
Journal of Computational Mathematics, Vol.26, No.3, 2008, 378–389.

A FEM-BEM FORMULATION FOR AN EXTERIOR
QUASILINEAR ELLIPTIC PROBLEM IN THE PLANE*

Dongjie Liu and Dehao Yu

LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100080, China

Email: ldj@lsec.cc.ac.cn, ydh@lsec.cc.ac.cn

Dedicated to Professor Junzhi Cui on the occasion of his 70th birthday

Abstract

In this paper, the finite element method and the boundary element method are com-

bined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate

transformation and the Fourier series expansion, the exact quasilinear artificial boundary

conditions and a series of the corresponding approximations for the given problem are

presented. Then the original problem is reduced into an equivalent problem defined in

a bounded computational domain. We provide error estimate for the Galerkin method.

Numerical results are presented to illustrate the theoretical results.
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1. Introduction

In this paper, we consider a discretization procedure for an exterior quasilinear problem

which combines the finite element method (FEM) and the boundary element method (BEM).

This technique has been used to solve many linear problems, see, e.g., [6, 10, 15–17]. It has

also been successfully generalized to nonlinear boundary value problems [4, 8, 9, 12]. In these

extensions, the error analysis is often given when the coefficients satisfy conditions that make the

nonlinear operator strongly monotone and Lipschitz continuous, see, e.g., [4, 9]. The advantage

in this case is that Céa’s lemma is satisfied. When these conditions do not hold, Xu [13] provides

a useful tool by linearizing the nonlinear partial differential equation at a given isolated solution

and considering its finite element discretization. Meddahi [11] extends this approach and gives

the error analysis. However, all the problems considered are subject to the assumptions that

they are homogeneous and linear with constant coefficients outside a bounded domain. In this

paper, we shall consider more general quasilinear problems on the exterior region and give the

error estimates.

Let Ω0 is a bounded and simple connected domain in R
2 with sufficiently smooth bound-

ary Γ0. Ω := R
2/Ω0. We consider continuous nonlinear functions αkl and βi: Ω × R → R

(i = 0, 1, 2; k, l = 1, 2) such that the derivatives (∂βi/∂s), (∂αkl/∂s), (∂2βi/∂s2), (∂2αkl/∂s2),

(∂βi/∂xj), (∂αkl/∂xj)(j = 1, 2) are continuous in Ω×R. We need to approximate a function u

that satisfies






−div(α(x, u)∇u + β(x, u)) + β0(x, u) = f(x) in Ω,

u = 0, on Γ0,

u(x) = O(1), when |x| → +∞,

(1.1)
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where β(x, u) = (β1(x, u), β2(x, u))T , α(x, u) = (αkl)
2
k,l=1.

Some existence and uniqueness results for this type of problem are given in [5] under some

conditions on the coefficients α, βi. We will not consider such issues, but instead, we assume that

(1.1) has at least one solution. Our main purpose is to provide artificial boundary conditions

for general quasilinear problem and error estimates for an approximate solution obtained from

a FEM-BEM discretization scheme.

Assume that the given function β0, β ∈ L2(Ω) and f(x) ∈ L2(Ω) has compact support, i.e.,

there is a constant R0 > 0, such that

supp β0, supp β ⊂ ΩR0
:= {x ∈ R

2||x| ≤ R0}, supp f(x) ⊂ ΩR0
.

Moreover, we assume that there exists constant C0 > 0, such that

ξT α(x, u)ξ ≥ C0|ξ|2, ∀u ∈ R, ∀ξ ∈ R
2, x ∈ ΩR0

(1.2)

α(x, u) = α̃(u), when |x| ≥ R0 (1.3)

We introduce an artificial boundary

ΓR = {x ∈ R
2||x| = R} with R ≥ R0.

ΓR divides Ω into two regions, a bounded domain Ωi = {x ∈ Ω||x| ≤ R}, and Ωe which is the

unbounded region exterior to ΓR. Then the problem (1.1) can be rewritten in the coupled form:

{

−div(α(x, u)∇u + β(x, u)) + β0(x, u) = f(x) in Ωi,

u = 0, on Γ0,
(1.4)

{

−div(α̃(u)∇u) = 0 in Ωe,

u(x) = O(1), when |x| → +∞,
(1.5)

u(x) and α̃(u)∂u/∂n are continuous on ΓR. (1.6)

Obviously, if α(x, u) ≡ a when |x| ≥ R0, the problem (1.5) is simplified to a linear exterior

elliptic problem [11].

We introduce the so-called Kirchhoff transformation

w(x) =

∫ u(x)

0

α̃(ξ)dξ, x ∈ Ωe (1.7)

which gives

∇w = α̃(u)∇u. (1.8)

From (1.5) we have that w satisfies the following problem

{

−△w = 0 in Ωe,

w(x) = O(1), when |x| → +∞.
(1.9)

Let Wm
p be the standard Sobolev spaces with norm ‖ · ‖m,p,Ωi

and semi-norms | · |m,p,Ωi
.

For p = 2, we denote Hm(Ωi) = Wm
2 , ‖ · ‖m,Ωi

= ‖ · ‖m,2,Ωi
and | · |m,Ωi

= | · |m,2,Ωi
.

The rest of this paper is organized as follows. In Section 2, we give the exact quasilinear

artificial boundary condition on the artificial boundary, and present a new version of FEM-BEM

formulation. In Section 3, the error analysis of the coupling method is given. Finally, Section

4 is devoted to numerical experiments to illustrate our theoretical results.
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2. Exact Quasilinear Artificial Boundary Condition

Suppose that w(x) is the solution of the problem (1.9). We have the Fourier expansion [16]:

w(r, θ) =
a0

2
+

∞
∑

n=1

(R

r

)n

(an cosnθ + bn sinnθ)

with

an =
1

π

∫ 2π

0

w(R, θ) cosnθdθ, bn =
1

π

∫ 2π

0

w(R, θ) sin nθdθ, n = 1, 2, · · · .

It is easy to show that

∂w

∂r
(r, θ)

∣

∣

∣

r=R
= − 1

Rπ

∞
∑

n=1

n

∫ 2π

0

w(R, ϕ) cos n(ϕ − θ)dϕ. (2.1)

It follows from (1.8) that
∂w

∂r
= α̃(u)

∂u

∂r
, (2.2)

We then get the exact artificial boundary condition of u on the ΓR:

(α̃(u)
∂u

∂r
)

∣

∣

∣

∣

ΓR

= − 1

Rπ

∞
∑

n=1

∫ 2π

0

(

∫ u(R,ϕ)

0

α̃(ξ)dξ
)

n cosn(ϕ − θ)dϕ , −K∞(u(R, θ)), (2.3)

where K∞ is the natural integer operator. Then (1.1) is equivalent to the following problem:















−div(α(x, u)∇u + β(x, u)) + β0(x, u) = f(x) in Ωi

u = 0, on Γ0,

α̃(u)
∂u

∂r
= −K∞(u(R, θ)), on ΓR.

(2.4)

Let us introduce the space

X := {v ∈ H1(Ωi); v|Γ0
= 0}.

We assume that the solution of problem (1.1) u satisfies

u|Ωi
∈ X ∩ W 2

2+ǫ(Ωi), (0 < ǫ).

Then boundary value problem (2.4) is equivalent to the following variational problem

Find u ∈ X, such that A(u, v) + B(u, v) = F (v), ∀v ∈ X, (2.5)

where

A(u, v) =

∫

Ωi

α(x, u)∇u · ∇vdx +

∫

Ωi

β(x, u) · ∇vdx +

∫

Ωi

β0(x, u)vdx,

B(u, v) =

∫

ΓR

K∞(u)vds, F (v) =

∫

Ωi

f(x)v(x)dx.
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In practice, we need to truncate the series in (2.3)

(α̃(u)
∂u

∂r
)

∣

∣

∣

∣

ΓR

= − 1

Rπ

N
∑

n=1

∫ 2π

0

(

∫ u(R,ϕ)

0

α̃(ξ)dξ
)

n cosn(ϕ − θ)dϕ , −KN(u(R, θ)), (2.6)

Then the approximate problem of (2.4) is















−div(α(x, uN )∇uN + β(x, uN )) + β0(x, uN ) = f(x) in Ωi

uN = 0, on Γ0,

α̃(uN)
∂uN

∂r
= −KN(u(R, θ)), on ΓR.

(2.7)

Problem (2.7) is equivalent to the following variational problem

Find uN ∈ X, such that A(uN , v) + BN (uN , v) = F (v), ∀v ∈ X. (2.8)

Lemma 2.1. The bilinear forms B(u, v) and BN (uN , v) are bounded, i.e., there exists a con-

stant C > 0, such that

|B(u, v)| ≤ C‖u‖1,Ωi
‖v‖1,Ωi

, ∀u, v ∈ X,

|BN (uN , v)| ≤ C‖u‖1,Ωi
‖v‖1,Ωi

, ∀u, v ∈ X.

Furthermore, B(u, u) ≥ C0|v|21.

Proof. The proof may be found in [7]. �

We introduce the nonlinear form

Ā(u, v) := A(u, v) + B(u, v),

ĀN (uN , v) := A(uN , v) + BN (uN , v).

Then problems (2.5) and (2.8) are reduced to

Find u ∈ X, such that Ā(u, v) = F (v), ∀v ∈ X, (2.9)

and

Find uN ∈ X, such that ĀN (uN , v) = F (v), ∀v ∈ X. (2.10)

Let us introduce the bilinear form A′(u; ·, ·) and A′

N (u; ·, ·) defined by

A′(u; v, z)

=

∫

Ωi

∂α

∂s
(x, u)v∇u · ∇zdx +

∫

Ωi

α(x, u)∇v · ∇zdx +

∫

Ωi

∂β

∂s
(x, u) · ∇zvdx

+

∫

Ωi

∂β0

∂s
(x, u)vzdx +

∫ 2π

0

∫ 2π

0

∂α̃

∂s
(u)v

∂u

∂ϕ
(R, ϕ)

∂z

∂θ
(R, θ)

∞
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ

+

∫ 2π

0

∫ 2π

0

α̃(u)
∂v

∂ϕ
(R, ϕ)

∂z

∂θ
(R, θ)

∞
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ;



382 D.J. LIU AND D.H. YU

A′

N (uN ; v, z)

=

∫

Ωi

∂α

∂s
(x, uN )v∇uN · ∇zdx +

∫

Ωi

α(x, uN )∇v · ∇zdx +

∫

Ωi

∂β

∂s
(x, uN ) · ∇zvdx

+

∫

Ωi

∂β0

∂s
(x, uN )vzdx +

∫ 2π

0

∫ 2π

0

∂α̃

∂s
(uN )v

∂uN

∂ϕ
(R, ϕ)

∂z

∂θ
(R, θ)

N
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ

+

∫ 2π

0

∫ 2π

0

α̃(uN )
∂v

∂ϕ
(R, ϕ)

∂z

∂θ
(R, θ)

N
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ,

where
(∂β

∂s

)

(x, u) =

(

(∂β1

∂s

)

(x, u),
(∂β2

∂s

)

(x, u)

)T

.

Let X ′ be the dual of X . Notice that A′(u; ·, ·) is bounded on X × X since the functions

(∂βi/∂s)(·, u(·)), (i = 0, 1, 2) are continuous in Ωi. Then there exists an operator T : X → X ′

such that

(Tv, z) = A′(u; v, z), ∀v, z ∈ X. (2.11)

Lemma 2.2. The bilinear form (Tv, v) defined by A′(u; v, v) satisfies the following inequality:

(Tv, v) + K(‖v‖2
0,Ωi

+ ‖v‖2
1/2,ΓR

) ≥ α1‖v‖2
1,Ωi

, ∀v ∈ X, (2.12)

where K ≥ 0 is a sufficiently large constant and α1 > 0 is a constant.

Proof. We first observe that

(Tv, v) + K‖v‖2
0,Ωi

=

∫

Ωi

∂α

∂s
(x, u)v∇u · ∇vdx +

∫

Ωi

α(x, u)∇v · ∇vdx

+

∫

Ωi

∂β

∂s
(x, u) · ∇vvdx +

∫

Ωi

(
∂β0

∂s
(x, u) + K)v2dx

+

∫ 2π

0

∫ 2π

0

∂α̃

∂s
(u)v

∂u

∂ϕ
(R, ϕ)

∂v

∂θ
(R, θ)

∞
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ

+

∫ 2π

0

∫ 2π

0

α̃(u)
∂v

∂ϕ
(R, ϕ)

∂v

∂θ
(R, θ)

∞
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ.

By Hölder inequality and the continuous property of ∂α/∂s, ∂βi/∂s(i = 0, 1, 2), it is easy to

show that
∣

∣

∣

∣

∫

Ωi

∂α

∂s
(x, u)v∇u · ∇vdx

∣

∣

∣

∣

≤ M1|v|1,Ωi
‖v‖0,Ωi

,

∣

∣

∣

∣

∫

Ωi

∂β

∂s
(x, u) · ∇vvdx

∣

∣

∣

∣

≤ M2|v|1,Ωi
‖v‖0,Ωi

,

∣

∣

∣

∣

∣

∫ 2π

0

∫ 2π

0

∂α̃

∂s
(u)v

∂u

∂ϕ
(R, ϕ)

∂v

∂θ
(R, θ) ·

∞
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ

∣

∣

∣

∣

∣

≤ M3‖v‖2
1/2.



A FEM-BEM Formulation for an Exterior Quasilinear Elliptic Problem in the Plane 383

In virtue of Lemma 2.1, we obtain

∫ 2π

0

∫ 2π

0

α̃(u)
∂v

∂ϕ
(R, ϕ)

∂v

∂θ
(R, θ)

∞
∑

n=1

cosn(ϕ − θ)

nπ
dθdϕ ≥ 0.

By the arithmetic-geometric mean inequality, we can obtain

(Tv, v) + K‖v‖2
0,Ωi

≥ c0|v|21,Ωi
− M1|v|1,Ωi

‖v‖0,Ωi
− M2|v|1,Ωi

‖v‖0,Ωi

+

∫

Ωi

(
∂β0

∂s
(x, u) + K)v2dx − M3‖v‖2

1/2,ΓR

≥ c0

2
|v|21,Ωi

+

(

C3 + K − M2
1 + M2

2

C0

)

‖v‖2
0,Ωi

− M3‖v‖2
1,Ωi

,

where

C3 := essinf

{

∂β0

∂s
(x, u) : x ∈ Ωi

}

. (2.13)

Consequently, we conclude that

(Tv, v) + K(‖v‖2
0,Ωi

+ ‖v‖2
1/2,ΓR

) ≥ α1‖v‖2
1,Ωi

, ∀v ∈ X

provided that

K ≥ max

{

C0

2
+

M2
1 + M2

2

C0
− C3, M3

}

.

It is noted that K does not need not be positive if C3 > 0. �

Let I: X → X ′ be the canonical injection. As X is compactly embedded in L2(Ωi), we

deduce that operator J : X → X ′ defined by J(v) = (I(v), 0) is also compact. Thus the

Fredholm alternative applies for T . We assume here that

A′(u; v, z) = 0, ∀z ∈ X ⇒ v = 0. (2.14)

This implies that T : X → X ′ is an isomorphism.

3. Finite Element Approximation of the Coupling Method

Suppose ξh is a regular and quasi-uniform triangulation on Ωi, k ∈ ξh is a (curved) triangle.

Denote h the maximum side of the triangles. Let

Xh = {xh ∈ C0(Ωi), xh|k is a linear polynomial,∀k ∈ ξh} ⊂ X. (3.1)

We consider the approximation problem of (2.9) and (2.10)

{

Find uh ∈ Xh, such that

Ā(uh, vh) = F (vh), ∀vh ∈ Xh,
(3.2)

and
{

Find uN
h ∈ Xh, such that

ĀN (uN
h , vh) = F (vh), ∀vh ∈ Xh.

(3.3)
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Theorem 10.1.2 of [2] assures that under the conditions (2.9), (2.12) and (2.14), there exists an

h0 ∈ (0, 1], such that the following inf-sup condition is satisfied:

sup
z∈Xh

A′(u; v, z)

‖z‖1,Ωi

≥ α1‖v‖1,Ωi
, ∀v ∈ Xh (3.4)

for some constant α1 > 0 independent of h (h < h0).

We define the Galerkin projection with respect to A′(u; ·, ·), Ph : X → Xh

A′(u, Phv, z) = A′(u, v, z), ∀z ∈ Xh.

It is easy to deduce that the operator Ph satisfies

‖v − Phv‖1,p,Ωi
≤ C inf

vh∈Xh

‖v − vh‖1,p,Ωi
≤ Chσ, 2 ≤ p ≤ ∞. (3.5)

Lemma 3.1. uN
h ∈ Xh is a solution of (3.3) if and only if the following equation is satisfied

A′

N (uN ; uN − uN
h , v) = R(uN ; uN

h , v), ∀v ∈ Xh,

where

R(uN ; uN
h , v)

:=

∫

Ωi

(
∫ 1

0

[

(
∂2α

∂s2
)(x, wN

h )∇wN
h · ∇v

]

(1 − t)dt

)

· (dN
h )2dx

+2

∫

Ωi

(
∫ 1

0

[

(
∂α

∂s
)(x, wN

h )∇(dN
h ) · ∇v

]

(1 − t)dt

)

dN
h dx

+

∫

Ωi

(
∫ 1

0

[

(
∂2β

∂s2
)(x, wN

h ) · ∇v + (
∂2β0

∂s2
)(x, wN

h )v
]

(1 − t)dt

)

(dN
h )2dx

+

∫ 2π

0

∫ 2π

0

(

∫ 1

0

[

(
∂2α̃

∂s2
)wN

h

∂wN
h

∂ϕ

∂v

∂θ
·

N
∑

n=1

cosn(ϕ − θ)

nπ

]

(1 − t)dt

)

(dN
h )2dθdϕ

+2

∫ 2π

0

∫ 2π

0

(

∫ 1

0

[

(
∂α̃

∂s
)wN

h

∂dN
h

∂ϕ

∂v

∂θ
·

N
∑

n=1

cosn(ϕ − θ)

nπ

]

(1 − t)dt

)

dN
h dθdϕ,

and wN
h = uN + t(uN

h − uN), dN
h = uN

h − uN .

Proof. Let η(t) := ĀN (uN + t(uN
h − uN ), v). The desired result follows from the identity

η(1) = η(0) + η′(0) +

∫ 1

0

η′′(t)(1 − t)dt

and the fact that ĀN (uN , v) = ĀN (uN
h , v) = F (v), ∀v ∈ Xh. �

Lemma 3.2. Let Mh := {v ∈ Xh; ‖v‖1,∞,Ωi
≤ 1 + ‖uN‖1,∞,Ωi

}. Then there exists a constant

C > 0 independent of h, such that

|R(uN ; v, z)| ≤ C
(

‖uN − v‖2
1,Ωi

+ ‖uN − v‖1,Ωi

)

‖z‖1,Ωi
, ∀v ∈ Mh, ∀z ∈ Xh.
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Theorem 3.1. Let u ∈ X ∩ W 2
2+ǫ(Ωi) be a solution of (1.1) with 0 < ǫ, and assume that

u|ΓR
∈ H3/2(ΓR) and (2.14) is satisfied. If h is sufficiently small, then the finite element

equation (3.3) has a solution uN
h ∈ Xh satisfying

‖u − uN
h ‖1,Ωi

≤ C
(

hσ +
1

(N + 1)
(
R0

R
)N+1‖u‖3/2,ΓR0

)

, (3.6)

where C is a constant independent of h and N . Furthermore, there exists a constant η > 0 such

that uN
h is the only solution satisfying

‖u − uN
h ‖1,∞,Ωi

≤ η. (3.7)

Proof. We shall divide the proof of Theorem 3.1 into 6 steps.

Step 1. For ∀ uN ∈ X , assume that

wN (r, ϕ) =
a0

2
+

∞
∑

n=1

(
R0

r
)n(an cosnϕ + bn sin nϕ), ∀r ≥ R0,

v(R, θ) =
c0

2
+

∞
∑

n=1

(cn cosnθ + dn sin nθ).

Using (1.2), we obtain

|B(uN , v) − BN(uN , v)|

=
∣

∣

∣

∫ 2π

0

∫ 2π

0

∂wN

∂ϕ
(R, ϕ)

∂v

∂θ
(R, θ)

∞
∑

n=N+1

cosn(ϕ − θ)

nπ
dθdϕ

∣

∣

∣

=
∣

∣

∣

∞
∑

n=N+1

(
R0

R
)nnπ(ancn + bndn)

∣

∣

∣

≤π(
R0

R
)N+1

[

∞
∑

n=N+1

n(a2
n + b2

n)
]1/2[ ∞

∑

n=N+1

n(c2
n + d2

n)
]1/2

≤π
1

(N + 1)
(
R0

R
)N+1

[

∞
∑

n=N+1

n3(a2
n + b2

n)
]1/2[ ∞

∑

n=N+1

n(c2
n + d2

n)
]1/2

≤ C

(N + 1)
(
R0

R
)N+1‖u‖3/2,ΓR

‖v‖1,Ωi
,

where the constant C is independent of N . It follows from (2.8) that

Ā(uN , v) = a(uN , v) + B(uN , v) = F (v) + B(uN , v) − BN (uN , v).

Let η(t) = Ā(u + t(uN − u), v). We obtain

∫ 1

0

A′(u + t(uN − u); uN − u, v)dt = Ā(uN , v) − Ā(u, v).

Using (2.9), (2.12), (2.14) and [2] gives

‖u − uN‖1,Ωi
≤ C sup

v∈X

∫ 1

0
A′(u + t(uN − u); uN − u, v)dt

‖v‖1,Ωi

≤ C
|B(uN , v) − BN (uN , v)|

‖v‖1,Ωi

≤ C

(N + 1)
(
R0

R
)N+1‖u‖3/2,ΓR

.
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Step 2. We define the nonlinear mapping φ : Xh → Xh as follows. Given v ∈ Xh, φ(v) is the

unique solution of

A′(u, φ(v), z) = A′(u; u, z)− R(u, v, z), ∀z ∈ Xh. (3.8)

Therefore,

A′(u; φ(v) − φ(vn), z) = R(u; vn, z) − R(u; v, z). (3.9)

Combining this with (3.4), we obtain the continuity of this operator. i.e.,

lim
vn→v

φ(vn) = φ(v).

Step 3. We define the set

Bh := {v ∈ Xh : ‖v − PhuN‖1,∞,Ωi
≤ hσ}.

For any v ∈ Bh,

‖v‖1,∞,Ωi
≤ ‖uN − v‖1,∞,Ωi

+ ‖uN‖1,∞,Ωi
, (3.10)

‖uN − v‖1,∞,Ωi
≤ ‖uN − PhuN‖1,∞,Ωi

+ ‖PhuN − v‖1,∞,Ωi
, (3.11)

‖uN − PhuN‖1,∞,Ωi
≤ ‖uN − πhuN‖1,∞,Ωi

+ ‖πhuN − PhuN‖1,∞,Ωi
. (3.12)

Now we use the fact that ξh is quasi-uniform to obtain the following inverse inequality [14]

‖w‖1,∞,Ωi
≤ C(log

1

h
)1/2‖w‖1,Ωi

, ∀w ∈ Xh. (3.13)

Combining this with the definition of Bh, Lemma 2.2, and (3,5), we obtain

‖uN − v‖1,∞,Ωi
≤ 1.

This implies that v ∈ Mh.

Step 4. By the definition of Ph, (3.8) can be write as follows:

A′(uN , φ(v) − PhuN , z) = −R(uN , v, z), ∀z ∈ Xh,

and

‖φ(v) − PhuN‖1,Ωi

≤C sup
z∈Xh

A′(u, φ(v) − PhuN , z)

‖z‖1,Ωi

≤ C(‖uN − v‖2
1,Ωi

+ ‖uN − v‖1,Ωi
)

≤C{‖uN − PhuN‖2
1,Ωi

+ ‖PhuN − v‖2
1,Ωi

+ ‖uN − PhuN‖1,Ωi
+ ‖PhuN − v‖1,Ωi

}
≤hσ.

This implies that φ : Bh → Bh.

Step 5. It follows from Brouwer’s fixed point theorem that there exists uN
h ∈ Xh, such that

φ(uN
h ) = uN

h . Due to the Lemma 3.2, we deduce that uN
h is a solution of (3.3). Furthermore,

‖uN − uN
h ‖1,Ωi

≤ ‖uN − PhuN‖1,Ωi
+ ‖PhuN − uN

h ‖1,Ωi
≤ Chσ.
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Table 4.1: The errors with N=10 for Example 1.

M1 M e0(h, N) ratio e1(h, N) ratio e∞(h, N)

2 8 2.4160E-01 – 1.8383 – 2.2109E-01

4 16 6.5019E-02 3.7159 8.9936E-01 2.0440 6.0875E-02

8 32 1.6909E-02 3.8450 4.4990E-01 1.9989 1.7717E-02

16 64 4.3481E-03 3.8888 2.2534E-01 1.9965 5.4231E-03

32 128 1.2043E-03 3.6102 1.1444E-01 1.9690 2.6581E-03

Table 4.2: The errors with N=5 for Example 2.

M1 M e0(h, N) ratio e1(h, N) ratio e∞(h, N)

2 8 1.6273E-01 – 6.1288E-01 – 9.8528E-02

4 16 4.6705E-02 3.4843 3.0000E-01 2.0429 2.9869E-02

8 32 1.2267E-02 3.8072 1.4831E-01 2.0227 8.4149E-03

16 64 3.1498E-03 3.8946 7.3899E-02 2.0069 2.4804E-03

Here we use (3.5) and the fact that uN
h ∈ Bh.

‖u − uN
h ‖1,Ωi

≤ ‖u − uN‖1,Ωi
+ ‖uN − uN

h ‖1,Ωi

≤ C
(

hσ +
1

(N + 1)
(
R0

R
)N+1‖u‖3/2,ΓR0

)

.

Step 6. Let uN
h and ũN

h be two solutions of (3.3) satisfying (3.7). The same technique given

in Step 1 can be easily reproduced here to prove a local uniqueness result if we let η(t) =

ĀN (uN
h + t(ũN

h − uN
h ), v). The proof of this theorem is complete by combining the above steps.

�

4. Numerical Examples

In this section, we present some numerical experiments to confirm our theoretical results.

Example 1. We take Ω0 = {(x, y) ∈ R
2 : r =

√

x2 + y2 ≤ 1} and the artificial boundary ΓR

is the circle centered at the origin of radius 2. We present results of numerical experiments for

problems (1.1) when β0 ≡ 0, β ≡ 0 and

α(x, u) =











4 − r2 +
1

1 + u2
, 1 ≤ r ≤ 2,

1

1 + u2
, r > 2,

(4.1)

f(x) =







−
(

1 + tan2(
y

r2
)
)(2y

r2
+

2(4 − r2)

r4
tan(

y

r2
)
)

, 1 ≤ r ≤ 2,

0, r > 2.
(4.2)

The exact solution of Example 1 is u(x) = tan(y/r2). Furthermore, we let

∆r =
1

M1
, ∆θ =

2π

M
, e0(h, N) = ‖u − uN

h ‖L2(Ωi);

e1(h, N) = ‖u − uN
h ‖H1(Ωi); e∞(h, N) = ‖u − uN

h ‖L∞(Ωi).

The numerical results are given in Fig. 4.1(a), Fig. 4.2(a) and Table 4.1.
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Fig. 4.1. The errors on artificial boundary for with different mesh sizes. (a): Example 1 with N = 10;

(b): Example 2 with N = 5.

Example 2. We take Ω0 = {(x, y) ∈ R
2 : r =

√

x2 + y2 ≤ 1.5} and the artificial boundary ΓR

is the circle centered at the origin of radius 3. We present results of numerical experiments for

problems (1.1) when β0 ≡ 0, β ≡ 0 and

α(x, u) =











9 − r2 +
1√

1 − u2
, 1.5 ≤ r ≤ 3,

1√
1 − u2

, r > 3,
(4.3)

f(x) =







9 − x2 − y2

(x2 + y2)2
sin(

x

x2 + y2
) − 2x

x2 + y2
cos(

x

x2 + y2
), 1.5 ≤ r ≤ 3,

0, r > 3.
(4.4)

The exact solution of Example 2 is u(x) = sin(x/r2). The numerical results are given in

Fig. 4.1(b), Fig. 4.2 (b) and Table 4.2.

It is observed from the numerical results that increasing the order of the artificial boundary

condition or refining the mesh can reduce the numerical errors. When a finer mesh cannot pro-

duce a much more accurate numerical solution, the error originated from the series truncating

is dominating. These observations are in agreement with the error analysis we obtain. The

numerical results above show that the coupling BEM and FEM technique can be used to deal

with the quasilinear problems effectively.
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