 on the balanced, 16 x 16, minimal
interfacial subdomain decomposition. In Table 4.3, the corresponding execution times are shown
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Table 4.4: Average convergence iteration count of the implicit (f = 1.0) and Crank-Nicolson (6 = 0.5)
schemes under unbalanced domain decomposition.

0 M 1|44 |8 |8 |8|16[16|16|16 3232|3232 32
B OIN\L| 1| 1|4 |14 8|14 |8]|16]1|4]|8]|16]32
1.0 128 | 5.0|6.0|6.0|6.0]|6.0]|60]|60]|60|60|60]|70]|70|70]|70]|70
256 [ 5080 |90|80|90|90|80]|90|90]|90]|80]9.0/|9.0]9.0]10.0
512 | 5.0 |13.0|16.0|13.0|16.0|16.0|13.0|16.0|16.0|16.0 | 13.3|17.0|17.0 | 17.0| 17.0
1.0 128 | 5.0 | 50| 50|50]|50|50]|50]|50|50]|50]50]|5.0]|50]5.0]5.0
256 |50 |50|50|50|50]|50|50|50]|50]|50]|50]50]|5.0]50]5.0
512 | 50|50 |50|50|50]|50|50|50]|50]|50]|50]50]|5.0]50]5.0
1.0 128 | 5.0 | 50| 50|50]|50]|50|50]|50|50]|50]50]|5.0]|50]5.0]5.0
256 |50 |50|50|50|50]|50|50|50]|50]|50]|50]50]|5.0]50]5.0
512 |50 |50|50|50|50]|50|50|50]|50]|50]|50]50]|5.0]50]5.0

10~2

10-3

10~

0.5 128 | 50| 50]6.0|50]60]60]50]6.0]6.0]6.0]6.0]6.0]6.0]6.0]6.0
256 | 50|67 |70|67|70|70|67|70|70|70|70|70]|70]|70]|72

1072
512 | 5.0 |10.3|12.0|10.3|12.0|12.0|10.3|12.0|12.0 [12.0[10.3 | 12.0 | 12.0 | 12.0 | 13.0
0.5 128 | 50| 5050505050 50]50]50]50]5.0]5.0]5.0]5.0]5.0
10-3 256 | 5.0|50|50|50|50|50]|50|50|50|50|50]|50]|50]|50]5.0
512 | 50|50|50|50|50|50]|50|50|50|50|50]|50]|50]|50]5.0
0.5 128 | 50| 5050505050 50]50]50]50]5.0]5.0]5.0]5.0]5.0
10-4 256 | 5.0|50|50|50|50|50]|50|50]|50|50|50]|50]|50]|50]5.0

512 | 50|50 |50|50|50]|50|50|50]|50]|50]|50]50]|5.0]50]5.0

in bold for both the implicit and Crank-Nicolson schemes. The implicit scheme requires 80.7
seconds to execute 13 global iterations per time step. The Crank-Nicolson scheme requires 60.7
seconds to execute 10 global iterations per time step. In addition to these iterations, an initial

iterate must be found on each time step. At Step 1 of the algorithm, we solve the following

h

linear problems on the main subdomains wy,;,

1
[ech -+ 9&} vt (p )
T
=0V ™M (Pt) — 0f(P,t, V™) — Go(Pt — 7, V).

Let us classify the main subdomains as F-F, F-C or C-C according to whether the mesh spacing
is, respectively, fine in both the z- and y- directions, fine in one direction and coarse in the
other direction or coarse in both directions. For the implicit scheme, the condition number of
the matrix [HE;l +7r 4 90*} is 12.84, 7.006 and 1.000 for the main subdomains of class F-F,
F-C and C-C, respectively. For the Crank-Nicolson scheme, these condition numbers are 7.287,
4.168 and 1.000, respectively. Thus, the main subdomain problems are more easily solved and
the algorithm requires less time per global iteration when applied to the Crank-Nicolson scheme.
Notwithstanding the need to compute the initial iterate on each time step, the Crank-Nicolson
scheme requires fewer subsequent iterations and these are more easily computed. Thus, for
i =10"% N = 512 and the balanced 16 x 16, minimal interfacial subdomain decomposition,
the algorithm solves the Crank-Nicolson scheme significantly more quickly than it does the
implicit scheme. This is generally true of all balanced decompositions on the piecewise uniform
mesh when p < 1072 and N = 512.
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Table 4.5: Execution time of the implicit (§ = 1.0) and Crank-Nicolson (f# = 0.5) schemes under
unbalanced domain decomposition.

0 M 11448 |8 | 8|16|16]|16|16|32|32|32]|32]32
B |N\L| 1 1141114814 |8]|16|1]4|8]16|32
1.0 128 |10 |12|10|11]10|11|10]|10|10|1.0|11|11|12]11]|11
_o| 256 | 7.4 115.0]14.6{13.3|13.8|13.3 | 11.7|13.2|12.7|11.6 | 10.7 | 12.1 [ 11.8 | 11.0| 11.2
10 512 |68.1| 249 | 322 | 245 | 271 | 241 | 201 | 256 | 227 | 219 | 176 | 249 | 228 | 227 | 189
1.0 128 |12 09|07 |09]07|07]09]|07|08|08|09|08|08]|08]|0.9
10-3 256 |94 |76 |50|71|50|48|68|50|49|49]6.7]|50]|49]5.0]5.1
512 [75.5|68.0|54.2|67.7|47.3|43.6|64.5|46.2|43.2|42.8 |61.2|45.8 |42.8|46.5|42.2

1.0 128 | 13|09 |07 |09]07|07]09]|07|08|08|09|08|08]|08]|0.9
_4| 256 |94 )81 |49| 75|48 |47 |73|49|48|48|72|49]49]50]5.1
10 512 [75.9]|68.2|55.6|67.8|48.2|44.4|64.0|47.2|44.1|43.4|61.4|46.8|44.0|47.0|42.2
0.5 128 {12 1113111313 |11|13]13]13]12]13]13]13]1.3
_o| 256 | 7.3 ]11.0]10.8{10.3|10.5|10.3| 9.4 [10.2{10.1| 9.6 | 9.3 [ 9.8 | 9.7 | 9.4 | 9.2
10 512 |71.7| 163 | 194 | 161 | 172 | 157 | 135 | 164 | 151 | 144 | 123 | 153 | 143 | 137 | 135
0.5 128 (13111011 |10|10|11 |11 |11 |11]11]|11]11]11]12
3| 256 |86 | 75|59 |72|59|58|71|59]|59]|59|71|60]6.0]61]6.1
10 512 [63.1]|58.2|47.7|58.2|45.4|43.4|55.4|45.0|43.0|42.5 |54.1|44.9 |43.2|42.5|42.9
0.5 128 {1311 ]10|11|10|10|11|10]1.0]11 |11 ]11]11]11]1.2
_4| 296 |87 |76|61|72]60|59]|71|[60]|60]|61|71]|[61|61]|62]6.3
10 512 [65.2]|59.1|47.9|58.9|45.8|44.3|56.1|45.9|43.8|43.3|54.4|45.6 |44.2|43.5|43.5

Considering those balanced decompositions of Table 4.3 for which N > 256, the unde-
composed algorithm solves each scheme fastest when p = 1072 while it the 32 x 4, minimal
interfacial subdomain decomposition that is most efficient when p < 103,

Consider now the results from unbalanced domain decomposition, in which the interfacial
subdomains are located outside the boundary layers. For g = 1072 and N > 256, Ozy = 0.25
and thus the mesh is uniform and the values of 7 for balanced and unbalanced decomposition
in Table 4.1 are the same. For u < 1073 we find that 7 is independent of decomposition,
as are the corresponding convergence iteration counts of Table 4.4. From Table 4.5 we see
that if g < 1073 then all unbalanced domain decompositions reduce the execution time below
that of the undecomposed algorithm. By comparing Table 4.5 (unbalanced decomposition) and
Table 4.3 (balanced decomposition) we see that, if 4 < 1073, the algorithm executes more
quickly when the decomposition is unbalanced.

5. Conclusions

We make the following observations from the results of this work:

e Although the convergence estimate (3.12) is of no formal use when 7 > 1, we find that, for
balanced decompositions in which the interfacial subdomains are minimal, the convergence
parameter 7 is reflected in the convergence behaviour of the algorithm.

e If 4 < 1073 and N = 512, the Crank-Nicolson scheme is computed significantly more
quickly than the implicit scheme on all balanced domain decompositions, including the
case M =1, L = 1; the undecomposed algorithm from [2].
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(1]
2]
3]

e For unbalanced domain decompositions, the convergence iteration count is independent
of M and L and minimal interfacial subdomains are sufficient. If u < 102 then all
unbalanced decompositions reduce the execution time below that of the undecomposed
algorithm. For 4 < 1072 and N = 512, the minimum execution time over all unbalanced
decompositions is between 15 % and 30 % lower than the minimum execution time over
all balanced decompositions.
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