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Abstract

Consider a time-harmonic electromagnetic plane wave incident on a biperiodic struc-
ture in R®. The periodic structure separates two homogeneous regions. The medium inside
the structure is chiral and nonhomogeneous. In this paper, variational formulations cou-
pling finite element methods in the chiral medium with a method of integral equations on
the periodic interfaces are studied. The well-posedness of the continuous and discretized
problems is established. Uniform convergence for the coupling variational approximations
of the model problem is obtained.
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1. Introduction

Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in
R?3. By biperiodic structure or doubly periodic structure, we mean that the structure is periodic
in two orthogonal directions. The periodic structure separates two homogeneous regions. The
medium inside the structure is chiral and nonhomogeneous. The diffraction problem is to study
the propagation of the reflected and transmitted waves away from the structure. Recently, there
has been a considerable interest in the study of scattering and diffraction by chiral media. Such
media are isotropic, reciprocal, and more importantly circularly birefringent, with potential
applications in antennas, microwave devices, waveguides, and many other fields. In general,
electromagnetic wave propagation in a chiral medium is governed by Maxwell’s equations and a
set of constitutive equations known as the Drude-Born-Fedorov constitutive equations, in which
the electric and magnetic fields are coupled. The coupling is responsible for the chirality of the
medium. It is measured by the magnitude of the chirality admittance 3, which along with the
dielectric coefficient € and the magnetic permeability constant p characterize completely the
electromagnetic properties of the medium. On the other hand, periodic (gratings) structures
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have received increasing attentions through the years because of important applications in inte-
grated optics, optical lenses, anti-reflective structures, holography, lasers, communication, and
computing. Chiral gratings provide an exciting combination of the medium and structure. The
combination gives rise to new features and applications. For instance, chiral gratings are capa-
ble of converting a linearly polarized incident field into two nearly circularly polarized diffracted
modes in different directions. For an interesting explanation and references of these equations
and various physical and computational aspects of the electromagnetic wave propagation inside
chiral media, we refer to Lakhtakia [39] and Lakhtakia, Varadan, and Varadan [40] (non-periodic
chiral structures), and to Jaggar, et al. [38], Lakhtakia, Varadan, and Varadan [41], and Yueh
and Kong [55] (periodic chiral structures). Results and additional references on closely related
periodic achiral structures may be found in Petit [42] and Bao, Dobson, and Cox [16], Dobson
and Friedman [33], Abboud [1], Bao [13], Bao and Dobson [15], Bao and Zhou [18], Chen and
Wu [26], Bao, Chen, and Wu [14], Arens, Chandler-Wilde, and DeSanto [12], and Rathsfeld,
Schmidt, and Kleeman [51]. Other related recent results for Maxwell’s equations in general
media may be found in [17,27,35, 36].

This paper is devoted to a new approach for solving the diffraction problem, which couples a
finite element method (FEM) in the nonhomogeneous chiral medium with a method of integral
equations or boundary element method (BEM) on the periodic interfaces. More precisely,
the approach consists of two processes: First, a finite element method is used for solving
the diffraction problem in the complicated structure of a nonhomogeneous and possibly chiral
material. Second, a method of integral equations is developed to derive the exact boundary
conditions. The fact that these exact boundary conditions are formulated on the surface of
the structure implies that no mesh of the surrounding medium would be needed. In this
work, the well-posedness of the continuous and discretized formulations is established. Uniform
convergence for the coupling variational approximations of the model problem is obtained. We
point out that the variational coupling formulations introduced here are extremely general in
terms of material, grating geometry, as well as the incident angle. The material functions ¢, p,
and [ are only assumed to be bounded measurable. Also, a recent result of Torres [52] indicates
that the boundary on which the integral equations are derived needs only be Lipschitz.

Our present coupling approach is related to several other works in the literature. Levil-
lain [43] implemented computationally several versions of a coupling procedure for Maxwell’s
equations in a three dimensional medium surrounding a bounded perfectly conducting body. de
La Bourdonnaye [20] analyzed some coupling formulations for the Helmholtz equation as well
as Maxwell’s equations. Mathematical analysis of the coupling formulations in [43] has been
carried out by Ammari and Nédélec [7,8]. The results of [7] and [8] are further extended in [9]
to study coupling FEM/BEM formulations for Maxwell’s equations with a Leontovich bound-
ary condition. We also refer to Wendland [53] and Gatica and Wendland [34] for a survey of
asymptotic error estimates for symmetric and nonsymmetric coupling of finite and boundary
element methods and to Nédélec [49] for a recent survey of the integral equation methods for
computational electromagnetics.

Recently, in [2,3], the authors have studied mathematical aspects of the diffraction problem
by a periodic chiral structure. It is shown that for all but possibly a discrete set of parameters,
the diffraction problem attains a unique quasi-periodic weak solution. Our proof is based on
a Hodge decomposition lemma along with a new compact imbedding result. An important
step of our approach is to reduce the diffraction problem into a bounded domain by using a
pair of transparent boundary conditions. The approach in the present paper is different from
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the previous one in the following aspects: Here, the transparent boundary operators are not
used and the exact radiation conditions are derived on the boundary of the chiral medium. No
computation in the region surrounding the chiral medium is required. The well-posedness of the
discretized problems excluding possibly a discrete set of singular frequencies is established and
uniform convergence for the coupling FEM/BEM variational formulations is obtained. To the
best of our knowledge, this paper presents the first coupling FEM /BEM variational approach for
solving the diffraction problem. The approach has the potential for developing computationally
attractive algorithms. It also gives a new proof of existence and uniqueness for solutions of the
diffraction problem.

The paper is outlined as follows. In Section 2, the Maxwell equations and the constitutive
equations, the Drude-Born-Fedorov equations, are presented. Section 3 is devoted to both
symmetric and nonsymmetric variational formulations of the diffraction problem, which couple
BEM with FEM. The well-posedness of the coupling formulations is established. Results on
existence and uniqueness of the weak quasi-periodic solutions are proved. In Section 4, uniform
convergence for the coupling FEM/BEM variational approximations is obtained. The paper is
concluded in Section 5 by some general remarks.

2. The Diffraction Problem

Electromagnetic wave propagation in chiral media is governed by the time harmonic Maxwell
equations and a set of constitutive equations, known as the Drude-Born-Fedorov equations, in
which the electric and magnetic fields are coupled. The time harmonic Maxwell equations are
(time dependence e~%?):

VxE—iwB=0, (2.1)
V x H+iwD=0, (2.2)

where E, H, D, and B denote the electric field, the magnetic field, the electric, and magnetic
displacement vectors in R?, respectively. The following Drude-Born-Fedorov equations hold:

D =¢(x) (E +B@)V x E) , (2.3)

B = u(z) (H +A()V x H) , (2.4)

where ¢ is the electric permittivity, p is the magnetic permeability, and [ is the chirality
admittance. The parameters 3, ¢, and p characterize completely the electromagnetic properties
of the medium.

It is easily seen that the following equations are equivalent to the constitutive equations
(2.3)-(2.4):

(1= (M(@)8(2))*) D = (@) E + Zﬂwﬂ(k(x)f H, (2.5)
(1~ ((w)8(@))?) B = ptartl ~ PO iy . (2.6

where k(z) = wy/e(z) p(x).
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Similarly, the Maxwell equations may be rewritten as

V x E = (7(2))? B@)E + z‘wu(x)(%f H (2.7)
V x H=(y(x)*3(x)H — iws(x)(%)QE . (2.8)

In these equations, the parameter y(z) is defined as :

Throughout, we always assume that (k(z) 8(z))? # 1,z € R%.
Moreover, the above system may be shown to be equivalent in a weak sense to

VX(%)V X E—w?V x (fE) — eV x E—w?E =0,  (2.9)
V x E = (y(x))? B(x)E + iwu(m)(M)Q H. (2.10)

Standard jump conditions may be deduced from the above system. In fact, the tangential
parts of the electric and magnetic fields are continuous across an interface. Let v denote the
unit normal to the interface. We then have

[vx E]=0,
_ 2.2 2 .22
[VXﬂVXE—MVXE]:O.
Wi Wi

We next specify the geometry of the problem. Let A; and Ay be two positive constants, such
that the material functions e, u, and (3 satisty, for any ny, no € Z = {0,+1,£2,-- -},

e(x1 +niA1, w2 +nolo, x3) = (21, 22, 23) ,
(1 + nilq, o + nolo, x3) = p(xr, 2, x3) ,
B(z1 +n1A1, 2 + nolo, x3) = B(z1, 22, 3) -

In addition, it is assumed that, for some fixed positive constant b,

w, Blx)=0forxzs >b,
po, B(x)=0forxs < —b,

m m
— —
8 8
S~— S~—
[l

Q) m
R

= =
&=
1l

where €1, €2, 141, and ps are positive constants.
We make the following general assumptions:

o =(x), u(x), and B(z) are all real valued L™ functions, e(x) > €, p(x) > po, and 5 > 0,
where €y and p are positive constants;
e d(z) = (1 —w?Bpu)/p > doy > 0, for some positive constant dy.

Note that the second assumption is essential. Fortunately it appears to be common in the
literature and justifiable since 3 is generally small. The first assumption is a technical one.
Analogous results may be possible for materials that absorb energy.
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Let 2 be the domain where the material parameters €, u, and § are variable functions, 2y
be the domain above €2, and €23 be the domain below 2. Denote I'; = 09,5 =1, 2.
Consider a plane wave in {2

E™ = 5" H™ = pe'tT (2.11)

)

incident on 2. Here

q= (a1, ao, f[ﬁo)) = wy/e11(cos B cos Oz, cos b1 sin o, — sin b1

is the incident wave vector whose direction is specified by #; and 63, with 0 < 6; < 7 and
0 < 02 < 27. The vectors s and p satisfy

1
s=—I(pxq), ¢ q=w’ep, p-q=0. (2.12)
we

We are interested in quasi-periodic solutions, i.e., solutions E and H such that the fields E,,,
H,, defined by, for a = (aq, as,0),

E, = e " E(x1,29,23), (2.13)
Hy = e "% H(zy, x9,23), (2.14)

are periodic in the x; direction of period A; and in the x5 direction of period As.
Denote
Vo=V+ia=V+i(a,as0).

It is easy to see from (2.9) and (2.10) that E, and H, satisfy
Ve X (dva x Ea> — WV X (eBEy) — w?efVa X Eq — w?cEa =0,  (2.15)

) x
Vo X Ea = () 80)Ea + iwe) (LD Ha, (2.16)
In order to solve (2.15)-(2.16) we need to impose a radiation condition on the scattering
problem. Due to the (infinite) periodic structure, the usual Sommerfeld or Silver-Miiller radi-
ation condition is no longer valid [50]. The appropriate radiation condition may be derived as
follows: Since F, is A periodic, we can expand F, in a Fourier series:

Eo(x) = EJ'(z) + Y UL (x3)e™™ ", (2.17)
nez

where E'" = E"e™ "% q, = (27n1/A1,27mn2/A2,0), and

1

A Az . .
U = o [ (Bale) — B @) o da,

Define for j = 1,2 the coefficients

(2.18)

B (a) = VWi — lan + a2, W’ > |on +af?,
! Z\/|Oén + af? *WQEij, w25juj < lan +Oz|2 .

We assume that w?e; # |y, +af? for all n € Z2, j = 1,2. This condition excludes “resonances”.
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For convenience, we also introduce the following notation:
+ 2. (n)y _
Af={nez*: Im(B") =0}
- _ 2, (n)
Ay ={neZ”: Im(B;"”)#0}.
Observe that inside Q; (j = 1,2), € = ¢, p = pj, and § = 0, Maxwell’s equations then become
(A +w?ejpj)Eq =0, (2.19)

where A, = A + 2ia- V — |af?.
Since the medium in €; (j = 1,2) is homogeneous, the method of separation of variables
implies that E, can be expressed as a sum of plane waves:

Eoly = Eify(x) + 3 AW e estions 519 n (<1 ey > b, (2.20)

nez
. . o(n) . .
Helj = HP(x)+ Y Bim ki) watione 19 iy (<1) ey > b, (221)
nez

where the A§n) and Bj(n) are constant (complex) vectors and EXV(z) = EJ'(x), HY (z) =
Hi"(x) in x3 > b and B (x) = H'(x) = 0 in 23 < —b.
The following radiation condition is employed: Since (3} is real for at most finitely many
n, there are only a finite number of propagating plane waves in the sum (2.20), the remaining
waves are exponentially decaying (or radiated) as |z3| — co. We will insist that E,, is composed
of bounded outgoing plane waves in ; and Qg, plus the incident (incoming) wave in €.
From (2.17) and (2.18) we deduce

E((rs) = { Ut et 6D, iy > (222)
Uy (—=b)e=2 (@3tb) i gy < 1,
Define
A=MZxAZx{0} CR?.
Since the fields E, are A-periodic, we can move the problem from R? to the quotient space
R3/A. For the remainder of the paper, we shall identify Q with the cylinder /A, and similarly
for the boundaries I'; =T';/A. Thus from now on,

all functions defined on 2,85, and I'; are implicitly A-periodic.

Define divy by divau = Vg - u = (0, + ia1)ug + (0x, + ta)us.

In the future, for simplicity, we shall drop the subscript «. Denote by divr,, Vr,, Vr, X,
and curlr,, the surface divergence, the surface gradient, the surface vector rotational, and the
surface scalar rotational, respectively. Their meanings should be clear from the contexts. Let
H™ be the mth order L2-based Sobolev spaces of complex valued functions and Hp'(€2) be the
subset of all functions in H™(Q2) which are the restrictions to £ of the A-periodic functions in
H? (R? x (—b,b)). The spaces H™(€2;) and H™(T';) may be defined similarly. Consider further
the notation:

H(curl, @) ={v € L),V x v e L2(@)* },
TH*(T;) :{u € H (I,)%, u.n, = 0},
TH?(div, T;) :{u € TH*(T;), divr,u € HS(F]-)},

TH® (curl, T;) :{u € TH*(T;), curlp, u € HS(Fj)}.
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Next, introduce the periodic Green kernel G, for j = 1, 2, which satisfies the radiation condition
(2.22) and the Helmholtz equation:

Au+w25juju =0 inIR>
From [50], consider formally the sum

1 1 ; 30 |5
Gj= s Y —ve ool lmsl, 2.23
T 2 2

We have

Lemma 2.1. The sum (2.23) defines an L}, (IR®) periodic function which satisfies
() AGj+w?ejpujGj=3,ez:0(A0) in (C°(RY)),
(i1) Gy is a C> function in R® \ Upez2{An},
(t4i) Gj satisfies the radiation condition (2.22).

Here A, = (n1A1,m2M2,0),n = (n1,n2) € Z% and §(A,,) is the Dirac measure at A,,.

Note that if ﬁj(-n) # 0,Vn € Z2, for & # A, the series in (2.23) converges uniformly in
compact sets but cannot be component-wise differentiated with respect to x3 at z3 = 0.
The following identity holds.

Lemma 2.2. ) )
e /E I |a:n|€7wz . Tn

A7 |x,|

, (2.24)

where x, = x + A,,.

See Morelot [46] for a proof of (2.24) by the Poisson summation formula. An analogous rep-
resentation of the periodic Green kernel in the case of a single periodic surface was given by
Chen and Friedman [25] and Bruno and Reitich [24].
From now on, we denote by G;(x,y) = Gj(x —y) for x = (z1,22,23),y = (y1,2,y3) € IR>.
We have the following additional result about the singularity of the kernel G ;.

Lemma 2.3. The function

7
Gj(z,y) — o (Oél log |21 — y1| + az log |z2 — y2|)

—+
dr|z — y|
is a continuous function as |x —y| — 0.

Proof. Recalling that A =V, .V,, it is easy to see that
eiwmzy) i (ewmzy) |26wm\wy\
— — + —

:—% R

A 2.0Vl Gy —
( +“J’”)(] pre P pre P P P

for any z = (1,22, 73), ¥y = (y1, Y2, y3) € (0,A1) X (0, A3) x IR. By the standard elliptic theory,
the kernel G; — e“’V=i#i /|z — y| has the same singularity when |z —y| — 0 as R; with

o 1
).

AR; = -2 y(——
Bi=or V(Iﬂv—yl

Moreover, R; behaves like i(2m) ! (aq log |1 — y1| + aglog |za — y2|) + O(Jx — y|log |z — y]).
The conclusion follows from the continuity of the function |z — y|log |z — y| as |t —y| — 0. O
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Lemma 2.4. There exist three positive constants C,C’, and C", such that
NI e, 2| / / (2)8(y) () (2)
> C/||9||H—1/2(rj) - C//||9||%1—3/2(rj)v (2.25)
for any 6 € H=Y/2(T;).

Proof. By Lemma 2.3, it suffices to prove that there exist positive constants C' and C’ such
that

1 _
NIy 2| / / MO WA@)] 2 0l (220
J J

for any 0 € H*I/Q(I‘j). The coercivity estimate is classical if the boundary I' is closed. Let f]-
be a bounded and closed boundary such that 2T"; C I';, ¢ =1 on I';, and ¢ = 0 outside of
3T,/2 (component-wise). Denote § = @ for any € H=1/2(T';). According to [49] it is clear

that B
[ [ i @) 2 Ol

which along with
| / / @i @)] <2 [ j / j @) ()

20101y = 1O sage = 161 Bsrecr,
yield the estimate (2.25). O

and

3. Continuous Coupling FEM /BEM Formulations

In this section, we derive coupling FEM/BEM formulations for solving the diffraction prob-
lem. The well-posedness of the continuous coupling formulations is established. We also prove
that the derived coupling formulations are of Fredholm type and they do not generate spuri-
ous eigenfrequencies at the continuous level since they are completely equivalent to Equations
(2.15)-(2.16) which along with the radiation condition (2.22) govern the diffraction from peri-
odic chiral structures. In the following, we first state a useful Hodge decomposition lemma, a
classical compactness result, and a trace regularity result. We then derive coupling FEM/BEM
formulations. We also study questions on existence and uniqueness of the solutions.

3.1. Hodge decomposition and compactness

Assume that 2 is connected and I'; is simply connected.

Lemma 3.1. (a) Let
M(Q) :{u e H(curl,Q),/ eu.Vqg=0,Yqe Hl(Q)}.
Q
The following Hodge decomposition holds:

H(curl, ) = IM(Q) é VHY(Q),
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where the orthogonality is with respect to the product ((,)) defined by

((u,v)):/Vx u.V x v+/€u.v.
Q Q
(b) The Hodge decomposition holds:

L
TH™'2(div,T) = Vr, H¥/*(I';)/C & Vr, x HV*(Iy)/C,
where the orthogonality is with respect to the duality product between THY?(T';) and TH™Y/(T;).

Proof. Let E € H(curl, ). Since Q is connected, i.e., the space of Neumann fields in € is
trivial, there exists a unique u satisfying

Vxu=VxE in,
diveu=0 1inQ,
u.n; =0 onlY;.

Further, since A;jl(divFj (Er, —ur,)) € HY%(T), there exists a unique solution p € H'(Q) to
the boundary value problem

diveVp =0 1in,
p= Al?jl(divlﬂj (Erj — urj)) onT;.

It is clear that £ = u + Vp and the uniqueness of the decomposition (a) is obvious.
Since I'; is simply connected, the decomposition (b) follows immediately from [20]. Note
that in the case where I'; is non-simply connected, the finite dimensional vector space

N(T;) ={9, Ar,0 = o} :{9, divr,0 = 0, curlp, 0 = o},
is nontrivial and (b) should be replaced with, see for instance ([4], section 4),
THY?(div,T;) = Vr, H/*(T;)/C @ Vr, x HY(T})/C & N(T)).

This completes the proof of the lemma. O

Remark 3.1. A decomposition similar to (a) was originally introduced by Birman and
Solomyak [21] to regularize Maxwell’s equations in a bounded domain. A decomposition similar
to (b) was used in [5].

Lemma 3.2. The imbedding from IM(Q) to L*(Q)? is compact.

Proof. For any sequence ., € IM(Q) let 4,, be its periodic extension. Denote = (0, A1) x
(0,A2) x O. Let Q = (—A1,2A1) x (—=A2,2A3) x O and ¢ be a smooth function with

olx1,20) =1 (x1,22) € [0, A1] x [0, Ag],
gD(lL'l,LL‘Q) =0 (331,332) S ([7A1, 7A1/2] @] [3A1/2,2A1]) X ([7A2, 7A2/2] @] [3A2/2,2A2])

Then ~
@l .n=0 onod,

Ol € L2(Q)3,V X @iy, € L2(Q)3,
divp i, € L2(Q).
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Further, o, = u, in © and there exists a constant C independent of m, such that

If the sequence {@,,} is bounded in H(curl, Q) then we can extract by Weber [54] a subsequence
that converges strongly in L2(Q2)3. The compactness of the imbedding follows from (3.1). O

Lemma 3.3. ([3]) For any n > 0, the following estimate holds:
1
llw X njllpa-1720,) <MV X ull2@)ps + 5||U||L2(n>3-

3.2. Periodic integral representations

Denote
E1 in Ql, H1 in Ql,
E= Ez in Q, H= Hz in Q,
E2 in QQ, H2 in QQ.

We now derive periodic integral representations for E; and H; inside §2;.

Lemma 3.4. The following periodic integral representation formulas hold:

Ej:E;inX/F Gijfiv/F domjjjfmuj/ GiJ;, e, (32)
1 J J Fi

Hj=H" -V x/ GiJ; + Lv/ doivF.Mj+msj/ G;M;, z€Q; (3.3)
! T WHj T ! T

where My = Ej x nj|r; = E; x ng|r; and J; = H; X njlr; = H; X nj|r;.

Proof. Without loss of generalities, it suffices to establish the periodic integral representation
(3.2) for By in Q3. Let Q8 = Q4 N {z3 < b}. Multiplying both sides of the Maxwell equations
satisfied by E; and integrating by parts over %, we get by some standard manipulations [28]
that

Ei(z) = -V x/ G M, — Lv/ Grdivr, J; —iwul/ e
r

I we I
1 .
+V x G1E1 X e3 + —V Gldlvx3=b(E1 X 63)
13:1) wgl 13:1)
—H’wul G1E; % es, &€ Q}{
3;3=b

Rewrite the terms on z3 = b

V x / G1E| X e3+ LV/ Gldivm3:b(E1 X 63) -+ iwul/ G1Eq X e3
:C3=b wgl :83—b

B 3;3=b
. 1 . )
=V x GlEin X e3 + —V/ Gldivx:s:b(Ein X 63) + twpy GlEin X e3
r3=b we1 r3=b r3=b
+V X Gl(El - Ein) X e3 + LV/ Gldin3:b((E1 — Ein) X 63)
:83=b w€1 3;3=b

+iw,u1/ Gl(El — Ein) X es .

xr3 =b
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It is easily seen that

Ein(z) =V x /

xr3 =b

GlEin X e3 + LV/ Gldivmzb(E{" X e3)
wel z3=b

—+ z‘wul/ G1Ein X €3,
:83=b

for z € QY.
To prove the periodic integral representation (3.2), it is sufficient to show that the quantity

V x / Gl(El — Ein) X e3 + LV/ Gldivm3:b((E1 — Ein) X 63)
13:17 wgl a?g:b

+iwu1/ G1 (E1 — Ein) X es
13:1)

goes to 0 as b — 4-oo uniformly in z. Write G; = G + G, where

+ i 1 —iog, . T iﬁ(.n)\:c3|
Gl - _2A1A2 Z W@ e’ .
neAf i

From
)

A x (iBMes +iay,), Vne 22,
w1

B = —
where Agn) and BYL) are defined by (2.20)-(2.21), we obtain after some simple calculations that

V x GT(El — Ein) X e3 + EV/ GTdiVxL,':b((El — Ein) X 63)
1 a?g:b

T3 =b

+iw,u1/ Gi’_ (El — Ein) X ez = 0. (34)
13:1)
On the other hand, the quantity

Vv x / G (Ey — Ei") x e3 + LV/ G diva,—o((Ey — E) x e3)
a?g:b wgl 13:1)

+iw,u1/ G;(El - Ein) X e3

13:1)

is exponentially decaying as b — +o0o hence the conclusion follows from (3.4). O
Next, we determine the unknowns M; and J; in TH™'/2 (div,T';) as well as the fields E;

and H; in H(curl, ©2). To derive periodic integral equations on I'; from the periodic integral

representations (3.2)-(3.3), the following lemma is needed.

Lemma 3.5. For any v € TH_1/2(div, r;),
li , ,
xegjin;;oerj n(wo) X V /Fj Gj(z, y)v(y) dv(y)

LG Y / VaGjla,y) x v(y) dyly).

2
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Proof. The key of the proof is to observe by Lemma 2.3 that

1 i
Gi(z 77+—<a10 T — + ae log |z2 — )
i@, y) inlr —y| | 2n 1log|zy =y 2log [z2 — y2
is a continuous function even as x — y — 0. Hence

1
m) v(y) dy(y)

)M@M@)

lim W@@xVx/‘GM%w—

QZEQJ‘HCE()GFJ' J

=n;(xo) X V X / (Gj(xmy)

r; Ao — yl

By Miiller [47], we have
lim ’nj(.ﬁo)XVX /
:CEQJ'—ML‘OEFJ' T

:_U(;CO) + nj(z0) X /Fj Vxﬁ x v(y) dy(y),
1

j HU(?/) dv(y)

1
lim ni(xg) X —(y) d =n;(xg) X —o(y) d .
ol miGeo) x [ ) ) = / L)

The proof is now complete. O

Taking the limit of (3.2)-(3.3) tangentially on I';, we obtain by Lemma 3.5 the periodic
integral equations on I';:

%nj (z) X E;(x)

= ) x B () = om0 (T, [ Gyadive, 10) () ()

) 5 ([ V2Gy(a,) % My(a) dr(y) dr(a) (35)

J

and
1
5”]‘(55) x H;i(x)

= ny(a) X H(a) + ) x (Vr, [ G (o My (o) ) ()

siwzjny(@) < ([ Gy (e )My ) drta) dr(a)
—ny(a) % (| V.Gl % Jy(0) dota) do(a). (36)

3.3. Derivations of the coupling FEM/BEM formulations

Since the singularity of the kernel G;(x,y) behaves like (47|x — y|) ™!, classical results from
potential theory [47] yield that each term in (3.5)-(3.6) belongs to TH™/?(curl,T;). By the
classical duality result: (TH™/?(curl,T;))’ = TH '/?(div,T;), we can make sense of the duality
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products of (3.5)-(3.6) with test functions in TH™/?(div,T’;). Multiplying both sides of the
equation (3.6) by Jf € TH™Y%(div, I';) and integrating it over I';, we obtain

) 1
L/ / doinijdiVFj th — iw,uj/ / Gij . th — 5/ Ei . th
wej Jr; Jr; L; Jry Ly

—/ / vaijj.J;.:/ E . Jt Y JEe THY2(div, Ty). (3.7)
r; Jr; i

J

Using the Hodge decomposition Lemma 3.1, we decompose (3.7) into the following two
variational formulations: V ¢! € H¥2(I';) and ! € H/2(T;),

1

/ / GjAFngjArj(pz-—iwuj/ / Gijjgoj.ijgo;—iw,uj/ / Gijjij.Vrjgo§-
wej Jr;Jr; r;Jry L;Jry
1 )
—// \ ey xMj.vpjgp§—§/ Ei.vpng.:/ E™ .V, ¢ (3.8)
/Ty Ly Ly
and

fiwuj/ / GjVFJ. X Q/Jj .ij X 1/)5 — iwuj/ / G]-ijgaj .ij X 1/}5
r; JTy r; JI;

1 )
—/ / VijxMj.ijxw§—§/ Ei.vFjXQﬁ;:/E;n.VFJX’(ﬂ;, (39)
r; JTy T T,
where the unknowns are ¢; € H3/2(T;) and ¢; € H/2(I';). The unknown function
Jj = VFJ‘QOJ' + VFJ X Y;

is in TH~Y2(div,T;).
In the chiral medium, we solve the following problem for E; € H(curl, ) in a weak sense:

V x dV x E; — w?efV x E; — w?V x (¢6E;) —w?eE; =0 in Q, (3.10)
E,L' X N :Mj on Fj. (311)

Multiplying both sides of (3.10) by E* € H(curl, Q) and integrating by parts over € yield
/dV x E;.V xEt—w2/ sEZ-.Et—wQ/sBEi.V x Bt
Q Q Q

wa/sﬂVin.Etfiw/ Jl.ELiw/ Jo Bt =0, (3.12)
Q Iy 2

for any E' € H(curl, Q). By the Hodge decomposition Lemma 3.1, we write
E; = u; + Vp;,

where u; € IM(2) and p; € HY(Q). Replacing E; with u; + Vp; in the variational equation
(3.12), we obtain

/deui.qut—wQ/Eui.ut—wQ/Eﬁui.qut—wQ/EﬁVpi.qut
Q Q Q Q

—wQ/Eﬁqui.ut—iw/ Jl.ut—iw/ Jo.out =0, Vu'eM(), (3.13)
Q Iy )
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and
—w2/ eVp; . Vp' —w2/ eV x u; . Vpt
Q Q
—iw/ Jl.th—iw/ Jo.Vpt =0, Vp'ecH (Q). (3.14)
Fl F2
From now on, we denote ur; = uir, = —n; X (nj x u;) on I';.

Theorem 3.1. If E and H are solutions of the Mazwell equations (2.15)-(2.16) together with
the radiation condition (2.22), then w;, s, J;, ¢j, and v; defined by E; = u; + Vp;, J; = H; ¥
njlr; = Vr;; +Vr, X 9; are solutions of the variational formulation (3.13)-(3.14)-(3.8)-(3.9).

The converse is also true. If ug;,pi,0;,v;, and J; = Vr,p; + Vr, X 1, are solutions of
(3.13)-(3.14)-(3.8)-(3.9) and satisfy that

1 mn
§Jj:Hj anf(VX/IGij)an

J

+——vp, / Gydive, ((ur, + Vi, pi) x nj) % n;
Vs |

Wity ;
+iw5j/ G;((ur, + Vr,pi) X nj) x nj, (3.15)
then
E1 in Ql, Hl in Qla
E = Ez in Qi7 H= H,L' in Qi; (316)
E2 in QQ, H2 in QQ7

where E; and H; are determined from the periodic integral representations (3.2)-(3.3) and
H; = —i(wp)"'V x u;, are solutions of the Mazwell equations (2.15)-(2.16) along with the
radiation condition (2.22).

Proof. By the Hodge decomposition Lemma 3.1, the periodic integral representations (3.2)-
(3.3) and some integrations by parts, we easily establish that if E and H are solutions of the
Maxwell equations (2.15)-(2.16) along with the radiation condition (2.22). Thus w;, pi, J;, ¢;,
and 1; defined by E; = u; + Vp;,J; = H; x nj|r; = Vr,p; + Vr, x 1, are solutions of the
variational formulation (3.13)-(3.14)-(3.8)-(3.9).

Now, assume that u;, p;, 05,15, and J; = Vr,; + Vr, X 1; are solutions of (3.13)-(3.14)-
(3.8)-(3.9) and also satisfy the periodic integral equation (3.15). Adding equations (3.13) and
(3.14), we get once again by the Hodge decomposition Lemma 3.1 that

/deEi.VxEt—wQ/gEi.Et—wQ/gﬁEi.VxEt
Q Q Q

7w2/€6Vin.Etfzw/ JI.ELM/ Jo . Bt =0,
Q Iy s

for any E' € H(curl, Q) with F; = u; + Vp; in Q. Consequently,

V x dV x B; — w?efV x E; — w?V x (efE;) — w?¢E; =0 inQ,
dV x E; x nj — w?eBE; x n; =iwJ; onl}.

From (3.8)-(3.9), we obtain that the fields F; and Es given by the periodic integral represen-
tations (3.2), where
M; = (u; + Vp;) xn; onT},
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are solutions of the Maxwell equations
V x V x Ej —w2EijEj =0 in Qj,
along with the radiation condition (2.22). In addition, if (3.15) holds, then the fields Ej; satisfy
(V X EJ) X n; = inij on Fj.

But E; xn; = E; xn; onT';. Thus, from the jump conditions (2.11), it follows that E and H of
the form (3.16) with H; = —i(wu) 1V x u; are solutions of the Maxwell equations (2.15)-(2.16)
together with the radiation condition (2.22). The proof is now complete. O

To derive coupling FEM/BEM variational formulations for solving the diffraction problem,

we also need the following two lemmas. These lemmas are known in case of a closed boundary
I' and the usual Green kernel of the Helmholtz equation in IR?® [7].

Lemma 3.6. If J;,ur;, and p; satisfy the periodic integral equation (3.15), then

1

§/Fj Jj. j wuj/ / G; curlr; ur, curlr, ur

—zwzs]/ / G;Vr; X p;. utF xn]—zwa‘]/ / Gjur; X n;. utF X N
/ / ()G 5 — Ve Gi(ng(x) —n;(y)) . Jy) - up,

+/ (HJm X nj).utpj, Vu%j e TH™?(curl, T;), (3.17)
r

J

1
5/] VI‘pf*ZWEJ\/\/GVF X pi.Vr, ><p

// Ony )Gy — VG (1) — n3(9)) - ;) - Vi,

fiwsj/ / Gjur; X n;.Vr, xthr/ (Hjm xn;).Vr,pt, Vp'e HY2(T;). (3.18)
Ly JLy

Proof. 1t suffices to establish (3.17). Multiplying Vr, / Gjdivr, (ur; x n;) by up, xn; for
Ly
any uf«j € TH_1/2(Cur17 I';) and integrating by parts over I'; gives
/ ij/ Gjdivr, (ur, x nj)utpj X 1
/ / Gjdivr, (ur, x n;)divr, (uF X nj) / / Gjcurlp; ur, curlr, uF (3.19)

The formula (3.17) follows from an integration by parts of the periodic integral equation (3.6)
along with (3.19). O

We also need the following technical lemma.
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Lemma 3.7. For any ¢,v € HY/*(T';), and vr, € TH™Y2(T;), the following identities hold:
/ / G;Vr, x ¢.Vr,;9 :/ / (nj(xz) —n;(y)) x VyGj.Vr,9 o, (3.20)
L JLy Ly JLy

/ / G;Vr, X ¢.vr, :/ / (nj(xz) —nj(y)) x VyGj.vr, o, (3.21)
r; Jr; r; Jr;

[ ] VG5V, x 0 % (Ve x o) =iy [ ]Gy (y(o) = i) Vi),
r,; Jr, r,; Jr,
(3.22)

/Fj /F VG . ((vr; x nj) x Vr, x ¢) = w?e;p; /Fj /Fj G; ¢ (nj(x) —ni(y)).or,.  (3.23)

We are now ready to state and prove the following theorem.

Theorem 3.2. The variational formulation (3.13)-(3.14)-(3.8)-(3.9) together with the periodic
integral equations (3.15) yield the following coupling FEM/BEM formulations:

(A): obtained by replacing the terms frj Jj.ut and frj J; . Vpt with their expressions from
(3.17)-(3.18);

(B): obtained by dividing each of the terms frj Jj.ut and frj J; . Vp' into two halves and
then replacing %frj Jj.ut and %frj J; . Vpt with their expressions from (3.17)-(3.18).

Note that an important advantage of (B) is that the coupling formulation is symmetric.
Furthermore, we may derive the third coupling FEM/BEM variational formulation. Similar
to (3.12), the following variational formulation may be obtained for the magnetic field H:

/d'vxHi.VXHLw?/uHi.HL&/uﬁHi.vXHt
Q Q Q

—w2/u6VxHi.Ht—iw M, . H"—iw [ My.H'=0, (3.24)
Q

I Ta

for any H' € H(curl, ), where

H;y inQ

1 _ 2 122 1 1

g =By g man
¢ HQ iHQQ.

Represent by the Hodge decomposition Lemma 3.1, H; = v; + V¢;, where v; € IM(Q) and
q; € HY(Q). Tt follows from the periodic integral equation (3.5) and the identities (3.17)-(3.18)
that

i

1 .
3 M; .v%j = ‘ Gj curlp;vr, curlpjv%j — W G;Vr; X q;. v%j X N
T, wej Jr; Jry r,; JT;

,/F. /F_(am(x)Gij VLG () — () M;) e

— iwuj/ / Gj’Urj X N .’Ultﬂj X N

+/ (B x nj).vtrj, Vvtrj e TH Y?(curl, T;), (3.25)
r

J
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/M qu:—zwuj//GVr Xq; - Vr, xq—zw,uj//va Xmnj.Vr, x ¢

// Ony )Gy M — VaGy(n5(2) — 5(1)) - M;) . Vi,

+/ (E;n X ’ﬂ,j) . Vrth, Y qt S Hl/Q(Fj). (326)
I

j
Therefore, we obtain the third coupling FEM/BEM variational formulation.

Theorem 3.3. The variational formulation (3.13)-(3.14)-(3.8)-(3.9) together with the periodic
integral equations (3.15) yield the following coupling FEM/BEM formulation:

(C): obtained by replacing H; by v; + Vg, in (3.24), E; by u; + Vp; in (3.12), and the terms
frj J;.E" and frj M; . H' with their expressions from (3.17)-(3.18) and (3.25)-(3.26).

3.4. Existence and uniqueness results

In this subsection, we show that the coupling FEM/BEM variational formulations (A), (B),
and (C) are of Fredholm type. Hence, for all but possibly a discrete sequence of parameters,
there exist unique solutions to (A4), (B), and (C). The results also yield a new proof of the
uniqueness theorem for the diffraction problem.

Theorem 3.4. Fach one of the variational formulations (A), (B), and (C) is of Fredholm type.

Proof. Tt is sufficient to prove the theorem for the variational formulation (B). The same
arguments will prove the theorem for the other two formulations (A4) and (C).

Denote the left hand side terms of (B) by a1(u,u), az(p,p"), az(p;, ¢%), and as(;, %),
respectively. We take u! =, pt =P, o' = ¢, and ' = 1) and consider the quantity

a1(u, W) — az(p,P) — waz(p;j, 7;) + iwas(v;, ¥;).
Note that

/Vp.ijxz/J_j:/ VrjXQ/}j.V]_JZO.
r

Next, Lemma 3.7 (3.20)-(3.21) and the fact that the kernel (n;(x) —n;(y)) x VG, is of order
one yield

//GVF X p.ur;, //Gur X n;.Vr,p, //GVF X p.Vr,Dp,
//GVF X ;. Vr, 95, and//GVpcp] pxz/;j

are compact. Next, by the Cauchy-Schwartz inequality, for any n
‘/Qsﬁ(u.v xu—V x uﬂ)‘ < ||V x u||i2(ﬂ)a + C(n)||u||iz(9)3

Now, we estimate the term [ [ G;Vr,¢;.Vr,@;. According to Lemma 2.4
J J

| / / GV 01 V1,75 < Cligillusaqr,
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By the trace regularity result stated in Lemma 3.3, we have

‘/ / Gj’qu X nj . ury X N

<l B oy, < 1V % Wl s + CODll
and
[ [ 9%, < vl

1
< (V< ulweo + 2 llulla@e sl

1 1/1 2
< IV < ulliz@p) + alleslloe,) + o (Gl )+ alleslors,
<l < ulitaqys + 203l e, + sl

Combining the above estimates and observing that

%e{/ﬁ&ﬁVp.Vxﬂ—/Qsﬁqu.Vﬁ}=O,
&ee{z‘[/F‘vpjij.a+/F‘upj.vpijj }=o,

%e{i[/ﬁVFJ%.Vﬁ—i—/F‘Vp.VFJ@_j}}:O,

[E—

and the fact that the term )
—/ / G| curlp, ur, |
HKi Jr; Jry

has the favorable sign, we obtain from Lemma 2.4 that for any v € IM(Q2),p € H'(Q),¢; €

H32(T';), and ¢; € HY/2(T;),
%e{al(u,ﬂ) — az(p, P) + iwas(p;, @) — iwa4(¢j7¢_j)}

2 Cl{””“%\/l(ﬁ) + ||P||%{1(Q) + ||80j||%13/2(r,.) + ||1/)j||?{1/2(rj)}

—Ca{lJullaqys + 1Pl 2g0) + 031 Bsaqr) + sl b

where C and Cs are two positive constants.
Since the imbedding from IM(£2) to L2(2)3 is compact (Lemma 3.2), the Fredholm alterna-
O

tive holds for (B). The proof is now complete.
4. Discrete Problems

This section is devoted to the study of discretization of the coupling FEM/BEM formula-

tions. Our main result is a uniform convergence theorem for the coupling approach.

4.1. Convergence analysis
We discretize the coupling FEM/BEM variational formulations by using a family of finite

element subspaces V}, in H(curl, §2), where the parameter h is the maximum diameter of the
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elements for a given finite element mesh. The domain {2 can be meshed by using curvilinear
tetrahedra. Assume that the subspace V}, satisfies the Hodge decomposition given in Lemma
3.1. Then any vector Ej, € V}, can be represented as E, = u + Vp, where u € IM(Q2) and
p € HY(Q). We also require that

1

—————||Rpu — ul|2(q3 — 0, h —0,
||Eh||H(cur1,Q)|| ' ()

where Ry, : H2(Q)? — V is an interpolation operator. The family of finite element subspaces
used to discretize the vector unknown w is the projection of Vi, on IM(Q2). An example which
satisfies the assumptions is the family of Nédélec’s finite elements (tetrahedra) in H(curl) [48]
. The Nédélec element has the property that V.S, C Vj, where S}, is the usual P;-Lagrange
finite element approximation. Natural approximations for ¢; € H*2(I';) and 1; € HY/2(T;)
are: (i) Pi-Lagrange finite element approximation for ¢ and then Vr; x 1; is the space of
Raviart-Thomas; and (ii) any C! finite element for ;.

Now, let &, C X = IM(Q) x H'(Q) x H32(I';) x H/2(T';) be the discretized subspace. By
essentially identical arguments as in [7], the Babuska-Brezzi condition may be verified.

Lemma 4.1. There is a positive constant C' independent of h such that

sup |A((uhaph790hawh)7(U;Lap§17<p27w2))|
(ut,pt 0t wh)EX,\{0} 1w, P s ORI

> C||[(un, oy on, vn)llls Y (un, pa, on, t0n) € X

From the above lemma, the convergence result below follows.
Theorem 4.1. There exists hg > 0, such that, for 0 < h < hq, the discrete solution
Ey =up + Vpp
is well defined with the following error estimate:

I|Es — En|la(cur,o) < C F}lg& I|Es — Fn|lH(cur,0) (4.1)

h

where C' is a positive constant independent of h.

Remark 4.1. Note that in general the estimate (4.1) may not be improved. This is essentially
due to the fact that the solution is only in H(curl, Q) for bounded measurable material pa-
rameters ¢, i and (3. Better convergence results would be possible with additional smoothness
assumptions on the solutions.

4.2. Approximation of the periodic integral operators

In practice, one cannot compute the kernels (G;);=1,2 from the full infinite series expansions
(2.23). Tt is thus necessary to obtain appropriate error estimates when truncations of the series
expansions take place. In the following, we show that by extracting the principle singularity
(4r|z — y|)~t from G;(z,y), the uniform error estimates remain valid, provided that sufficiently
many terms in the expansions of the operators

1

Gj(z,y) — m
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are taken. Write

e—iom . (T—y)

2A 172 Z \/n? + n?

Gj(xay”zz:yz =

Lt 3 (L _ #)e—mn«x—y),
MR OAV RN RN

Then
1

Gi(2,Y)|zs=ys = m

+ Rj(xay) + Kj(x’y)a

where

—ian . (z—y)

Rj(zay =

nez?

] 1 1 )
Ki(z,y) = —— (_ _ 7)(””-(@—@.
J( y) 2A1A2 n;2 ﬁj(n) /n% + n%

Z Z (n) 710‘71. (xz— y)
2A A2 ,/nl —|—n 47T|I

The kernel R;(z,y) has a singularity like iar ! log |z —y| as |z —y| — 0 and the kernel K;(z,y)

is continuous as |z — y| — 0.

Lemma 4.2. There exists a positive constant My, such that for M > My

A e ) 0@)ily) da(a) da(y)

|n1 \>M+1 [n2|>M+1
<MY 1o,

for any 0 € H_1/2(I‘j), where C' is a positive constant independent of M.

We recall that there are two positive constants C; and Cy with

1 _
IO aqr, <) / | / M) d1(w) dy )| < Colllfvar,

Let the truncated kernel G;W be defined by

1
GM _ (n) —Zozn.(;c—y)
i (@) e > ;
‘ In1|<M,|na| <M

) 1 .
+ Z ( — — )eﬂan (z—y)
b e B VT3

By replacing G; with G;VI in the coupling FEM/BEM variational formulations (A), (B), and

(C), the following error estimate holds.

Theorem 4.2. There exist hg and My, such that for 0 < h < hg and M > M,

||EZ - Eh”H(curl,Q) <C { inf ||E’L - Fh”H(curl,Q) + M71||Ei||H(curl,Q)}7
FpeXy,

where C' is a constant independent of h and M .
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Remark 4.2. By assuming a complex frequency: w = w’ + iw” (w” > 0), Morelot [46] proved
that the estimate
n - ”M i (A 1A )
Z ]. eiio‘"‘xeiﬁ; )|3L‘3| S C@ w min(Ayq,N\2
(n) w
Ina|> M4 T o 2041 O

)

holds uniformly in compact sets, where the constant C' is independent of M. Note that Morelot’s
estimate breaks down when w” = 0. We also refer to [46] for a computation of the kernel G,
by using the Ewald transform.

5. Concluding Remarks

We have presented and analyzed several coupling FEM/BEM formulations for solving the
diffraction from periodic chiral structures. It has been shown that the proposed numerical
approximations attain unique solutions with uniform convergence properties. An interesting
future project is to decouple the finite element and integral equations solutions by using an
iterative procedure. The integral equations could then be solved by a fast algorithm, for example
a multipole method, independently of the finite element solutions. The fast algorithm would
significantly reduce the CPU time for the integral equation portion of the code.
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