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Abstract

Consider an inverse scattering problem by an obstacle D ⊂ R2 with impedance bound-

ary. We investigate the reconstruction of the scattered field us from its far field pattern

u∞ using the point source method. First, by applying the boundary integral equation

method, we provide a new approach to the point-source method of Potthast by classical

potential theory. This extends the range of the point source method from plane waves to

scattering of arbitrary waves. Second, by analyzing the behavior of the Hankel function,

we obtain an improved strategy for the choice of the regularizing parameter from which an

improved convergence rate (compared to the result of [15]) is achieved for the reconstruc-

tion of the scattered wave. Third, numerical implementations are given to test the validity

and stability of the inversion method for the impedance obstacle.
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1. Introduction

Let D ⊂ R2 be a domain with smooth boundary ∂D ∈ C2 such that the exterior R2 \D is
connected. If we consider D as a 2-D impenetrable obstacle with impedance boundary, then,
for a given incident wave ui(x) such as an incident plane wave eikx·d with incident direction
d ∈ Ω = {ξ ∈ R2, |ξ| = 1} and wave number k > 0, the total wave field

u(x) = ui(x) + us(x) (1.1)

with the scattered wave field us(x) outside D is governed by ([1], Ch.3)



∆u + k2u = 0, x ∈ R2 \D,
∂u(x)
∂ν(x) + ikσ(x)u(x) = 0, x ∈ ∂D,
∂us(x)

∂r − ikus(x) = O( 1√
r
), r = |x| → ∞.

(1.2)
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Here, ν(x) is the outward normal direction on ∂D, and 0 ≤ σ(x) ∈ C(∂D) is the boundary
impedance for D.

For the scattering problem (1.1), it is well known that the scattered wave field us(x) has
the asymptotic expression([5, 6])

us(x) =
eik|x|
√
|x|

[
u∞(x̂) + O

(
1√
|x|

)]
, |x| → ∞, x̂ =

x

|x| ∈ Ω, (1.3)

where u∞(x̂) is called the far-field pattern of the scattered wave field. Both direct and inverse
scattering problems have a long history. The direct problem is to determine the scattered wave
as well as its far-field pattern for a known scatterer and incident wave, while the inverse problem
is to recover a scatterer D from given information about us(x). The typical inverse scattering
problem is to determine ∂D from the far-field pattern u∞ of us(x). For the scattering described
by (1.1) and (1.2), some related results may be found in ([1, 3, 6, 15]) and the references therein.

The relation between the scattered wave us(x) and its far-field pattern u∞(x̂) is also of great
importance, for both direct and inverse scattering problems. On one hand, the far-field pattern
u∞(x̂) for x̂ ∈ Ω can determine the scattered wave uniquely as stated by the well-known Rellich
lemma ([4]), which means that we can determine us(·) in R2 \D from the knowledge of u∞(·)
given in Ω. On the other hand, the determination of us(x) from u∞(x̂) is ill-posed, that is,
the mapping from u∞ to us is unbounded ([15]), which implies that a small perturbation in
the far-field data can cause a large error in the scattered wave. Therefore some regularization
technique should be introduced, such that we can use the noisy data of u∞ to determine us

approximately and stably.
The recovery of us from u∞ has been studied theoretically and numerically for a long time.

One method is to express us(x) as an infinite series

us(x) =
∞∑

n=0

∑

p∈{±1}
ap

nH(1)
n (k|x|)ei(pnϕ) (1.4)

(where H
(1)
n denotes the Hankel function of the first kind of order n and ϕ is the angle between

x̂ and (1, 0)T ) with the coefficients determined by u∞(x̂, d) ([1], Theorem 3.6, Corollary 3.8). A
second method is to establish a relation between us(x) and u∞(x̂, d) by introducing a density
function ([5, 7]). The former method, which expresses the solution us(x) explicitly by a recursive
relation, is used by engineers widely. However, this method is very sensitive to the noisy far-
field pattern data. Also, it has strict geometric limitations, since the recovery of us is restricted
to the exterior of a circle enclosing the scattering object. The potential method of Kirsch and
Kress calculates us(x) from u∞(x̂, d) by solving the integral equation∫

Γ

Φ∞(x̂, y)ϕ(y)ds(y) = u∞(x̂), x̂ ∈ Ω, (1.5)

with some auxillary curve Γ ⊂ D, where Φ(x, y) = i
4H

(1)
0 (k|x− y|) is the fundamental solution

to 2-D Helmholtz equation and Φ∞(·, y) denotes the far field pattern of Φ(·, y). Please note
that in contrast to this notation Φ∞ is often used for the far field pattern of the scattered field
Φs(·, y) for scattering of Φ(·, y) by some scatterer D. With a solution of (1.5), the scattered
field is found by evaluating the potential

us(x) =
∫

Γ

Φ(x, y)ϕ(y)ds(y), x ∈ R2 \D. (1.6)

In a series of papers [11]–[14], a point source method has been proposed to obtain us(x)
from u∞(x̂, d). The main idea of this method as presented in [15] is to approximate the point
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source Φ(·, x) for x ∈ R2 \D by a superposition of plane waves

Φ(y, x) ≈
∫

Ω

eiκy·dgx(d)ds(d), x ∈ ∂D. (1.7)

Then, we can pass to the far-field patterns on both sides to obtain an approximation

Φ∞(ŷ, x) ≈
∫

Ω

u∞(ŷ, d)gx(d)ds(d), ŷ ∈ Ω. (1.8)

Finally, the far-field reciprocity relation u∞(ξ, η) = u∞(−η,−ξ) for ξ, η ∈ Ω and the mixed
reciprocity relation

us(x, d) = γΦ∞(−d, x), x ∈ R2 \D, d ∈ Ω, (1.9)

(here, γ denotes some constant depending on the dimension of the problem and Φ(x, y) is the
fundamental solution to the 3-D or 2-D Helmholtz equation) are used as follows. We obtain

us(x, d) = γΦ∞(−d, x)

≈
∫

Ω

u∞(−d, d̃)gx(d̃)ds(d̃)

=
∫

Ω

u∞(−d̃, d)gx(d̃)ds(d̃)

=: (Aεu
∞)(x, d), (1.10)

with the back projection operator Aε with kernel gx(d̃) and parameter ε which controls the
calculation of gx in (1.7).

In [14] bounds for the error ‖us −Aεu
∞‖ are given. With this error estimate, a stability

result of recovering us from u∞ is obtained. A basic ingredient of the point source method
as presented in current publications is the so-called reciprocity relation (1.9) for the scattered
wave. This approach has been used to treat other inverse scattering problems by generalizing
the reciprocity principle, for example to scattering by electromagnetic waves ([8, 15]).

In this paper, we consider the recovery of a scattered wave for a 2-D obstacle with impedance
boundary. As a first major point we develop a new approach to the point source method using
classical potential theory. This extends the point source method from the scattering of plane
waves to the scattering of arbitrary incident fields. The main idea is to use the representation
formula

us(x) =
∫

∂D

Φ(x, y)ψ(y)ds(y), x ∈ R2 \D, (1.11)

with some density ψ ∈ L2(∂D). Then, the far field of us is given by

u∞(x̂) = γ

∫

∂D

e−iκx̂·yψ(y)ds(y). (1.12)

We insert (1.7) into (1.11), exchange the order of integration and use (1.12) to obtain

us(x) =
∫

∂D

Φ(x, y)ψ(y)ds(y) ≈
∫

∂D

∫

Ω

eiκy·dgx(d)ds(d)ψ(y)ds(y)

=
∫

Ω

( ∫

∂D

eiκy·dψ(y)ds(y)
)
gx(d)ds(d)

=
1
γ

∫

Ω

u∞(−d)gx(d)ds(d), (1.13)

the representation (1.10). A precise version of these algebraic transformations and a rigorous
convergence analysis will be described in section 2 to section 4.

We would like to emphasize that our new proof for the point source method extends the
capability of the reconstruction scheme to general incident waves. This is of large importance
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for applications, where the particular form of the incident wave is sometimes not known and
is a superposition of many different kinds of waves, for example for passive radar. For an
incident wave which consists of a superposition of a plane wave and a point source, we have
computed the total wave field using the scheme presented in this paper, see Fig. 4.11 for the
results (exact/simulated field and reconstruction one). In our computations, we do not need
to decompose the incident wave into the superposition of incident plane waves. Here we show
results for an obstacle with sound-soft boundary, however, the theory does not depend on the
boundary type.

Secondly, we give some error estimate on the minimum norm solution of (1.7) from the
properties of H

(1)
n , n = 0, 1, 2, ..., which is crucial to the choice of regularizing parameter ε.

Comparing with the analogy in [14], the convergence rate for the approximate scattered wave
given here is a little faster due to an improved strategy for choosing ε.

Finally, we note that the minimum norm solution to the integral equation of the first kind
with the fundamental function as the right-hand side also gives a possible way to the con-
struction of the Runge approximation for the Green function, which solves one of the problems
remaining in [9] of probe method, see [2] for the numerical implementations.

We will present all results in the two-dimensional case. However, all our arguments can be
applied in the three-dimensional case as well — with straightforward modifications.

2. Potential Theory and Minimum Norm Solution

In this section, to introduce our notations and for later use we review some well-known
results on the potential theory for the Helmholtz equation and on the minimum norm solution
for the integral equation of the first kind.

Introduce the operators

K′ψ(x) = 2
∫

∂D

∂Φ(x, y)
∂ν(x)

ψ(y)ds(y), x ∈ ∂D, (2.1)

Sψ(x) = 2
∫

∂D

Φ(x, y)ψ(y)ds(y), x ∈ ∂D, (2.2)

for a density function ψ(·) ∈ C(∂D). The following result solves the impedance scattering
problem in the case where −k2 is not a Dirichlet eigenvalue for the scattering domain D. It
can be found in [1].

Lemma 2.1. Assume −k2 is not a Dirichlet eigenvalue for the Laplacian in the domain D.
For any f ∈ C(∂D) the integral equation

ψ(x)− (K′ψ)(x)− ikσ(x)(Sψ)(x) = −2f(x), x ∈ ∂D, (2.3)

has a unique solution ψ ∈ C(∂D). If we choose

f(x) = −∂ui(x)
∂ν(x)

− ikσ(x)ui(x), x ∈ ∂D, (2.4)

then the scattered wave field

us(x) =
∫

∂D

Φ(x, y)ψ(y)ds(y), x ∈ R2 \D, (2.5)

with the far-field pattern

u∞(x̂, d) = γ

∫

∂D

e−ikx̂·yψ(y)ds(y), x̂ ∈ Ω, (2.6)

solves the impedance scattering problem (1.2), where γ = eiπ/4√
8πk

.
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For known scatterer D, choose a domain G such that D ⊂ G ⊂ R2. The Herglotz wave
operator H is defined by

(Hg)(x) =
∫

Ω

eikx·ξg(ξ)ds(ξ), x ∈ ∂G, (2.7)

for g ∈ L2(Ω). We consider H as an operator from L2(Ω) into L2(∂G).
For any fixed z ∈ R2 \ G, denote by gε(z, ·) ∈ L2(Ω) the minimum norm solution to the

integral equation
(Hg)(z, ·) = Φ(·, z) (2.8)

with the discrepancy ε, i.e.

‖(Hg)(z, ·)− Φ(·, z)‖L2(∂G) ≤ ε. (2.9)

Then the following result is true.

Lemma 2.2. Assume that −k2 is not a Dirichlet eigenvalue for the Laplacian in the domain
G. Then

1. there exists a unique minimum norm solution gε(z, ·) ∈ L2(Ω);

2. ‖gε(z, ·)‖L2(Ω) depends continuously on ε and is unbounded as ε → 0;

3. gε(z, ·) ∈ L2(Ω) depends weakly continuously on z ∈ R2 \ G, that is, it follows for any
ψ ∈ L2(Ω) that

lim
z→z0

〈gε(z, ·), ψ〉 = 〈gε(z0, ·), ψ〉. (2.10)

The first two conclusions are obviously true by standard arguments on the minimum norm
solution. The third one follows from the facts that Φ(·, z) is continuous with respect to z

and that the minimum norm solution depends weakly continuously on the right-hand side ([5],
Chapter 16, Problem 16.2).

3. Approximation of Scattered Wave from Far-field

In this section, we give an approximation of us(x) from the far-field pattern for the 2-D
scatterer with impedance boundary by the points source method where the solution gx of (1.7)
is calculated by the minimum norm solution to (2.8).

A similar result has been given in [14] for a 3-D scattering object with the Dirichlet boundary.
However, our proof is different from that in [14]. We find that the intended result can be directly
obtained by applying potential theory, rather than by using the reciprocity principle.

Secondly, we analyze the error of the approximation by estimating the behavior of ‖gε(z, ·)‖.
As a bound for ‖gε(z, ·)‖ we verify similar estimates as in the 3-D case ([14]). However, we
obtain an improved convergence rate for the approximation of the scattered wave by giving a
sharper strategy for the choice of the parameter ε.

Given the minimum norm solution gε(z, ·) for all z ∈ M with some set M ⊂ R2 \ G, we
define an operator Aε : L2(Ω) → L∞(M) by

(Aεφ)(z) :=
1
γ

∫

Ω

gε(z, ξ)φ(−ξ)ds(ξ), z ∈ R2 \G. (3.1)

From the conclusion (3) in Lemma 2.2, we know the operator Aε maps L2(Ω) into C(R2 \G).
Based on this operator, we can construct the approximate scattered wave outside G from the
noisy data of the far-field pattern.
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Theorem 3.1. We assume that the noisy data u∞δ (x̂) of the far-field pattern u∞(x̂) satisfy

‖u∞δ (·)− u∞(·)‖L2(Ω) ≤ δ. (3.2)

Then, for any z ∈ R2 \G and ε > 0, it follows that

|us(z)− (Aεu
∞
δ )(z)| ≤ cε +

1
γ
‖gε(z, ·)‖L2(Ω)δ, (3.3)

where the constant c = c(G, k, σ,D) > 0.

Proof. From Lemma 2.1 and the definitions of H and Aε, it follows that

us(z) =
∫

∂D

[Φ(y, z)− (Hgε)(z, y)]ψ(y)ds(y) +
∫

∂D

∫

Ω

eiky.ξψ(y)ds(y)gε(z, ξ)ds(ξ)

=
∫

∂D

[Φ(y, z)− (Hgε)(z, y)]ψ(y)ds(y) +
1
γ

∫

Ω

gε(z, ξ)u∞(−ξ)ds(ξ)

=
∫

∂D

[Φ(y, z)− (Hgε)(z, y)]ψ(y)ds(y) + (Aεu
∞)(z).

From this relation we get

us(z)− (Aεu
∞
δ )(z) =

∫

∂D

[Φ(y, z)− (Hgε)(z, y)]ψ(y)ds(y)

+Aε(u∞ − u∞δ )(z). (3.4)

For the next step we use that Φ(·, z)− (Hgε)(z, ·) solves the Helmholtz equation in G ⊃ D for
any fixed z ∈ R2 \G. Using the continuous dependence of the interior solution on the boundary
values (i.e. the well-posedness of this problem) we obtain a constant c = c(G) such that

‖Φ(·, z)− (Hgε)(z, ·)‖L2(∂D) ≤ c‖Φ(·, z)− (Hgε)(z, ·)‖L2(∂G). (3.5)

It follows from (3.4) and the Cauchy-Schwarz inequality that

|us(z)− (Aεu
∞
δ )(z)| ≤

√
meas(∂D)‖ψ‖C(∂D)‖Φ(·, z)− (Hgε)(z, ·)‖L2(∂D)

+
1
γ
‖gε(z, ·)‖L2(Ω)‖u∞(·)− u∞δ (·)‖L2(Ω)

≤ cε +
1
γ
‖gε(z, ·)‖L2(Ω)δ, (3.6)

where we have used (2.6),(2.9),(3.2) and (3.5).
From this result, we know that if we approximate us(z) from u∞δ by Aεu

∞
δ , the error given

by (3.3) depends on two independent parameters ε, δ. Although ‖gε(z, ·)‖L2(Ω) is unbounded as
ε → 0, according to the conclusion (2) in Lemma 2.2, we will show that it is possible to choose
ε = ε(δ) > 0 such that

ε(δ) → 0, ‖gε(δ)(z, ·)‖L2(Ω)δ → 0 (3.7)

as δ → 0. The existence of such a strategy for ε = ε(δ) depends both on the estimate on
‖gε(z, ·)‖L2(Ω) and on the position of z.

Theorem 3.2. Let z ∈ R2 \ B(R, x0) and choose G = B(R, x0) in (2.9), where B(R, x0) is a
circle with center x0 and radius R. Then there exist positive constants a, b, c, d depending on R

and |z − x0| such that

‖gε(z, ·)‖L2(Ω) ≤
d

(cε)b ln(−a ln(cε))
, ε > 0. (3.8)
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Proof. Without loss of generality, we can choose an appropriate coordinate system such that
x0 = 0. For x ∈ ∂B(R, 0), z ∈ R2 \ B(R, 0), introduce the polar coordinates (ρ, θ), (r, ψ), that
is,

x = (x1, x2) = (ρ cos θ, ρ sin θ), z = (z1, z2) = (r cos ψ, r sinψ)

with ρ = |x| = R, r = |z| > R. Then from Graf’s addition theorem ([10], Ch.3, §18) we obtain

Φ(x, z) =
i

4
H

(1)
0 (k|x− z|) =

i

4

∞∑
n=−∞

H(1)
n (kr)Jn(kρ)ein(θ−ψ) (3.9)

for any |x| < |z|. We use the notation

uN (x, z) :=
N∑

n=−N

an(z)Jn(kρ)einθ (3.10)

with the coefficients
an(z) :=

i

4
H(1)

n (kr)e−inψ. (3.11)

Since J−n(·) = (−1)nJn(·) and H
(1)
−n(·) = (−1)nH

(1)
n (·), we have

Φ(x, z)− uN (x, z) =
i

4

∞∑

n=N+1

H(1)
n (kr)Jn(kρ)[e−in(ψ−θ) + ein(ψ−θ)]. (3.12)

Therefore it follows that

‖Φ(·, z)− uN (·, z)‖2L2(∂BR(0)) ≤ 1
16

∞∑

n=N+1

∫ 2π

0

|H(1)
n (kr)Jn(kρ)|24Rdθ

=
πR

2

∞∑

n=N+1

|H(1)
n (kr)|2|Jn(kR)|2, (3.13)

with r = |z| > R. However, the asymptotic of the Hankel function tells us that

H(1)
n (t) =

(2n− 1)!!
itn+1

[
1 + O

(
1
n

)]
, Jn(t) =

tn

(2n + 1)!!

[
1 + O

(
1
n

)]
,

uniformly on compact sets of (0,∞) as n →∞, which implies

|H(1)
n (kr)||Jn(kR)| = 1

kr

(
R

r

)n 1
2n + 1

[
1 + O

(
1
n

)]
, (3.14)

uniformly for r,R in any compact set of (0,∞). From equations (3.13) and (3.14), with the
abbreviation

q :=
R

r
=

R

|z| < 1, (3.15)

there exists a constant C0 such that

‖Φ(·, z)− uN (·, z)‖2L2(∂BR(0)) ≤ C0
R

r

1
rk2

∞∑

n=N+1

q2n

n2

≤ C0

k2|z|
1

(N + 1)2

∞∑

n=N+1

q2n ≤ C1

|z|
q2(N+1)

1− q2
,

where the constant C1 = C0
4k2 does not depend on R, r = |z| and n. Since Φ(·, z) − uN (·, z)

solves the Helmholtz equation in B(R, 0) for any N and the interior Dirichlet problem is bounded
from L2(∂B(R, 0)) into C(M) for compact subset M of B(R, 0), there exists a constant λ =
λ(B(R, 0)) such that

‖Φ(·, z)− uN (·, z)‖2L2(∂G) ≤ λ2‖Φ(·, z)− uN (·, z)‖2L2(∂B(R,0))

≤ λ2C2
1

|z|(1− q2)
q2(N+1). (3.16)
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Now we take N large enough such that the right-hand side of (3.15) is less than ε2, that is, we
take N as

N + 1 := Int


 ln

√
|z|
√

1−q2

λC1
ε

ln q


 , (3.17)

where Int(a) denotes the smallest integer bigger than a ∈ R+. Then it follows that

‖Φ(·, z)− uN (·, z)‖L2(∂G) ≤ ε. (3.18)

Now we show there exists a function gN (z, ·) ∈ L2(Ω) such that

HgN = uN (3.19)

and give an estimate on ‖gN (z, ·)‖L2(Ω) in terms of ε. From (3.10) and (3.11), if we can solve
the equation ∫

Ω

eikx.ξhn(ξ)ds(ξ) = Jn(kρ)einθ (3.20)

to obtain hn(ξ) for n = −N,−N + 1, · · · , N − 1, N , then

gN (z, ξ) =
N∑

n=−N

an(z)hn(ξ). (3.21)

From the Jacobi-Anger expansion eikρ cos θ =
∑∞

n=−∞ inJn(kρ)einθ, we get

Jn(kρ) =
(−1)ni−n

2π

∫ 2π

0

eikρ cos θ1einθ1dθ1.

Inserting this expression into (3.19) leads to
∫ 2π

0

eikρ cos(θ−θ1)p(θ1)dθ1 =
(−1)ni−n

2π

∫ 2π

0

eikρ cos θ2einθ2dθ2e
inθ

with p(θ1) = hn(cos θ1, sin θ1). Letting θ2 = θ1 − θ and comparing the integrands on the two
sides yields

hn(ξ) =
(−1)ni−n

2π
einθ1 ,

with ξ = (cos θ1, sin θ1) ∈ Ω. So (3.21) generates

gN (z, ξ) =
1
2π

[
i

4
H

(1)
0 (kr) +

i

2

N∑
n=1

H(1)
n (kr)(−1)ni−n cos n(ψ − θ1)

]
. (3.22)

However, Stirling’s formula and the asymptotic of H
(1)
n (t) yields

H(1)
n (t) =

1
2nitn+1

(2n)!
n!

[
1 + O

(
1
n

)]
=
√

2
it

(
2n

et

)n

(1 + o(1))

for n = 1, 2, · · · . Therefore, noticing H
(1)
0 (t) = ieikt/t, there exists a constant C2 > 0 such that

|H(1)
n (t)| ≤ C2

1
t

(
n + 1

t

)n

,

uniformly in any compact set of (0,∞) for n = 0, 1, 2, · · · . This estimate tells us from (3.21)
that

|gN (z, ξ)| ≤ 1
4π

N∑
n=0

|H(1)
n (kr)| ≤ C2

4π

1
kr

N∑
n=0

(
n + 1
kr

)n

,

which leads to

‖gN (z, ·)‖L2(Ω) ≤
C2

2
√

2π

1
kr

(N + 1)
(

N + 1
kr

)N

=
C2

2
√

2π

(
N + 1

kr

)N+1

.
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Since the expression for N given in (3.16) implies

ln
√
|z|
√

1−q2

λC1
ε

ln q
≤ N + 1 ≤ ln

√
|z|
√

1−q2

λC1
ε

ln q
+ 1 ≤ 2

ln
√
|z|
√

1−q2

λC1
ε

ln q
,

we obtain

‖gN (z, ·)‖L2(Ω) ≤
C2

2
√

2π

(−b ln(cε)
kr

)−b ln(cε)

=
C2

2
√

2π

1
(cε)b ln(−a ln(cε))

, (3.23)

with

b = − 2
ln q

> 0, a =
b

kr
> 0, c =

√
|z|

√
1− q2

λC1
> 0.

By noting that gε(z, ·) is the minimum norm solution, the desired result (3.8) is obtained from
(3.22) and ‖gε(z, ·)‖L2(Ω) ≤ ‖gN (z, ·)‖L2(Ω)with constant d = C2

2
√

2π
.

In the sequel, denote byH(D) the convex hull of the domain D. Then for any z ∈ R2\H(D),
we can always choose z0 and R such that D ⊂ B(R, x0). Therefore, using Theorem 3.1 and
Theorem 3.2, we immediately obtain the estimate

|us(z)− (Aεu
∞
δ )(z)| ≤ c1ε +

1
γ

d

(cε)b ln(−a ln(cε)
δ (3.24)

for z ∈ R2 \ H(D).
Now we prove that there exists a strategy of taking ε = ε(δ) such that

|us(z)− (Aε(δ)u
∞
δ )(z)| → 0

for any fixed z ∈ R2 \ H(D) as δ → 0. Our proof is constructive from which we also give the
convergence rate. Define

f(ε, δ) = c1ε +
d

γ(cε)b ln(−a ln(cε))
δ. (3.25)

It is obvious that (cε)−b ln(−a ln(cε)) →∞ as ε → 0. However, if we choose ε = ε(δ) → 0 in some
explicit special way, we can guarantee f(ε(δ), δ) → 0 as δ → 0. This strategy is stated as

Theorem 3.3. For any β ∈ (0, 1) and fixed z, if we take

ε(δ) = aδ
1

b ln(− ln(cδ)) e−(− ln(cδ))β

, (3.26)

where a, b, c are positive constants, then it follows that

ε(δ) → 0, f(ε(δ), δ) → 0

as δ → 0. Furthermore, the convergence rate of f(ε(δ), δ) is O(ε(δ)).

Proof. Without loss of generality, it suffices to consider the case a, b, c = 1. It is easy to
verify that ε(δ) → 0 as δ → 0. If we set z = ln(− ln δ) and t = − ln ε, then it follows that

f(ε, δ) = F (t, z) = e−t + et ln t−ez

. (3.27)

For ε(δ) given by (3.26), we have

t(z) =
ez

z
+ eβz. (3.28)

In order to show F (t(z), z) → 0 as z → +∞, it is enough to prove t(z) ln t(z) − ez → −∞ as
z → +∞. Since

t(z) ln t(z)− ez = [
ez

z
+ eβz][ln

ez

z
+ ln(1 +

z

e(1−β)z
)]− ez

= −[
ez ln z

z
− zeβz] + (

ez

z
+ eβz) ln(1 +

z

e(1−β)z
)− eβz ln z
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for any β ∈ (0, 1), we know that t(z) ln t(z)−ez → −∞ as z → +∞ and the order of divergence
is O(ez ln z/z). Finally, it follows from

t(z)
ez ln z

z

=
1

ln z
+

z

e(1−β)z ln z
→ 0, z → +∞,

that the convergence rate of F (t(z), z) is O(e−t(z)), that is, the convergence rate of f(ε(δ), δ)
is O(ε(δ)).

Now, the combination of Theorems 3.1, 3.2 and 3.3 yields the following error estimate on
the recovery of the scattered wave from noisy far-field data:

Theorem 3.4. Let u∞δ (x̂) be the noisy data of far-field pattern of u∞(x̂) satisfying

‖u∞δ (·)− u∞(·)‖L2(Ω) ≤ δ. (3.29)

Then for any z ∈ R2 \ H(D), there exist constants C, a, b, c depending on D, k, σ such that

|us(z)− (Aε(δ)u
∞
δ )(z)| ≤ Cδ

1
b ln(−a ln(cδ)) e−(− ln δ)β

, (3.30)

with the constant C uniformly in any compact set of R2 \ H(G), where the operator Aε and
ε(δ) are given in (3.1) and (3.26), respectively.

As a direct corollary of this error estimate, we can also obtain the stability estimate of the
scattered wave on the far-field pattern, namely,

Corollary 3.5. For two obstacles D1, D2, if u∞i (·), i = 1, 2 are the far-field patterns satisfying

‖u∞1 (·)− u∞2 (·)‖L2(Ω) ≤ δ, (3.31)

then given z ∈ R2 \ H(D1 ∪D2) there exist constants C, a, b, c depending on D1, D2, k, σ such
that the correspond scattered waves us

i (z) (i = 1, 2) satisfy

|us
1(z)− us

2(z)| ≤ Cδ
1

b ln(−a ln(cδ)) e−(− ln δ)β

. (3.32)

Proof. This fact can be seen from

|us
1(z)− us

2(z)|
≤ |us

1(z)−Aε(δ)u
∞
1 (z)|+ |us

2(z)−Aε(δ)u
∞
1 (z)|+ |Aε(δ)(u∞1 − u∞2 )(z)|

≤ 2ε(δ) + C‖gε(δ)‖ ‖u∞1 (·)− u∞2 (·)‖L2(Ω)

≤ 2Cε(δ) + C‖gε(δ)‖δ
and Theorems 3.3 and 3.4.

This result is analogous to Theorem 6 in [14]. However, our stability estimate is not limited
to the scattering of plane waves and it is sharper than the estimate in [14]. This is due to
the new approach using potential theory and the special strategy for taking ε(δ) given in this
paper.

The strategy of choosing the regularizing parameter ε = ε(δ) presented in Theorem 3.3 (also
see (4.5) in numerics) gives a convergence rate of the approximated scattered wave (Aε(δ)u

∞
δ )(z)

in (3.30). Of course, the form of ε(δ) is a little complicated. On the other hand, we also know
that there are other strategies for choosing the regularizing parameter such as the Tikhonov a
priori estimate or the Morozov discrepancy principle. It should be interesting to compare the
convergence rate presented in this paper with that of other regularizing schemes. However, in
order to obtain the convergence rate of the regularizing solution based on these priori strate-
gies, some a priori information about the exact solution must be assumed. In our problem of
reconstruction of the scattered wave, we should verify these assumptions (the range of far-field
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operator which maps the far-field data to near field) if we want to obtain some convergence rate.
This comparison of convergence rates and establishment of strategies with optimal convergence
rates either in a deterministic or stochastic framework is an important topic of current research
and goes beyond the scope of this paper.

4. Numerical Implementations

In this section, we carry out the numerical realization of the reconstructions to test the
validity of the point source method.

Our numerics consist of three steps. Firstly, we solve the direct scattering problem by
potential theory (see Lemma 2.1) to obtain the scattered wave field us(z) for z ∈ R2 \ D, as
well as the far-field pattern u∞(x̂). Then we take this far-field with data error δ as input for the
inverse problem. Finally the validity and stability of the inversion are checked by comparing
the inversion result from noisy input data with us(z) obtained by potential method.

Firstly, consider a point-source as our incident wave. More precisely, we take

ui(x) =
i

4
H

(1)
0 (k|x− x0|) (4.1)

for some x0 ∈ D1. For this special incident wave, the scattered wave is

us(x) = − i

4
H

(1)
0 (k|x− x0|), x ∈ R2 \D1, (4.2)

for any impedance σ(x) ≥ 0, since it satisfies the boundary condition in ∂D1 and the radiation
condition at infinity. Of course the Helmholtz equation is also satisfied in R2 \D1 for x0 ∈ D1.

We consider a special convex obstacle with the boundary

∂D1 = {x = (1.2 cos t, 1.2 sin t), t ∈ [0, 2π]} (4.3)

and the boundary impedance σ(x) = 0. In fact, for the incident wave given by (4.1), the
scattered wave (4.2) is independent of σ(x). We take k = 1.0, x0 = (0.5, 0.5) and G1 = 1.5×D1

as our approximate domain, while

∂Z1 := 1.15× ∂G1 = 1.725× ∂D1 (4.4)

is the cycle outside G1 where we seek the scattered wave at z(t) ∈ ∂Z1 by our inversion method.
We generate the exact scattered wave in ∂Z1 by the single-layer potential method (Lemma

2.1). Especially, the scattered wave can also be obtained from the expression (4.2) directly for
this special configuration.

By this exact solution, we can check the inversion procedure from the noisy far-field pattern
data. According to the inversion scheme constructed in the above sections, the procedure
contains the following steps:

Step 1: For given error level δ > 0, take the regularizing parameter ε(δ) as

ε(δ, z) = a(z)δ
1

b(z) ln(− ln(c(z)δ)) e−(− ln(c(z)δ))β

(4.5)

with suitable parameters a(z), b(z), c(z), β.

Step 2: Find the minimum norm solution gε(δ)(z, ξ) to the integral equation (Hg)(·, z) =
Φ(z, ·) with discrepancy ε(δ, z). This can be done by the standard argument ([5]).

Step 3: Construct the approximate scattered wave by us
δ(z) = Aε(δ,z)u

∞
δ for z ∈ R2 \D1

from the noisy input data u∞δ (x̂), where operator Aε is given in (3.1). Especially, for
z /∈ H(G1), we can obtain the convergence rate (3.30).
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Fig. 4.1. Recovery for scattered wave with k = 1.0, δ = 0, n = 8.
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Fig. 4.2. Recovery for scattered wave with k = 1.0, δ = 0, n = 16.

Based on the above steps, we can construct the scattered wave. We divide [0, 2π] by tj =
j × π

n for j = 0, 1, · · · , 2n − 1. The results for n = 8, 16 with exact far-field pattern as the
inversion input data are shown in Fig. 4.1 and Fig. 4.2. Notice that Fig. 4.2 contains the
exact and inversion results. Obviously, if we use the exact data, then n = 16 can recover the
scattered wave very well. In our numerics, the parameters a(z), b(z), c(z) remains unchanged
for all z ∈ ∂Z1 and are obtained by trial and error.

Now we consider the inversion procedure for the noisy data. If we take the noisy far-field
with error level δ = 0.05 in the following way:

u∞δ (x̂i) = (1 + δ)u∞(x̂i), (4.6)
then the results with n = 16 are given in Fig. 4.3.

However, if we make the perturbation oscillatory, that is, we put the error in the form
u∞δ (x̂i) = (1 + (−1)iδ)u∞(x̂i), (4.7)

then the results are not so good. The case with k = 1.0, δ = 0.01 is shown in Fig. 4.4. The
other numerical results for which we take k = 2, δ = 0.02 in (4.7) are given in Fig. 4.5. These
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Fig. 4.3. Recovery for scattered wave with k = 1.0, δ = 0.05, n = 16.
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Fig. 4.4. Recovery for scattered wave with k = 1.0, δ = 0.01, n = 16.
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Fig. 4.5. Recovery for scattered wave with k = 2.0, δ = 0.02, n = 16.
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Fig. 4.6. Configure of a non-convex obstacle

two figures show that the inversion results are still satisfactory for the oscillatory error input
data, except for some points near the extreme points of the scattered wave.

Remark 4.1. For the convex obstacle such as a circle, some numerics have been done with
the exact far-field data ([8]). However, here we use the point-source as the incident wave to
recover the corresponding scattered wave. The advantage of this model is that we can obtain
the analytic expression of the scattered wave from which we can estimate the validity of our
inversion method efficiently.

Table 1: us(z) and u∞ for 2n = 32

ti us(z(ti)) u∞(x̂(ti))

0 -0.71621860-0.67126570i -0.84636120+1.03309100i

π/2 0.10035350+0.04220168i -0.32021850-0.18389410i

π 0.49686100-0.19647750i -0.54582840+0.19172820i

3π/2 -0.26164190+0.29148880i 0.12488810 -0.06168363i

Table 2: us(z) and u∞ for 2n = 64

ti us(z(ti)) u∞(x̂(ti))

0 -0.71621820-0.67126550i -0.84636090+1.03309100i

π/2 0.10035340+0.04220182i -0.32021860-0.18389440i

π 0.49686100-0.19647740i -0.54582840+0.19172800i

3π/2 -0.26164190+0.29148880i 0.12488810-0.06168361i

Our second example is to consider a kite-shaped obstacle with the boundary

∂D2 = {(x1, x2) := (cos t + 0.65 cos(2t)− 0.65, 1.5 sin t), t ∈ [0, 2π]}.
Here we take ui(x) = eikd·x with incident direction d as the incident wave. In this case, we
cannot obtain the analytic expression for the scattered wave in general. We have to simulate
the scattered wave as well as its far-field pattern by the potential method.
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Fig. 4.7. Inversions for z ∈ ∂Z with n = 32, δ = 0.05
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Fig. 4.8. Inversions for z ∈ ∂Z with n = 32, δ = 0.1

For the domain D2 given here, it is easy to check that the domain G2 bounded by

∂G2 = {(x1, x2) := (−0.65 + 1.8 cos t, 1.8 sin t), t ∈ [0, 2π]} (4.8)

contains D2 inside it (see Fig. 4.6). The boundary impedance on ∂D2 is taken as

σ(x) =
3 + x1x2

(3 + x2)2
, x ∈ ∂D2. (4.9)

For this non-convex obstacle, we want to construct the scattered wave fields outside D2

from the noisy data. According to our theoretical results, the scattered wave outside G2 should
be recovered with some convergence rate since G2 itself is convex. To give numerical examples
which relate to the theoretical results above we are interested in the reconstruction of us(z) for
z ∈ R2 \G2.

For z ∈ R2 \G2, we consider z lying in the circle ∂Z2 = {x := 1.15× ∂G2}. The values of
us(z) at four typical points z = z(t) obtained by the potential method are listed in Table 1 and
Table 2, where [0, 2π] is divided into 2n = 32, 64 subintervals respectively, when we solve the
direct problem and the minimum norm solution.
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Fig. 4.9. Inversion results with random error level δ = 5%
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Fig. 4.10. Inversion results with random error level δ = 10%

Notice that, in our numerics, there are two regularization parameters. The first one is
ε = ε(δ), which is applied to regularize the ill-posedness of determining us(z) from its noisy
far-field pattern with error level δ > 0. In this step, the minimum norm solution gε(δ) is
the regularizer, with ε(δ) depending on unknown constants a(z), b(z), c(z). Without loss of
generality, we consider ε(δ) < ‖Φ(·, z)‖ here. On the other hand, when we determine the
minimum norm solution gε(δ) in step 2 for given ε(δ), we also introduce the other regularization
parameter α = α(ε(δ)). This is the theoretical story of determining gε(δ). Since the second step
for determining α = α(ε) has the estimate

α(ε) ∈
(

0,
2πmeasu(∂G)ε
‖Φ(·, z)‖ − ε

)

and ε(δ) depends on some unknown constants a(z), b(z), c(z), β in (4.5), our numerics for de-
termining gε(δ) combines the above two steps. That is, for z ∈ ∂Z2, we take ε(δ) by trial and
error for different choices of a(z), b(z), c(z) in the interval ε(δ) ∈ [10−9, 0.9×‖Φ(·, z)‖] and then
taking α ∈ [10−9, 2πmeasu(∂G)ε

‖Φ(·,z)‖−ε ] and finally finding the minimum norm solution. Some inversion
results obtained in this way with the noise level δ = 0, 0.05 at special points are given Table
3. For the whole picture of inversion for points z in ∂Z2 with error level δ = 0.05 added in
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Fig. 4.11. Original total wave and reconstruction for non-plane incident wave

the form of (4.7), see Fig. 4.7. The results are so satisfactory that we cannot distinguish the
inversions and true values from the figure. The difference of the two cases δ = 0 and δ = 0.05
can be found in Table 3. The results with noise level δ = 0.1 added in the form (4.6) are shown
in Fig. 4.8.

Table 3: Inversion us
δ(z) with δ = 0, 0.05 for Special Points z ∈ ∂Z

tj us
δ(z(tj)), δ = 0 us

δ(z(tj)), δ = 0.05

0 -0.7129430-0.6721622i -0.7082989-0.6717179i

π/2 0.0992444+0.0432346i 0.0963298+0.0392522i

π 0.4979953-0.1915083i 0.5020986-0.1829007i

3π/2 -0.2586794+0.2956636i -0.2617419+0.2900757i

At the end of the numerical implementations, we test the numerical performance of the
inversion scheme with random noisy data. Namely, rather than adding noise in the form (4.6)
or (4.7), we generate the noisy data by

u∞δ (x̂i) = (1 + δ × ps(i))u∞(x̂i), (4.10)

where ps(i) for i = 0, 1, · · · , 2n− 1 are random data distributed in [−1, 1], which are generated
by the Random(p) Subroutine for given seed value s in FORTRAN. Thus (4.10) represents
the random noisy data with the relative error level δ. Two inversion results for our second
example for n = 32, s = 0.5 with δ1 = 0.05 and δ2 = 0.1 are shown in Fig. 4.9 and Fig.
4.10. The numerical results suggest that, although there are some oscillations in the inversions
with random noisy data input, our inversion scheme still generates a satisfactory result with
L2−norm error, which has been shown in our theoretical theorems.

5. Conclusions

In this paper, we propose a new regularizing scheme for the reconstruction of a scattered
wave from its far-field pattern. By applying the classical potential theory, we generalize the point
source method for an incident plane wave proposed by R.Potthast to general incident fields.
The theoretical importance of this generalization is that we establish the relation between the
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classical potential theory for inverse scattering problem and the recently developed point source
method. Moreover, by analyzing the asymptotic behavior of the Hankel function, we obtain
an improved convergence rate of regularizing solution. Numerical examples show that this new
reconstruction scheme can stably recover the scattered wave from the noisy data of far-field
pattern.
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