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Abstract

In magnetoencephalography (MEG) a primary current is activated within a bounded
conductive medium, i.e., the head. The primary current excites an induction current and
the total (primary plus induction) current generates a magnetic field which, outside the
conductor, is irrotational and solenoidal. Consequently, the exterior magnetic field can be
expressed as the gradient of a harmonic function, known as the magnetic potential. We
show that for the case of a triaxial ellipsoidal conductor this potential is obtained by using
integration along a specific path which is dictated by the geometrical characteristics of the
ellipsoidal system as well as by utilizing special properties of ellipsoidal harmonics. The
vector potential representation of the magnetic field is also obtained.

Mathematics subject classification: 35Q60, 35P10, 92B05, 33C47.
Key words: Magnetoencephalography, Magnetic potential, Ellipsoidal harmonics.

1. Introduction

As Plonsey and Heppner [7] have demonstrated, in studying Bioelectromagnetic problems,
the values of the physical parameters of the human body justify the replacement of Maxwell’s
equations with the equations of quasi-static theory of electromagnetism. This means that
the time derivative terms of the magnetic induction and of the electric displacement fields in
Maxwell’s equations can be omitted. That renders the rotation of the magnetic field propor-
tional to the current. Hence, in regions free of current the magnetic field becomes irrotational
and since, due to the lack of magnetic monopoles, it is also solenoidal, it can be represented
by the gradient of a harmonic function. This function was first obtained by Bronzan [1] via
path integration in appropriate regions that avoid the support of the current. But the actual
meaning of the scalar magnetic potential in MEG was demonstrated by Sarvas [8] in a cele-
brated paper where he showed that for a spherical conductor the exterior magnetic potential
can be obtained from the radial component of the primary current alone. In particular, he
obtained in closed form the potential and therefore the magnetic field as well, for the case of
a homogeneous spherical conductor with a dipole source anywhere in its interior. His solution
coincides with the one Bronzan gave for the general case. It is of interest to see though that
this property of recovering the exterior magnetic field from the radial component of the primary
current is not shared by any other geometry besides the spherical one. In other words, for non
spherical conductors the geometry of the conductor influences directly the exterior magnetic
field. The ellipsoidal geometry has the advantage of being a genuine three dimensional shape
that can be well adjusted in any convex body, and in particular to the brain which anatomicaly
is considered to be an ellipsoid with average semiaxes 6, 6.5 and 9 centimeters. On the other
hand, it is exactly this freedom of adaptation to any convex body that makes the mathematics
much more elaborate than the spherical (1-D) or even the spheroidal (2-D) geometries.
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Obviously, any attempt to calculate the magnetic potential for an ellipsoidal conductor has to
incorporate the contribution from the surface distribution of dipoles as given by the Geselowitz
formula [5]. Therefore, the direct electroencephalography (EEG) problem has to be solved
as well, in order to determine the dipole density function on the boundary of the ellipsoidal
conductor. The crucial part of the present work is to determine the path of integration that
will allow the calculation of the line integral which provides the magnetic potential. We show
that such a path is given by the non planar curve which is defined by the intersection of
the one-sheet hyperboloid and the two-sheet hyperboloid that correspond to the “angular”
ellipsoidal coordinates of the point where the potential is evaluated. It seams that this choice
of integration path is the unique choice which allows for the integration of the ellipsoidal fields.
It is the ellipsoidal analogue of the radial direction for the case of a sphere. Following this
approach we were able to obtain the exterior magnetic field as a series solution in terms of
multipole fields. The leading term of this series, which is the quadrupolic term, was obtained
analytically by the author and Kariotou in [2].

We mention here that as far as the inverse MEG problem is concerned, it was shown by
Fokas, Kurylev and Marinakis [4] for the sphere and by the author, Fokas and Kariotou [3] for
any star-shape conductor, that from the three scalar functions needed to identify the current
only one can be recovered, and this is true even when a complete knowledge of the magnetic
potential outside the head is provided.

Section 2 states the direct problem of magnetoencephalography for a single dipole in ellip-
soidal geometry and provides the solution to the corresponding problem of electroencephalog-
raphy which concerns the electric potential. Section 3 elaborates a compact expresssion for the
multipole expansion of the exterior magnetic field in dyadic form. The vector potential for the
magnetic field is discussed in Section 4 while the corresponding scalar magnetic potential is
obtained in Section 5.

2. The Ellipsoidal MEG Problem

Consider the ellipsoid
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The ρ-system forms a family of confocal ellipsoids where the value ρ = α1 corresponds to the
ellipsoid (2.1). The µ-system forms a family of confocal hyperboloids of one-sheet and the ν-
system forms a family of confocal hyperboloids of two-sheets. The three families form a confocal
quadric system given by
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which is also orthogonal. From each point (α1, µ0, ν0) on the ellipsoid (2.1) springs a curve that
is the particular intersection of (2.8) and (2.9) on which (α1, µ0, ν0) lies. Parametrizing this
curve by the ellipsoidal coordinate ρ we obtain its vectorial representation in the form

C(ρ) =
1

h1h2h3

[
h1ρµ0ν0x̂1 + h2

√
ρ2 − h2

3

√
µ2

0 − h2
3

√
h2

3 − ν2
0 x̂2

+h3

√
ρ2 − h2

2

√
h2

2 − µ2
0

√
h2

2 − ν2
0 x̂3

]
, (2.10)

where ρ ∈ [α1,+∞). From the orthogonality of the ellipsoidal system it follows that the
tangent vector r′(ρ) of the curve (2.10) at any point ρ ∈ [α1,+∞) is normal to the ellipsoid
(2.7). This is the key-property that will be used later to obtain the exterior magnetic potential.
In the ellipsoidal system (ρ,µ,ν) the electric potential u that is due to an electric dipole at
r0 = (ρ0, µ0, ν0) inside the ellipsoid, with moment Q, solves the Neumann boundary value
problem
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where σ is the conductivity of the ellipsoidal region. The solution of this problem has been
obtained in [2] and it is equal to
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are the interior and the exterior ellipsoidal harmonics, respectively. The ellipsoidal eigensolu-
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are the ellipsoidal normalization constants, i.e., the L2-norms of the surface ellipsoidal harmon-
ics with respect to the surface measure
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The Dirichlet values of the electric potential u on the ellipsoid ρ = α1 provide the exterior
magnetic field via the Geselowitz integral representation [5]
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is the outward unit normal on the ellipsoid ρ = α1 [2], and µ0 is the magnetic permeability of
the air.

Note that since
r · ρ̂(r) = α1α2α3l(µ, ν) (2.22)

it follows that the product α1α2α3l(µ, ν) is the support function of the ellipsoid (2.1), i.e., the
projection of the position vector r of the surface on the Gaussian image ρ̂(r) at the point r.

The electric potential u, as a solution of a Neumann problem, is unique up to an additive
constant. Hence, if u is a solution of (2.11)-(2.12) so is u + c for every c ∈ R. Nevertheless,
since by Gausss theorem
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where V is the interior of the ellipsoid ρ = α1, it follows that B is independent of the additive
constant c. Hence, we can always assume that c = 0.

3. The Multipole Expansion

Using the fundamental expansion
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which holds for ρ > ρ0, and the identity
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it follows that on the surface of the ellipsoid the electric potential is written as
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Next we expand the dipole field in the primed variable. For ρ > ρ′ = α1
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Since
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The integral in (3.13) represents the (nm)-coeffiecient of the expansion of the function Eλ
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it “separates” the r0-dependence of the source from the r-dependence of the observation. Its
importance is due to the fact that the r0-dependence is not explicit in the integral term but
instead it is implicit within the electric potential u. In the expansion (3.10) this dependence
enters clearly via the expressions Q · ∇r0Eλ

κ(r0).
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Inserting (3.14) and (3.10) into (2.20) and using expressions (3.7) and (3.9) we obtain the
following separable (in r0 and r) expression which holds true for r outside the ellipsoid
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where we used the fact that the n = 0 term in (3.15) vanishes.

Indeed, for n = 0 we have the leading term
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where
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Inserting (3.16) in the expression for the n = 0 term of the expansion (3.15) we obtain
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The above calculations furnish a proof of the fact that the dipole contribution from the source
at r0 and that from the interface at ρ = α1 cancel each other. So, the exterior magnetic field
starts with the quadrupolic contribution
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which can also be represented by the compact dyadic form
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where the source dependent dyadic is given by
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Expression (3.21) provides the multipole expansion of B outside the ellipsoid.

4. The Vector Potential

The induction field B, being solenoidal, is written as

B(r) = ∇×A(r) (4.1)

where A(r) is the vector potential of B(r). In fact, it is straightforward to see that (2.20) is
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Note that A satisfies the Coulomb gauge
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Indeed, since ∇ × B = 0 outside the ellipsoid and since |r − r′|−1 is harmonic for r 6= r′ the
integral representation (2.20) implies that
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and taking r →∞ we obtain c = 0. Consequently, (4.5) is justified.
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Define the dyadics

S̃(r) = Q⊗ r− r0
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C̃(r) = σ

∫

ρ′=α1

u(r′)ρ̂′ ⊗ r− r′

|r− r′|3 ds(r′) (4.9)

for the conductive medium. Let
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In other words, the induction field B outside the conductive medium is the difference between
the vector invariant of the source dyadic and the vector invariant of the conductivity dyadic.

5. The Scalar Magnetic Potential

Since B is irrotational in the current free region outside the ellipsoid it follows that

B(r) = µ0∇rU(r), (5.1)

where U(r) is the magnetic potential, which has to vanish at infinity.
In order to evaluate this magnetic potential U for the case of the sphere, Sarvas [8] integrated

along a ray, in the direction of r̂, from the position r where the potential is evaluated all the way
to infinity where the potential vanishes. In doing so, he actually used only the radial component
of B and since r̂ was constantly tangent to the path of integrations all the necessary calculations
were possible.

For the case of the ellipsoid though, the radial direction specified by the linear path of
integration is not connected to anyone of the ellipsoidal directions ρ̂, µ̂, ν̂ and that makes the
calculations impossible. This difficulty can be avoided if we choose an appropriate path of
integration which is dictated by the geometry of the ellipsoidal system itself.

To this end, we consider the ellipsoidal representation (ρ,µ,ν) of the point r where the
magnetic field U is to be evaluated. From the point (ρ,µ,ν) there passes an ellipsoid specified
by the value of ρ, a hyperboloid of one sheet specified by the value of µ and a hyperboloid
of two sheets specified by the value of ν. If we fix the values of µ and ν and we let the
ellipsoidal coordinate vary from ρ to infinity we obtain the path (2.10) that is generated from
the intersection of the two hyperboloids corresponding to the constant values of µ and ν. This
path is a coordinate curve of the ellipsoidal system and its tangent at any point coincides with
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the ellipsoidal direction ρ̂ at the particular point. Since the system is orthogonal, the tangent
ρ̂ remains normal to µ̂ and ν̂ as we travel along the path C. Hence, integration along this path
for the case of the ellipsoid, corresponds to integration along the ray for the spherical case.

Consequently, we evaluate the value of U at the point r = (ρ, µ, ν) by integrating along the
ellipsoidal coordinate curve

C(ρ′) = (x1(ρ′), x2(ρ′), x3(ρ′)), ρ′ ∈ [ρ,∞) (5.2)

given in (2.10). Indeed, since

∇ =
ρ̂

hρ
∂ρ +

µ̂

hµ
∂µ +

ν̂

hν
∂ν , (5.3)

where ρ̂, µ̂, ν̂ are the orthogonal unit base vectors and hρ, hµ, hν are the corresponding Lamé
coefficients of the ellipsoidal system, it follows that

∂

∂ρ
= hρρ̂ · ∇ (5.4)

and we can represent U as follows

U(r) = U(ρ, µ, ν) = −
∞∫

ρ

∂

∂ρ′
U(ρ′, µ, ν)dρ′

= − 1
µ0

∞∫

ρ

hρ′ ρ̂
′ · ∇(µ0U(ρ′, µ, ν))dρ′ = − 1

µ0

∞∫

ρ

hρ′ ρ̂
′ ·B(ρ′, µ, ν)dρ′, (5.5)

where µ0 stands for the magnetic permeability. Using the identity

∇Fm
n (ρ, µ, ν) = [∇Fm

n (ρ)]Em
n (µ)Em

n (ν) + Fm
n (ρ)[∇Em

n (µ)Em
n (ν)]

=
ρ̂

hρ

(
∂

∂ρ
Fm

n (ρ)
)

Em
n (µ)Em

n (ν) + Fm
n (ρ)

[
µ̂

hµ

∂

∂µ
+

ν̂

hν

∂

∂ν

]
Em

n (µ)Em
n (ν) (5.6)

and (3.21) we obtain

ρ̂′ · (Q ·
∼
ID m

n )×∇Fm
n (ρ′, µ, ν) = ρ̂′ · (Q ·

∼
ID m

n )× ρ̂′

hρ′

(
∂

∂ρ′
Fm

n (ρ′)
)

Em
n (µ)Em

n (ν)

−Fm
n (ρ′)ρ̂′ ·

[(
µ̂

hµ

∂

∂µ
+

ν̂

hν

∂

∂ν

)
Em

n (µ)Em
n (ν)

]
× (Q ·

∼
ID m

n )

= −Fm
n (ρ′)ρ̂′ ×

[(
µ̂

hµ

∂

∂µ
+

ν̂

hν

∂

∂ν

)
Em

n (µ)Em
n (ν)

]
· (Q ·

∼
ID m

n )

= Fm
n (ρ′)

[(
ν̂

hµ

∂

∂µ
− µ̂

hν

∂

∂ν

)
Em

n (µ)Em
n (ν)

]
· (Q ·

∼
ID m

n ) (5.7)

since the order of the ellipsoidal base is (ρ̂, ν̂, µ̂).
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In order to isolate the ρ’ dependence in (5.7) we use the identities

ν̂ = 1
hν

3∑
i=1

ν
ν2−α2

1+α2
i
xix̂i, µ̂ =

1
hµ

3∑

i=1

µ

µ2 − α2
1 + α2

i

xix̂i

h2
ν = (µ2−ν2)(ρ2−ν2)

(h2
2−ν2)(h2

3−ν2)
, h2

µ =
(µ2 − ν2)(ρ2 − µ2)
(h2

2 − µ2)(µ2 − h2
3)

(5.8)

to obtain
(

ν̂

hµ

∂

∂µ
− µ̂

hν

∂

∂ν

)
Em

n (µ)Em
n (ν)

=
1

hνhµ

3∑

i=1

xix̂i

[
νEm

n
′(µ)Em

n (ν)
ν2 − α2

1 + α2
i

− µEm
n (µ)Em

n
′(ν)

µ2 − α2
1 + α2

i

]

=

√
µ2 − h2

3

√
h2

3 − ν2
√

h2
2 − µ2

√
h2

2 − ν2

h1h2h3(µ2 − ν2)

3∑

i=1

hiEi
1(ρ

′, µ, ν)

1√
ρ′2 − µ2

√
ρ′2 − ν2

[
νEm

n
′(µ)Em

n (ν)
ν2 − α2

1 + α2
i

− µEm
n (µ)Em

n
′(ν)

µ2 − α2
1 + α2

i

]
x̂i

=
3∑

i=1

Ei
1(ρ

′)√
ρ′2 − µ2

√
ρ′2 − ν2

fm
ni(µ, ν)x̂i, (5.9)

where

fm
ni(µ, ν) =

E2
1(µ)E2

1(ν)E3
1(µ)E3

1(ν)
h1h2h3(µ2 − ν2)

hiE
i
1(µ)Ei

1(ν)×

×
[
νEm

n
′(µ)Em

n (ν)
ν2 − α2

1 + α2
i

− µEm
n (µ)Em

n
′(ν)

µ2 − α2
1 + α2

i

]
. (5.10)

Substituting (3.21), (5.7) and (5.9) in (5.5) we obtain the magnetic potential

U(r) = −
∞∑

n=1

2n+1∑
m=1

3∑

i=1

fm
ni(µ, ν)Q ·

∼
ID m

n (r0) · x̂i

+∞∫

ρ

Fm
n (ρ′)Ei

1(ρ
′)√

ρ′2 − h2
3

√
ρ′2 − h2

2

dρ′. (5.11)

Note that
νEi

1(ν)
ν2 − α2

1 + α2
i

= Ei
1
′(ν),

µEi
1(µ)

µ2 − α2
1 + α2

i

= Ei
1
′(µ), i = 1, 2, 3 (5.12)

so that (5.10) is also written as

fm
ni(µ, ν) =

hiE
5
2(µ)E5

2(ν)
h1h2h3(µ2 − ν2)

[
Ei

1(µ)Ei
1
′(ν)Em

n
′(µ)Em

n (ν)− Ei
1
′(µ)Ei

1(ν)Em
n (µ)Ei

1
′(ν)

]
.

(5.13)
In the expression (5.11), fm

ni(µ, ν) depends only on the “orientation” (µ,ν) of the point
r while the dependence on the “distance” ρ enters via the integral factor. The quantities

Q·
∼
ID m

n (r0)·x̂i are dependent solely on the source. Hence, (5.11) provides a separable expansion
for the magnetic field in terms of “orientation” (µ,ν) and “distance” (ρ) variables.
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