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Abstract

The inverse black body radiation problem, which is to reconstruct the area tempera-

ture distribution from the measurement of power spectrum distribution, is a well-known

ill-posed problem. In this paper, a variational expectation-maximization (EM) method is

developed and its convergence is studied. Numerical experiments demonstrate that the

variational EM method is more efficient and accurate than the traditional methods, in-

cluding the Tikhonov regularization method, the Landweber method and the conjugate

gradient method.
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1. Introduction

The inverse black body radiation (BBR) problem is to determine the area temperature

distribution subject to the total power spectral measurements of its radiation. The first for-

mulation of the problem was proposed by Bojarski [1] by using the Laplace transform and an

iterative process. Since then, several kinds of methods have been developed, see, e.g., [2–6].

Mathematically, BBR is an inherently ill-posed problem since it belongs to the Fredholm

integral equation of the first kind. Sun and Jaggard [2] and Dou and Hodgson [4] used the

Tikhonov regularization technique to overcome the ill-posedness, but they did not choose rule

to fix the regularization parameter. Li and Xiao [6] applied the Morozov discrepancy technique

to determine the parameter. However, the method works well only when the measurement

error is known beforehand. On the other hand, Dou and Hodgson [4] introduced the potential

function and applied the entropy method to study the problem. Recently, Li [5] presented some

numerical results making use of the conjugate gradient method.

In this work, we propose a variational EM method for BBR problem, which is a variant of

well-known EM algorithm [7,8]. Its convergence study is given in the appendix. We compare our

method with three traditional methods: the Tikhonov regularization method, the Landweber

method and the conjugate gradient method. Numerical experiments demonstrate that the

proposed method is more efficient and accurate than the traditional methods.

The organization of the paper is as follows. In Section 2, we introduce the BBR problem and

its mathematical formulas. After reviewing the traditional methods in Section 3, we propose a

variational EM method for the BBR problem in Section 4. In Section 5, we discuss some relevant

issues in the numerical computation. In Section 6, numerical implementation is provided.

Finally, the convergence of the variational EM method is studied in the appendix.

* Received February 26, 2008 / Revised version received March 17, 2008 / Accepted March 21, 2008 /
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2. Black Body Radiation Problem

Given the area temperature distribution a(T ), the total radiated power spectrum W (v) can

be expressed by the Planck’s law as

W (v) =
2hv3

c2

∫ ∞

0

a(T )

ehv/kT − 1
dT, (2.1)

where h is Planck’s constant, k is Boltzman’s constant, and c is the velocity of light [1]. Set

k(v, T ) =
2hv3

c2(ehv/kT − 1)
.

Consequently,

W (v) =

∫ ∞

0

k(v, T )a(T )dT. (2.2)

In practice, the range of T usually goes from 100K to 1000K, and v goes from 0 Hz to 2× 1014

Hz. In the following, we set T ∈ [T1, T2] and v ∈ [V1, V2], where

T1 = 100K, T2 = 800K, V1 = 0 Hz, V2 = 2 × 1014 Hz. (2.3)

Therefore, the problem can be transformed into a standard Fredholm integral equation of the

first kind

(Ka)(v) =

∫ T2

T1

k(v, T )a(T )dT = W (v). (2.4)

Here, K is the first kind of integral operator from L2[T1, T2] to L2[V1, V2]. Given the limited

and sometimes noisy power spectrum W (v), the problem becomes how to determine the area

temperature distribution a(T ) from Eq. (2.4).

3. Traditional Methods

According to the mathematical theories of the inverse problem [9], we implement three

kinds of traditional methods for the BBR problem: the Tikhonov regularization method, the

Landweber method and the conjugate gradient method.

The dual operator K∗ of K needs to be known for implementing these methods. According

to the definition of dual operators, we have

(K∗φ)(T ) =

∫ V2

V1

k(v, T )φ(v)dv, (3.1)

where K∗ is an operator from L2[V1, V2] to L2[T1, T2].

The Simpson’s quadrature rule is used to obtain the numerical evaluation of K. We discretize

the interested domain as

vi = V1 + i/M ∗ (V2 − V1), i = 0, 1, · · · , M,

Tj = T1 + j/N ∗ (T2 − T1), j = 0, 1, · · · , N,
(3.2)

where N and M are even natural numbers. We replace (Ka)(vi) by

N
∑

j=0

wjk(vi, Tj)a(Tj), wj =



























1

3N
, j = 0 or N,

4

3N
, j = 1, 3, · · · , N − 1,

2

3N
, j = 2, 4, · · · , N − 2,

(3.3)
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with the corresponding matrix A

[Aij ]M+1,N+1 = [wjk(vi, Tj)]M+1,N+1, (3.4)

and replace (K∗φ)(Tj) by

M
∑

l=0

wg
l k(vl, Tj)φ(vl), wg

l =



























1

3M
, l = 0 or M,

4

3M
, l = 1, 3, · · · , M − 1,

2

3M
, l = 2, 4, · · · , M − 2,

(3.5)

with the corresponding matrix Ag

[Ag
jl]N+1,M+1 = [wg

l k(vl, Tj)]N+1,M+1. (3.6)

Define

W δ = W + δWeζ.

This implies that W δ is the perturbation of the true value W (We is the average of W in [V1, V2];

ζ is a Gaussian distribution with mean 0 and standard deviation 1; δ is the noise control term).

3.1. Tikhonov regularization method

To use the Tikhonov regularization method [9], we need to determine a solution aα ∈

L2[T1, T2] that minimizes the Tikhonov functional

Jα(a) = ‖Ka− W‖2 + α‖a‖2, a ∈ L2[T1, T2], (3.7)

which leads to

αaα + K∗Kaα = K∗W. (3.8)

Moreover, the discretized Tikhonov equation is

αaα,δ + Ag ∗ Aaα,δ = AgW δ. (3.9)

With a proper regularization parameter α, appropriate numerical results can be obtained.

The discrepancy principle of Morzov method can be used to choose the parameter α, but this

strategy depends on the choice of δ. Unfortunately, in practice we do not know the exact error

δ beforehand. In the following numerical implementation, we choose α by numerical tests.

3.2. Landweber method

Landweber [10] and Bialy [11] suggested to rewrite the equation Kx = y in the form x =

(I − wK∗K)x + wK∗W for some relaxation parameter w > 0. For the BBR problem, the

continuous Landweber method is

a0 := 0 and am = (I − wK∗K)am−1 + wK∗W,

and the discrete Landweber method is

a0 := 0 and am = (I − wAg ∗ A)am−1 + wAgW.

The convergence condition for the relaxation parameter w depends on the operator norm

‖K∗K‖ = ‖K‖2, e.g., 0 < w < 1/‖K‖2; see, e.g., [9] pp. 42-44 for more details. The Landwe-

ber method has also been used to solve linearized equation for inverse scattering problems

recently [12].
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3.3. Conjugate gradient method

The standard text [9] provides the following derivative process. Define the functional

f(a) := ‖Ka− W‖2, a ∈ L2[T1, T2]. (3.10)

We abbreviate

∇f(a) = 2K∗(Ka − W ) ∈ L2[T1, T2]

and note that ∇f(a) is indeed the Riesz representation of the Fréchet derivative f
′

(a) of f

at a. Since both L2[T1, T2] and L2[V1, V2] are Hilbert spaces, this leads to the following CG

algorithm.

3.3.1. CG Algorithm for BBR

Step 1: Initialization.

1. Compute the integral

W =

∫ T2

T1

a(T )k(v, T )dT. (3.11)

Set a0 = 0, n = 0.

2. If K∗W = 0, stop.

3. Set

p0 = −K∗W = −
1

2
∇f(a0). (3.12)

Step 2: For n ≥ 0, do the following iteration until the convergence criteria is satisfied.

1. Set

tn =
(Kan − W, Kpn)

‖Kpn‖2
, an+1 = an − tnpn. (3.13)

2. If K∗(Kan+1 − W ) = 0, stop.

3. Set

γn =
‖K∗(Kan+1 − W )‖2

‖K∗(Kan − W )‖2
, pn+1 = K∗(Kan+1 − W ) + γnpn. (3.14)

Step 3: The reconstructed temperature distribution is given by an+1.

4. Variational EM Method

From the formulation in the article [8], we define

F [a] =

∫ V2

V1

{W log K[a] − K[a]} dv, (4.1)

which is a generalized form of the log likelihood function when the measured data W is subject

to the Poissonian distribution. From the integral equation (2.1), it follows that K[a] > 0 if
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a > 0. According to the physical condition [1], the solution a to the BBR problem should be

nonnegative if it exists. Therefore, W must be positive from Eq. (2.2). In the following, we

assume that W > 0 and perform the optimization

arg max
a≥0

F [a]. (4.2)

We first assume that a > 0 is a maximizer of F . The case of a ≥ 0 can be handled as the

limiting case. We need to find the Fréchet derivative of F . Let

f(t) = F [a + tb], for t around 0, (4.3)

where b is an arbitrary bounded function of L2[T1, T2]. Then we have

d

dt
f(t)|t=0 =

∫ V2

V1

{

W
1

K[a]
− 1

}

K[b] dv

=

∫ T2

T1

K∗

[

W

K[a]
− 1

]

b dT.

Hence, the Fréchet derivative of F is

F ′[a] = K∗

[

W

K[a]
− 1

]

. (4.4)

If a > 0 is a solution of (4.2), it follows that F ′[a] = 0. The general case of a ≥ 0 is given by

the Kuhn-Tucker condition [13]:

a · K∗

[

W

K[a]
− 1

]

= 0. (4.5)

Let q1 = K∗[1], i.e.,

q1 =

∫ V2

V1

2hv3

c2(ehv/kT − 1)
dv. (4.6)

It follows from the property of the integral equation (2.1) that 0 < q1 < C, where C is a positive

constant. The Kuhn-Tucker condition (4.5) can be rewritten as

a =
1

q1
a · K∗

[

W

K[a]

]

. (4.7)

Then, we obtain the following variational EM formula

an+1 =
1

q1
an · K∗

[

W

K[an]

]

. (4.8)

In summary, the variational EM algorithm is formulated in the following subsection.



A Variational EM Method for the Inverse Black Body Radiation Problem 881

4.1. Variational EM algorithm for BBR

Step 1: Initialization.

1. Compute the following integral

W =

∫ T2

T1

k(v, T )a(T )dT. (4.9)

2. Choose an initial a0.

Step 2: For n ≥ 0, do the following iteration until the convergence criteria is satisfied.

1. Compute the following integral

pn =

∫ T2

T1

an(T )k(v, T )dT. (4.10)

2. Set φn = W/pn.

3. Compute the following integral

qn =

∫ V2

V1

k(v, T )φn(v)dv. (4.11)

4. Set an+1 = an · qn/q1.

Step 3: The reconstructed temperature distribution is given by an+1.

5. Some Relevant Numerical Issues

5.1. Compute integrals

Since the domains [T1, T2] and [V1, V2] are bounded, we just compute the values at those

points which belong to (3.2), i.e.,

{(vi, Tj), i = 0, 1, 2, · · ·M, j = 0, 1, 2, · · · ., N}.

The inner product of functions in [T1, T2] and [V1, V2]

(p1, p2)L2[V1,V2] =

∫ V2

V1

p1p2dv, p1, p2 ∈ L2[V1, V2], (5.1)

(q1, q2)L2[T1,T2] =

∫ T2

T1

q1q2dT, q1, q2 ∈ L2[T1, T2] (5.2)

can be computed based on the above points by the Simpson’s rule. The computation of the

norm in the space L2[T1, T2] or L2[V1, V2] follows the same process.

5.2. Choice of a0 for variational EM algorithm

From the variational EM formula (4.8), it is known that an+1(T ) = 0 if an(T ) = 0, n ∈

{0, 1, 2, · · · }. Therefore, we choose the initial guess a0(T ) > 0. In the following experiment,

we set a0(T ) = 0.1. According to our numerical experiences, the numerical results have no

difference for a0(T ) > 0.
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Fig. 6.1. The first numerical example: (a) is the temperature distribution, and (b) is the power spectrum

distribution.
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Fig. 6.2. Tikhonov regularization reconstruction: (a) and (c) show the exact (solid line) and the best

reconstructed (dotted line) temperature distributions under 1% noise and 10% noise, respectively. (b)

and (d) are the error curves according to α.

5.3. Avoid inverse crime

To avoid the notorious Inverse Crime [14], we employ different quadrature points to compute

the integral (2.2) in modeling and inversion. In the modeling (e.g., (4.9) and (3.11)), we use

the Simpson’s rule to compute W with 10N points in the T direction, while N points in the T

direction are used for the inversion (see, e.g., (4.10)).

5.4. Convergence criteria

The convergence criteria for all algorithms may include (1) when the iteration number n

exceeds an assumed maximum number; (2) when the successive incremental |an+1 − an| is

smaller than an given error tolerance.
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Fig. 6.3. The Landweber method reconstruction: (a) and (c) are exact (solid line) and the best

reconstructed (dotted line) temperature distributions under 1% noise and 10% noise, respectively.

(b) and (d) show the error curves against the iteration steps. (e) gives the error curve when k =

1, 2, · · · , 3173 under 10% noise; and (f) shows the error curve when k = 3173, · · · , 10000 under 10%

noise.

6. Numerical Experiments

To verify the proposed algorithm, we test two numerical examples. In the first example, the

exact area temperature distribution as shown in Fig. 6.1(a) is of the form

a(T ) = e−(T−450)2/25000, 100 K ≤ T ≤ 800 K, (6.1)

and we set M = 1000 and N = 100 for the discretization (3.2).

For the simulation, the power spectrum function W (v) is computed by the Simpson’s rule

(2.2), which is shown in Fig. 6.1(b). The Gaussian noise is added, i.e.,

W δ = W + δWeζ, (6.2)

where We is the average of W in [V1, V2]; ζ is a normal distribution with mean 0 and standard

deviation 1; δ is the noise control term.
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Fig. 6.4. Conjugate gradient method reconstruction: a) and (c) are exact (solid line) and the best

reconstructed (dotted line) temperature distributions under 1% noise and 10% noise, respectively. (b)

and (d) show the error curves against the iteration steps. (e) gives the error curve when k = 1, 2, · · · , 10

under 10% noise; and (f) shows the error curve when k = 10, · · · , 10000 under 10% noise.

We let δ = 0.01, 0.1, i.e., add 1%, 10% Gaussian distribution noise. The following figures

show the performances of the four methods: the Tikhonov regularization method in Fig. 6.2,

the Landweber (LW) method in Fig. 6.3, the conjugate gradient (CG) method in Fig. 6.4 and

the EM method in Fig. 6.5.

When δ = 0.01, i.e., adding 1% Gaussian noise, we choose α = 1.0 × 1028 in the Tikhonov

regularization method; in this case the minimum relative error is 0.075. The other three iterative

methods (LW, CG, EM) give the minimum relative errors 0.1221, 0.141, 0.016 when the iteration

step k are 10000, 426, 756, respectively. According to the regularization theories [9], we realize

that the iteration of Landweber can be continued if smaller errors are desired.

When δ = 0.1, i.e., adding 10% Gaussian noise, we choose α = 1.0 × 1029 in the Tikhonov

regularization method; in this case the minimum relative error is 0.151. The other three iterative

methods (LW, CG, EM) give the minimum relative error 0.141, 0.205, 0.0439 when the iteration

step k are 3173, 10, 164, respectively.
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Fig. 6.5. EM method reconstruction: (a) and (c) are exact (solid line) and the best reconstructed

(dotted line) temperature distribution under 1% noise and 10% noise, respectively. (b) and (d) show

the error curves against the iteration steps.
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Fig. 6.6. The second numerical example: (a) is the temperature distribution and (b) is the power

spectrum distribution.

In these numerical experiments, all the methods seem to give satisfied results. However,

the Landweber method needs more iteration steps than other methods. For the Tikhonov

regularization method, we must choose a proper parameter; otherwise the errors may become

large. The Landweber method also requires to choose proper relaxation parameters. The CG

method and the EM method are parameters free and both converge very fast. On the other

hand, all the traditional methods conform to the regularization stragies [9], and the variational

EM method follows them, too.

Checking the efficiency of all the methods, we find that the Tikhonov regularization method

is the fastest since it solves the equation system only once if the parameter is chosen. The other

three are iterative methods, and the computational time depends on the iteration steps used.

It is observed that the CG method and the EM method converge faster than the LW method.
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Fig. 6.7. Reconstruction: (a), (c), (e) and (g) are exact (solid line) and the best reconstructed (dotted

line) temperature distributions under 1% noise; (b) is the error curve according to α; (d), (f) and (h)

are the error curves according to iteration steps.

More importantly, the EM algorithm has higher accuracy than the CG method.

In the second example, we consider a case of a non-smooth area temperature whose distri-

bution is shown in Fig. 6.6(a) and is of the form

a(T ) = 1 −
1

700
| T − 450 |, 100 K ≤ T ≤ 800 K. (6.3)
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We also set M = 1000 and N = 100 in the discretization (3.2). The noise term δ is set to be

0.01, i.e., we add 1% Gaussian noise.

Fig. 6.7 shows the reconstruction figures and the error curves of the four methods con-

sidered. The Tikhonov regularization method arrives its minimum error 0.059 when α =

1.0 × 1028. The other three iterative methods (LW, CG, EM) reach to the minimum rela-

tive errors 0.155, 0.118, 0.020 when the iteration step k are 10000, 15, 455, respectively. The

variational EM method also gives the best reconstruction results; and similar conclusions with

the first example can be drawn.

7. Conclusion

In this work, we have proposed a new method for the BBR problem and evaluated its

feasibility by numerical experiments. The variational EM method has been shown to be more

efficient and accurate than the traditional methods. We point out that the variational EM

method can only solve the Fredholm integral equations of the first kind that have a positive

kernel and non-negative solutions. We will investigate theoretical properties of the variational

EM method in our future work.
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Appendix: Convergence Study of EM Method

Using the convergence proof of the EM method given in [13], we study the convergence of

the variational EM method.

Theorem A.1. Let a0 > 0. If an of (4.8) has a convergence subsequence, then an converges

to a maximizer of (4.1).

Proof. We first define a similar Kullback-Leibler distance

L1(a(T ), b(T )) =

∫ T2

T1

K∗[1](a(T ) log
a(T )

b(T )
+ b(T ) − a(T ))dT, (A.1)

L2(w(v), u(v)) =

∫ V2

V1

(w(v) log
w(v)

u(v)
+ u(v) − w(v))dv. (A.2)

In the first step of the proof, we show that

F (an+1) ≥ F (an), k = 1, 2, · · · . (A.3)

We start out from the identity

∫ V2

V1

W log(K[a]) =

∫ V2

V1

W

∫ T2

T1

k(v, T )h

K[h]

[

log(k(v, T )a) − log

(

k(v, T )a

K[a]

)]

dTdv, (A.4)
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where h(T ) ≥ 0 is a temperature distribution. Since for n > 0

∫ V2

V1

K[an+1]dv =

∫ T2

T1

an+1 · K∗[1]dT

=

∫ T2

T1

1

K∗[1]
an · K∗

[

W

K[an]

]

· K∗[1]dT =

∫ V2

V1

W (v)dv, (A.5)

we have

F (an+1) − F (an) =

∫ V2

V1

W log(K[an+1]) −

∫ V2

V1

W log(K[an]). (A.6)

Applying the identity with h = an and a = an, an+1, respectively, we obtain

F (an+1) − F (an)

=

∫ V2

V1

W

∫ T2

T1

σn
[

log(k(v, T )an+1) − log
(

σn+1
)]

dTdv

−

∫ V2

V1

W

∫ T2

T1

σn [log(k(v, T )an) − log (σn)] dTdv

=

∫ V2

V1

W

∫ T2

T1

σn

[

log

(

an+1

an

)

− log
(

σn+1/σn
)

]

dTdv

=

∫ T2

T1

K∗[1]an+1 log

(

an+1

an

)

dT −

∫ V2

V1

W

∫ T2

T1

σn log
(

σn+1/σn
)

dTdv, (A.7)

where σn = k(v, T )an/K[an]. Applying Jensen’s inequality to the double integrals, we obtain

F (an+1) − F (an) ≥

∫ T2

T1

K∗[1]an+1 log

(

an+1

an

)

−

∫ V2

V1

W log

∫ T2

T1

k(v, T )an+1

K[an+1]

= L1(a
n, an+1) −

∫ V2

V1

W log 1 ≥ 0.

This proves (A.3). In the second step, we show that for each limit point a∗ of the sequence an

we have

L1(a
∗, an+1) ≤ L1(a

∗, an). (A.8)

Here we define

k1(v, T ) = K∗[1]
k(v, T )W/K[a∗]

K∗(W/K[a∗])
, k2(v, T ) = K∗[1]

k(v, T )W/K[an]

K∗(W/K[an])
. (A.9)

Then, we have
∫ V2

V1

k1 =

∫ V2

V1

k2 = K∗[1]

and

0 ≤

∫ T2

T1

a∗L2(k1, k2) =

∫ T2

T1

a∗

∫ V2

V1

k1 log
k1

k2

=

∫ T2

T1

a∗

∫ V2

V1

K∗[1]
k(v, T )W/K[a∗]

K∗(W/K[a∗])
log

K[an]K∗(W/K[an])

K[a∗]K∗(W/K[a∗])

=

∫ T2

T1

a∗

∫ V2

V1

K∗[1]
k(v, T )W/K[a∗]

K∗(W/K[a∗])
log

K[an]an+1

K[a∗]an
. (A.10)
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Since

a∗ =
1

q1
a∗ · K∗

[

W

K[a∗]

]

, (A.11)

we obtain

K∗[1] = K∗

[

W

K[a∗]

]

. (A.12)

It follows that

0 ≤

∫ T2

T1

a∗

∫ V2

V1

k(v, T )W

K[a∗]
log

K[an]an+1

K[a∗]an

=

∫ T2

T1

a∗

∫ V2

V1

k(v, T )W

K[a∗]

(

log
K[an]

K[a∗]
+ log

an+1

an

)

=

∫ V2

V1

W log
K[an]

K[a∗]
−

∫ T2

T1

Λ∗[1]a∗ log
an+1

an

= F (an) − F (a∗) + L1(a
∗, an) − L1(a

∗, an+1). (A.13)

Now (A.8) follows from (A.3).

In the final step, if we take a∗ as the limit of a subsequence ans , then L1(a
∗, ans) → 0

as s → ∞. Since L1(a
∗, an) is nonincreasing, we have L1(a

∗, an) → 0 as n → ∞. From the

property of L1, it follows that an → a∗. In order to show that a∗ is a maximizer of F , we check

the Kuhn-Tucker conditions. They are obviously satisfied for a∗(T ) > 0, since

K∗
[ W

K[a∗]
− 1

]

(T ) = 0.

For a∗(T ) = 0, we have

an+1(T ) =
a0

(K∗[1])n

(

K∗[
W

K[a0]
]
)

· · ·
(

K∗[
W

K[an]
]
)

(T ) → 0 (A.14)

as n → ∞. Since
(

K∗[
W

K[an]
]
)

→
(

K∗[
W

K[a∗]
]
)

,

this is only possible if (K∗[ W
K[a∗] ]) ≤ K∗[1], i.e., the Kuhn-Tucker conditions are satisfied for

a∗(T ) = 0, too. �
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