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Abstract

In this paper, we give the state of the art for the so called “mixed spectral elements”

for Maxwell’s equations. Several families of elements, such as edge elements and discon-

tinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the

need of introducing some numerical dissipation terms to avoid spurious modes in these

methods. Such terms are classical for DGM but their use for edge element methods is a

novel approach described in this paper. Finally, numerical experiments show the fast and

low-cost character of these elements.
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1. Introduction

For a long time, Maxwell’s equations were mainly solved in the time-harmonic domain.

The evolution of radar techniques showed the limit of this formulation which can only treat

monochromatic sources. Both engineers and researchers were then motivated to use equations

in the time domain which can take into account large frequency sources in one resolution. The

first and most popular approximation of Maxwell’s equations in the time domain was provided

by the Yee’s scheme [29], commonly called FDTD (Finite Difference in the Time Domain) by

engineers, which is basically a centered second order finite difference approximation of Maxwell’s

equation.

Although easy to implement, FDTD has some difficulties to treat complex geometries. In

fact, the staircase approximation of curved boundary can produce spurious reflections which

can substantially pollute the solution. On the other hand, finite element methods (FETD)

have the major drawback of producing a n-diagonal (n can grow up to several tens in 3D)

mass matrix which must be inverted at each time-step, which is a serious handicap for FETD

versus FDTD whose mass matrix is the identity matrix. This mass matrix does not present

any difficulty to time harmonic problems, for which even the stiffness matrix must be inverted.

For this reason, industry was reluctant to use FETD for a long time and FDTD remains the

reference for Maxwell’s equations in the time domain for 40 years!

The mass lumping technique is an efficient alternative to mass matrix inversion. However,

this technique was well known for lower order continuous (or H1) elements but not obvious

for higher-order approximations. A first step towards a general mass lumping technique was

made by Hennart et al. [19,20] and independently by Young [30] which proposed to use Gauss-

Lobatto quadrature formulas to get mass lumping for continuous quadrilateral or hexahedral
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finite elements. Besides mass lumping, these formulas ensure to keep the order induced by

the finite element approximation [3]. First introduced for ODE or parabolic problems, this

technique was extended to the wave equation by Cohen et al. [11] and renamed spectral element

methods [22]. The non trivial extension of this technique to triangular and tetrahedral elements

was later realized by Cohen et al. [10] for triangles up to third order and Mulder et al. [23] for

higher-order triangles and tetrahedra.

The problem of the mass matrix inversion was solved for the wave equation and remained a

challenging problem for Maxwell’s equations. A first try was done by Haugazeau et al. [18] but

this approach remains restricted to first-order approximation. A second and natural step was

to extend spectral element techniques to edge (or H(curl)) elements. This was done by Cohen

et al. for orthogonal meshes for the first family [12] and for any mesh for the second family

of edge elements of any order [13]. The extension to triangular and tetrahedral meshes was

realized by Elmkies et al. [16, 17] but lead to efficient approximations up to the second-order

elements.

Due to the storage of the stiffness matrix, even by using mass lumping techniques, FETD

remained much more expensive than FDTD in terms of storage and, to a lesser extent, in

computational time. This ultimate problem was solved by using a mixed H(curl) − L2 formu-

lation of Maxwell’s equations based on H(curl)-conform definition of the curl operator in both

spaces [13]. This technique provides a local definition of the stiffness matrices which induces a

substantial gain of storage. It was later extended to acoustics [6] and linear elastodynamics [7].

A detailed presentation of all these techniques can be found in [5].

Unfortunately, although H1 spectral elements and H1 and H(curl) triangular and tetra-

hedral elements behave quite well for any mesh, H(curl) spectral elements present important

parasitic waves for very distorted meshes, which are often used in industrial problems. For

this reason, discontinuous Galerkin methods appeared as an efficient alternative for Maxwell’s

equations. First introduced by Hesthaven [21] for tetrahedra, this approach was adapted by

Cohen et al. [9] to the spectral element point of view, which provided a low-storage as well

as fast method to solve Maxwell’s equations. This approach seemed to deal better with para-

sitic waves but eigenvalues considerations showed that such waves were however present in this

method. All these remarks motivated us to discuss the numerical dissipation terms which can

attenuate parasitic waves. This discussion is the new part of our survey.

Our paper is divided into four parts. In a first section, we present the continuous formula-

tions of the Maxwell’s equations and different approaches for its approximation. In the second

section, we discuss the parasitic modes through an eigenvalue analysis. In the third section, we

introduce dissipative jump terms to get rid of parasitic modes. The last section is devoted to

the approximation of the time-harmonic problem by the methods described in the first section.

Finally, some numerical experiments are presented.

2. Different Approximations of the Problem

2.1. Formulations of the continuous problem

In this paper, we are interested in solving the so-called lossy Maxwell’s equations in anisotropic

media which read
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Find ( ~E, ~H): Ω×]0, T [→ R
3 such that

ε
∂ ~E

∂t
−∇× ~H + σ ~E = − ~J, (2.1a)

µ
∂ ~H

∂t
+ ∇× ~E = 0, (2.1b)

where ~J is a given function of time and space which can model a pulse or a plane wave. ε, σ and

µ are the permittivity, conductivity and permeability which can take into account heterogeneous

and anisotropic media.

To these equations, we add homogeneous initial conditions on ( ~E, ~H) and the perfectly

conducting condition ~E × ~n = 0 on ∂Ω.

By plugging Eq. (2.1b) in (2.1a), this system can be expressed as the following unique

equation in ~E:

ε
∂2 ~E

∂t2
+ ∇×

(
µ−1

(
∇× ~E

))
+ σ

∂ ~E

∂t
= −~J ′, (2.2)

where ~J ′ = ∂ ~J/∂t.

2.2. General issues

2.2.1. Some general principles

In this section, we introduce some basic principles which will be used for the different approxi-

mations of the Maxwell’s problem described below.

1. Let us first define the fundamental space for Maxwell’s equations

H0( ~curl,Ω) =
{
~vh ∈

[
L2(Ω)

]3
such that ∇× ~vh ∈

[
L2(Ω)

]3
}
. (2.3)

Functions of this functional space are characterized by the continuity of their tangential

component.

2. For any quadrilateral or hexahedral mesh, basis functions are defined on the reference

element K̂ which is the unit square in 2D and the unit cube in 3D. These functions

(generally called hat functions because indicated by a hat) are functions of ~̂x ∈ K̂. Then,

a basis functions in any element Kj of a mesh Q is obtained by a transform based on ~Fj

such that ~Fj(K̂) = Kj. Obviously, this basis function depends on ~x = ~Fj(~̂x).

In our different approximations, we use the H(curl)-conform transform which maps a hat

vector basis function ~̂ϕ onto a basis function ~ϕ on Kj as follows:

~ϕ ◦ ~Fj = DF ∗−1
i ~̂ϕ,

where DF ∗−1
i is the inverse of the transposed Jacobian matrix of ~Fj .

This transform is called H(curl)-conform because it ensures the continuity of the tangen-

tial component of ~ϕ all over the mesh (cf. the appendix of [5]).

3. Another important point in the following is the use of mass lumping. This property

is obtained by defining interpolation points for the basis functions (which are basically

Lagrange interpolation polynomials) as quadrature points and by computing mass inte-

grals by the corresponding quadrature formula. In the case of Maxwell’s equations, this

technique provides block-diagonal mass matrices.
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2.2.2. A general framework for edge elements

The edge element methods are based on the following variational formulation of problem (2.2):

Find ~E ∈ L2(0, T ;H0( ~curl,Ω)) such that

d2

dt2

∫

Ω

ε ~E · ~ϕd~x +

∫

Ω

µ−1
(
∇× ~E

)
· ∇ × ~ϕd~x+

d

dt

∫

Ω

σ ~E · ~ϕd~x

= −

∫

Ω

~J ′ · ~ϕd~x, ∀~ϕ ∈ H0( ~curl,Ω). (2.4)

Then, we construct an edge element approximation based on this variational formulation which

reads

Find ~Eh ∈ L2(0, T ; ~V r
h ) such that

d2

dt2

∫

Ω

ε ~Eh · ~ϕh d~x+

∫

Ω

µ−1
(
∇× ~Eh

)
· ∇ × ~ϕh d~x+

d

dt

∫

Ω

σ ~Eh · ~ϕh d~x

= −

∫

Ω

~J ′ · ~ϕh d~x, ∀~ϕh ∈ ~V r
h . (2.5)

2.3. A first family of edge elements

For the first family of edge elements (defined in [24]), we have,

~V r
h = {~vh ∈ H0( ~curl,Ω) such that ∀Kj ∈ Q,

DF ∗
i ~vh|Kj

◦ ~Fj ∈ Qr−1,r,r ×Qr,r−1,r ×Qr,r,r−1}, (2.6)

where

Qr1,r2,r3
=

{
p(~x) =

r1∑

ℓ=0

r2∑

m=0

r3∑

n=0

aℓ,m,n x
ℓ
1x

m
2 x

n
3 , aℓ,m,n ∈ R

}
. (2.7)

For spectral edge elements, the basis functions on K̂ for this family are constructed from

1D Lagrange interpolation polynomials based on Gauss and Gauss-Lobatto quadrature points

(denoted (ξ̂G
ℓ , ℓ = 1, · · · , r) and (ξ̂GL

ℓ , ℓ = 1, · · · , r + 1) respectively). For each set of points,

the corresponding polynomials are denoted ĝℓ and l̂ℓ respectively. For instance, the function of

Qr−1,r,r ×Qr,r−1,r ×Qr,r,r−1 corresponding to the point
(
ξ̂G
ℓ , ξ̂

GL
m , ξ̂GL

n

)
∈ K̂ reads

~̂ϕℓ,m,n(x̂1, x̂2, x̂3) = ĝℓ(x̂1)l̂m(x̂2)l̂n(x̂3)~e1,

where ~e1 is the first basis vector of R
3. In the same way, functions corresponding to points with

a Gauss coordinate as second (resp. third) coordinate, are supported by ~e2 (resp. ~e3).

For any ĝℓ and any ξ̂G
m and for any l̂ℓ and any ξ̂GL

m , we have ĝℓ(ξ̂
G
m) = δℓm and l̂ℓ(ξ̂

GL
m ) = δℓm,

where δℓm is the Kronecker symbol.

The corresponding degrees of freedom on faces are given in Fig. 2.1.

2.4. A second family of edge elements

The definition of ~V r
h for the second family of edge elements is much simpler. It reads

~V r
h = {~vh ∈ H0( ~curl,Ω) such that ∀Kj ∈ Q, DF ∗

i ~vh|Kj
◦ ~Fj ∈ (Qr)

3
}, (2.8)
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Fig. 2.1. The degrees of freedom of the first family of edge elements for ~E on faces of cubes when r = 2.

where Qr = Qr,r,r, Qr,r,r defined as in (2.7).

For spectral edge elements, the basis functions on K̂ for this family are constructed from 1D

Lagrange interpolation polynomials based on Gauss-Lobatto quadrature points. For any point ℓ,

the corresponding polynomial is denoted ϕ̂ℓ. For instance, the function of (Qr)
3

corresponding

to the point
(
ξ̂GL
ℓ , ξ̂GL

m , ξ̂GL
n

)
∈ K̂ in the ~ep-direction reads

~̂ϕ
p

ℓ,m,n(x̂1, x̂2, x̂3) = ϕ̂ℓ(x̂1)l̂ϕ(x̂2)l̂ϕ(x̂3)~ep.

Moreover, we have

~̂ϕ
p

ℓ,m,n(ξ̂GL
i , ξ̂GL

j , ξ̂GL
k ) = δℓiδmjδnk~ep.

The corresponding degrees of freedom are given in Fig. 2.2.

This method provides a block-diagonal mass matrix on any mesh. This structure is obtained

by numbering sequentially the ni degrees of freedom around a point i and by using a Gauss-

Lobatto quadrature formula for computing the mass (and also stiffness) integrals. Therefore,

the size of a block is equal to ni.

2.5. Mixed formulation

Although the above method solves the problem of mass lumping, which is important in terms

of computational time, due to theH(curl)-conform transform, the storage of the stiffness matrix

on non-orthogonal meshes remains substantial. This storage is still a drawback of FETD, even

mass-lumped, versus FDTD. A way to overcome this problem is to use a mixed formulation.

In order to write this new approach, we use equations (2.1a)-(2.1b) with the following

variational formulation:

d

dt

∫

Ω

ε ~E · ~ϕd~x−

∫

Ω

~H · ∇ × ~ϕd~x+

∫

Ω

σ ~E · ~ϕd~x = −

∫

Ω

~J · ~ϕd~x, ∀~ϕ ∈ H0( ~curl,Ω), (2.9a)

d

dt

∫

Ω

µ ~H · ~ψ d~x+

∫

Ω

∇× ~E · ~ψ d~x = 0, ∀~ψ ∈
[
L2(Ω)

]3
, (2.9b)
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Fig. 2.2. The degrees of freedom of the second family of edge elements for ~E on faces of cubes when

r = 2.

which provides the approximate problem

d

dt

∫

Ω

ε ~Eh · ~ϕh d~x−

∫

Ω

~Hh · ∇ × ~ϕh d~x+

∫

Ω

σ ~Eh · ~ϕh d~x = −

∫

Ω

~J · ~ϕh d~x, ∀~ϕh ∈ ~V r
h ,(2.10a)

d

dt

∫

Ω

µ ~Hh · ~ψh d~x+

∫

Ω

∇× ~Eh · ~ψh d~x = 0, ∀~ψh ∈ ~W r
h , (2.10b)

where

~W r
h = {~vh ∈

[
L2(Ω)

]3
such that ∀Kj ∈ Q, DF ∗

i ~vh|Kj
◦ ~Fj ∈ (Qr)

3
}. (2.11)

Basis functions of ~W r
h are constructed exactly in the same way as in Section 2.4 but they

are discontinuous. In fact, this discontinuous character makes useless the use of the H(curl)-

conform transform which ensures the tangential continuity. Its presence in ~W r
h is an artifact to

provide an important gain of storage based on the following identity:

∀Kj ∈ Q, ∀~ϕh ∈ ~V r
h , ∀

~ψh ∈ ~W r
h ,

∫

Kj

∇× ~ϕh · ~ψh d~x = sign(Jj)

∫

K̂

∇̂ × ~̂ϕh · ~̂ψh d~̂x, (2.12)

where ∇̂ is the ∇ operator in ~̂x coordinates, Jj = detDFi and ~̂ϕh = DF ∗
i ~ϕh|Kj

◦ ~Fj .

Identity (2.12) means that the knowledge of the stiffness matrix on K̂ implies its knowledge

on any element Kj (modulo one sign per element). In other words, if one assemblies the

stiffness matrix at each time-step (which is a low-cost operation, in particular for higher-order

approximations), the storage of the stiffness matrix is reduced to its storage over K̂ (which is

peanuts!), the storage of one sign per element and the storage of the mass matrix of (2.10b)

which is a 3×3 block-diagonal matrix. Of course, this induces a huge gain of storage, as indicated

by the left curve of Fig. 2.3. Besides this gain of storage, due to orthogonality properties of the

basis functions over K̂, this approach also induces a substantial gain of CPU time, as one can

see in the right curve of Fig. 2.3.

By using a leapfrog scheme in time, (2.10a)-(2.10b) can be written as follows in its discrete
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Fig. 2.3. Storage (left) and CPU time (right) ratios for spectral elements and mixed spectral elements

for the same number of degrees of freedom.

form

Bε
En+1 − En−1

∆t
−Rh Hn+1/2 +Bσ

En+1 + En

2
= 0, (2.13a)

Bµ
Hn+1/2 − Hn−1/2

∆t
+R∗

h En = 0, (2.13b)

where Bε, Bσ are ni × ni block-diagonal mass matrices, Bµ is a 3 × 3 block-diagonal mass

matrix and Rh is a stiffness matrix which needs almost no storage.

A detailed description of the above methods can be found in [5].

Remarks:

1. The mixed formulation was also applied to the acoustics equation [6] and the linear

elastodynamics system [7].

2. A proof of the equivalence between the approximations defined in (2.4) and in (2.10a)-

(2.10b) is given in Pernet’s thesis [26]. This proof is a powerful generalization of the

equivalence theorem proven in [6].

3. This mixed formulation can also be applied to the first family of edge elements. Al-

though inefficient in terms of mass lumping on non-orthogonal meshes for this family, this

formulation provides a fast algorithm of matrix-vector product very useful for the time-

harmonic problem, as discussed in Section 4. More generally, mixed spectral elements

enable to isolate the geometry from the differential operators. This property provides a

fast matrix-product technique which can be efficiently use for a large class of hyperbolic

problems.

4. Another approximation of (2.9a)-(2.9b) for the first family of edge elements, in which[
L2(Ω)

]3
is replaced by H(div,Ω), is given in [12]. This approach leads to a variational

generalization of the Yee’s scheme at any order.
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2.6. Discontinuous Galerkin methods

2.6.1. Description of the method

In a discontinuous Galerkin method (DGM), the solution is sought in
[
L2(Ω)

]3
. So, one cannot

express a continuous variational formulation. The approximate problem reads as follows.

For each Kj ∈ Q, we set
∫

Kj

ε
∂E

∂t
· ψ dx = −

∫

Kj

σE · ψ dx+

∫

Kj

∇× H · ψ dx −

∫

Kj

~J · ψ dx

+α

∫

∂Kj

[[H × n]]
Kj

∂Kj
· ψ ds− β

∫

∂Kj

[[n× E]]
Kj

∂Kj
· (n × ψ) ds, (2.14)

∫

Kj

µ
∂H

∂t
· φdx = −

∫

Kj

∇× E · φdx+ γ

∫

∂Kj

[[E× n]]
Kj

∂Kj
· φds

− δ

∫

∂Kj

[[n× H]]
Kj

∂Kj
· (n × φ) ds, (2.15)

where α, β, γ, δ are real constants, φ ∈ ~W r
h , ψ ∈ ~W r

h and [[v]]
Kj

∂Kj
is the jump of a vector-valued

function v across the boundary of Kj.

Basis functions of ~W r
h are constructed exactly in the same way as in Section 2.5. Now, the

discontinuous character of these basis functions allows us to use either Gauss-Lobatto or Gauss

points as interpolation and quadrature points. A dispersion analysis of the schemes obtain

by using each set of points shows a better accuracy for Gauss points which actually provide

an exact value of the integrals. However, since some of the points are located on the faces of

the unit cube, Gauss-Lobatto points give an immediate definition of the jumps whereas Gauss

points require an extrapolation. However, due to orthogonality properties, this extrapolation

is 1D and induces a reasonable additional cost [9, 26].

2.6.2. Discrete energy analysis

If we compute the discrete energy of (2.14)-(2.15) (when σ = 0 and ~J = 0)

E(t) =
∑

Ki⊂Ω

{∫

Ki

(ǫ ~EKi
) · ~EKi

dx+

∫

Ki

(µ ~HKi
) · ~HKi

dx

}
,

one can show that, for −α = γ = 1
2 , α ≥ 0 and δ ≥ 0, we get

dE

dt
(t) =

∑

Ki∩Kj

{−β‖[[~n× ~E]]Ki∩Kj
‖2
Γ−δ‖[[~n× ~H]]Ki∩Kj

‖2
Γ}, (2.16)

which provides a decreasing energy when β > 0 and δ > 0 and so, a dissipative approximation of

the problem. On the other hand, if we set β = 0 and δ = 0, we get a conservative approximation.

Now, the discrete form of this approximation with a leapfrog scheme in time reads

Bε

~En+1 − ~En

∆t
+Bσ

~En+1 + ~En

2
−Rh

~Hn+1/2 + αSh
~Hn+1/2 − β Dh

~En + ~Jn+1/2 = 0, (2.17)

Bµ

~Hn+1/2 − ~Hn−1/2

∆t
+Rh

~En + γ S∗
h
~En − δ D∗

h
~Hn−1/2 = 0, (2.18)

where Bε, Bσ and Bµ are 3 × 3 block diagonal mass matrices, Rh is a stiffness matrix which

needs to be stored on the unit element, Sh is a jump matrix which needs to be stored on the



290 G. COHEN AND M. DURUFLÉ

Fig. 2.4. Splitting a tetrahedron into four hexahedra.

unit element and Dh is a jump matrix which needs to be stored (its storage is equivalent to that

of a mass matrix). Moreover, the jump terms in which Dh appear need to be uncentered in

order to keep the scheme explicit, which introduces some numerical dissipation. However, this

is not too much troublesome since these two terms are themselves dissipative. So, in order to

reduce the storage and to avoid numerical dissipation, it seems a priori better to set β = δ = 0.

This was our first choice, as described in details in [9, 26].

Remarks:

1. Plane wave analysis and error estimates can be found in [26]. Error analysis shows that,

due to the presence of DFi which is bilinear on non-regular meshes, a Qr approximation

is of order r − 1. In particular, this implies that the first-order approximation is not

consistent on non-regular meshes. This theoretical result was confirmed by numerical

experiments.

2. For Gauss-Lobatto rules, one can center the dissipative terms and remain explicit. In

particular, this property ensures to keep the same stability condition for any value of β

and δ. For Gauss rules, the uncentered character of these terms induces a loss of stability

(≃ 10% for β = 0.1).

2.7. Numerical issues

Both DGM and the second family of edge elements on slightly non-regular meshes provided

performant results in 2D and 3D in terms of storage and CPU time. In particular comparisons

with FDTD showed its efficiency [8]. Such meshes are easy to construct in 2D but not always

possible to get in 3D. In fact, for complex geometries, it is difficult to obtain a purely hexahedral

mesh. A palliative to this difficulty is to produce a hexahedral mesh from a tetrahedral mesh

by splitting each tetrahedron into four hexahedra, as shown in Fig. 2.4. Unfortunately, this

technique leads to very distorted meshes which produces very important parasitic waves.
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3. Eigenvalue Analysis

Since one can write a spectral decomposition the solution of Maxwell’s equations, the study

of the eigenvalues problem related to the Maxwell’s equations in their continuous or discrete

form can exhibit possible parasitic modes.

In [14], the problem of spurious modes for nodal elements is dealt. The author suggests

a weighted regularization to avoid these spurious modes. In [1], the second family is shown

as spectrally non-correct in the case of rectangular meshes. The authors proved that “hp”

elements based on the first family for rectangular meshes provide a spurious-free method. Buffa

and Perugia [2] treat the Maxwell eigenvalue for several Discontinuous Galerkin formulations:

interior penalty IP, non-symmetric interior penalty NIP and Local Discontinuous Galerkin

(LDG), which is the formulation we use. The authors conclude that the formulation is spurious

free for first and second family on tetrahedra and for first family on hexahedra. Nevertheless,

they think that the method has spurious modes for the second family. Our study will focus on

the second family, in order to give a new enlightenment.

Fig. 3.1. Test meshed cavities in 2D and 3D.

Our eigenvalue analysis is developed on two test cases which are unit square and cubic cavi-

ties meshed by using split triangles or tetrahedra as shown in Fig. 3.1 with a Q3 approximation.

For these two cavities, we compute the eigenvalues in the range of frequencies contained in the

solution.

3.1. Discontinuous Galerkin methods

For DGM without numerical dissipation (i.e. β = δ = 0), the behaviour of the eigenvalues

is somehow strange. In 2D, we only get one parasitic eigenvalue but a huge amount of such

eigenvalues appear in 3D (Fig. 3.2). If we compare with the second family of edge elements

(Fig. 3.6), we get about 25 times more parasitic eigenvalues in 3D!

An efficient way to get rid of these parasitic eigenvalues is to introduce some numerical

dissipation (i.e. to set β > 0 or/and δ > 0). In this way, the parasitic eigenvalues become

all complex with a negative imaginary part. This last property implies that all the parasitic

waves become evanescent. In Fig. 3.3, we show the eigenvalues obtained by setting β = 0.1
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Fig. 3.3. Eigenvalues in the complex plane for β = 0.1 (left) and β = 0.5 (right) computed with DGM.

then = 0.5 and δ = 0 in 3D. One can notice that for both values of the parameter, a lot of

parasitic eigenvalues are not too much affected by the change of parameter.

The effect of numerical dissipation on the solution can be seen in Fig. 3.4, in which we show

snapshots of the solution (on the x-y plane) in a unit cubic cavity after a wave travel of 30

wavelengths. An interesting question is “how the overall accuracy on the solution depends on

the penalization parameter β ?”. In order to answer to this question, we compute the solution,

in time-harmonic domain, in a cubic cavity meshed by tetrahedra split into hexahedra, for

different values of β. The results are displayed in Fig. 3.5. As the reader can see, the error is

large when β = 0, and for β > 0.1, the error is quite small. An “optimal value” can be seen

around β = 2, but the accuracy is not very sensitive to the variations of β.

3.2. Second family of edge elements

In the 2D and the 3D case, edge elements present a substantial number of parasitic eigenval-

ues, even more important in 3D, as shown in Fig. 3.4. These parasitic eigenvalues confirm the
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Fig. 3.4. Snapshots of the solution (on the x-y plane) in unit cubic cavity after a wave travel of 30

wavelengths for β = 0 (left) and β = 0.1 (right) computed with DGM.

presence of parasitic waves in the solution. A priori, these parasitic eigenvalues seem to make

this family of edge elements inefficient. However, this problem can be overcome in a similar

way as DGM, by adding some numerical dissipation to this approximation. These dissipative

terms can be introduced in (2.10a)-(2.10b) as follows

∑

Kj∈Q

{
d

dt

∫

Kj

ε ~Eh · ~ϕh d~x−

∫

Kj

~Hh · ∇ × ~ϕh d~x+

∫

Kj

σ ~Eh · ~ϕh d~x

− β′

∫

∂Kj

[[E · n]]
Kj

∂Kj
(ψ · n) ds+

∫

Kj

~J · ~ϕh d~x

}
= 0, ∀~ϕh ∈ ~V r

h , (3.1a)

∑

Kj∈Q

{
d

dt

∫

Kj

µ ~Hh · ~ψh d~x +

∫

Kj

∇× ~Eh · ~ψh d~x

− δ′
∫

∂Kj

[[n × H]]
Kj

∂Kj
· (n × ~ψh) ds

}
= 0, ∀~ψh ∈ ~W r

h . (3.1b)

As for (2.14)-(2.15), one can write the following energy identity:

dE

dt
(t) =

∑

Ki∩Kj

{−β′‖[[~n · ~E]]Ki∩Kj
‖2
Γ−δ

′‖[[~n× ~H ]]Ki∩Kj
‖2
Γ}. (3.2)

The use of the above dissipative terms provides the same effect as for DGM on the eigenvalues

as shown in Figs. 3.7 and 3.8.

Remarks:

1. The dissipative term in (3.1a) is not equal to zero because only the tangent components

of ~E are continuous.

2. The dissipative term in (3.1b) is similar to this of DGM but was not yet tested.

3. Both for DGM and edge elements, the dissipation was tested in cavities for very long

times (even for time-harmonic problems) for Q3 and higher-order approximations. For all

these experiments, we did not notice substantial effect on the amplitudes of the solutions.
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Fig. 3.5. Relative error made on the numerical solution according to the parameter β, for a Q3

approximation (left) and a Q5 approximation (right).
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3.3. The case of the first family

The first family of edge elements does not provide mass-lumping on non-orthogonal meshes.

However, this family is very useful for time-harmonic problem, as we shall see in the next

section. Its efficiency is based on a fast matrix-vector product but also on the fact that, for

some quadrature rules, this family is free of spurious modes

In fact, due to the structure of its degrees of freedom, both Gauss and Gauss-Lobatto

quadrature rules are suitable to this family. For the mass matrices, Gauss points lead to non

invertible mass matrices whereas Gauss-Lobatto quadrature rules behave well. The stiffness

matrices can also be computed by both quadrature rules. However, as shown in Fig. 3.9, the

Gauss-Lobatto rule leads to a spurious-free approximation.

4. Time-Harmonic Problems

In this section, we only study the first family, which is spurious free and which needs less

storage than other methods to reach the same accuracy.
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Fig. 3.7. Eigenvalues in the complex plane for β′ = 0.1 (left) and β′ = 0.5 (right) and δ′ = 0 computed

with the second family of edge elements.

Fig. 3.8. Snapshots of the solution (on the x-y plane) in unit cubic cavity after a wave travel of 30

wavelengths for β′ = 0 (left) and β′ = 0.1 (right) and δ′ = 0 computed with the second family of edge

elements.

4.1. Fast matrix-vector product

After applying the Fourier transform in time and discretizing the variational formulation

(2.5), we get the following linear system:

−ω2MhEh + KhEh = Fh. (4.1)

The mass matrix Mh and stiffness matrix Kh can be written as

(Mh)j,k =

∫

Ω

εϕj · ϕk,

(Kh)j,k =

∫

Ω

µ−1 ∇× ϕj · ∇ × ϕk.
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Fig. 3.9. Eigenvalues for the 3D first family of edge elements with Gauss (left) and Gauss-Lobatto

(right) quadrature rules for the stiffness matrix. Physical eigenvalues are indicated by red lines.

After a change of variables, the integrands are computed over the unit cube K̂ as follows

(Mh)j,k =

∫

K̂

Ji DF
−1
i εDF−t

i ϕ̂j · ϕ̂k,

(Kh)j,k =

∫

K̂

1

Ji
DF ∗

i µ
−1 DFi ∇̂ × ϕ̂j · ∇̂ × ϕ̂k.

We have supposed here that Jacobian Ji is always positive. This can be obtained by a permu-

tation on the local numbers of the vertices in each hexahedron.

These two matrices are computed by using Gauss-Lobatto quadrature rules. We need then

to compute the following 3 × 3 symmetric matrices (Ah)k,k and (Bh)k,k at each quadrature

point ξGL
k :

(Ah)k,k = ωGL
k JiDF

−1
i εDF−t

i (ξ̂GL
k ),

(Bh)k,k =
ωGL

k

Ji
DF ∗

i µ
−1DFi(ξ̂

GL
k ).

Matrices Ah and Bh are block-diagonal matrices, with 3 × 3 symmetric blocks. An “interpola-

tion” operator Ĉ is defined by

Ĉj,k = ϕ̂j(ξ̂
GL
k ).

In the same way, a discrete “curl” R̂ operator is defined by

R̂j,k = ∇̂ × ϕ̂GL
j (ξ̂GL

k ),

where functions ϕ̂GL
j are basis functions associated to Gauss-Lobatto points. The reader can

notice that matrix R̂ is the same as the stiffness matrix introduced for the mixed formulation.

Theorem 4.1. With the previous notations, we get the following factorizations:

Mh = Ĉ Ah Ĉ
∗, Kh = Ĉ R̂ Bh R̂

∗ Ĉ∗.

Proof. Let us write the elementary mass matrix by using quadrature rules

(Mh)j,k =

(r+1)3∑

m=1

(Ah)m,m ϕ̂j(ξ̂
GL
m ) · ϕ̂k(ξ̂GL

m ).
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If we denote Fh the matrix such that

(Fh)j,m = (Ah)m,m ϕ̂j(ξ̂
GL
m ),

we have a classical matrix-matrix product

Mh = FhĈ
∗.

Matrix Fh can be easily decomposed as

Fh = Ĉ Ah.

The factorization of the elementary mass matrix is proven. In the same way, we write the

elementary stiffness matrix

(Kh)j,k =

(r+1)3∑

m=1

(Bh)m,m ∇̂ × ϕ̂j(ξ̂
GL
m ) · ∇̂ × ϕ̂k(ξ̂GL

m ).

As for the mass matrix, we have the following factorization

Kh = Ŝ Bh Ŝ
∗,

where matrix Ŝ is defined by

Ŝ = ∇× ϕ̂j(ξ̂
GL
k ).

Ŝ is different from R̂, because we take basis functions of the first family instead of basis functions

associated to Gauss-Lobatto points. But we claim the identity (4.2):

Ŝ = Ĉ R̂. (4.2)

Because of polynomial inclusion (Qr−1,r,r ×Qr,r−1,r ×Qr,r,r−1 ⊂ Q3
r), we have

ϕ̂j(x̂) =

3(r+1)3∑

m=1

Ĉj,m ϕ̂GL
m (x̂).

By taking the curl of this expression, and for all x̂ equal to a Gauss-Lobatto point, we get

∇̂ × ϕ̂j(ξ̂
GL
k ) =

3(r+1)3∑

m=1

Ĉj,m ∇̂ × ϕ̂GL
m (ξ̂GL

k ).

By definition of the operators, this can be rewritten as

Ŝj,k =

3(r+1)3∑

m=1

Ĉj,mR̂m,k.

Identity (4.2) is proven, as well as the factorization of the elementary stiffness matrix.

Complexity of the matrix-vector product (−ω2Mh + Kh)Xh is in O(r4). Moreover, the

number of operations is equal to : ((r+1)3 [24(r+1) + 12 r + 30])Ne, where Ne represents the

number of hexahedra of the mesh. The required storage is equal to 12 (r + 1)3Ne coefficients,
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Fig. 4.1. At left, computational time according to the order of approximation, at right storage required.

A standard matrix-vector product (by storing the full matrix) and the fast matrix-vector are compared.

which is equivalent to four vectors if r is large enough. In order to compare the different orders

of approximation, we compute the two quantities:

Computational cost

Number of d.o.f.s
,

Storage cost

Number of d.o.f.s
.

These quantities are displayed in Fig. 4.1 As we can see in this figure, the fast matrix-vector

product is more efficient than standard matrix-vector product for order greater or equal to 3,

and also leads to a lower storage than the standard method for order greater or equal to 2.

Remark: The factorization is also true if an almost-”exact” integration is used (k + 1 Gauss

points instead of k+1 Gauss-Lobatto points). In this case, R̂ has the same sparsity pattern, but

Ĉ is a full matrix. Fortunately, thanks to tensorization of basis functions on the hexahedron,

the triple sum induced by the matrix-vector product ĈX can be decomposed into three single

sums. By doing that, we use an implicit factorization: Ĉ = Ĉ1 Ĉ2 Ĉ3, where the intermediaries

matrices Ĉ1, Ĉ2 and Ĉ3 are sparse. A fast matrix-vector is obtained, but it is slower than

the fast matrix-vector product obtained with approximate integration. More precisely, it is 67

% slower, if we use exact integration with no improvement in accuracy. This difference was

confirmed numerically.

4.2. Preconditioning technique

The iterative solver used is an iterative solver which only works for complex symmetric

matrices. It is called BICGCR (BIConjugate Gradient Conjugate Residual method) and is

described in [4]. Numerical experiments show the superiority of this solver over classical COCG,

GMRES or BICGSTAB [15]. Nevertheless, the number of iterations can be very large for high

frequency problems with heterogeneities, and for fine meshes. In order to be efficient for the

linear system, this basic iterative solver needs to be accelerated by a preconditioning technique.

The main idea of the preconditioning technique used in this article, is to consider damped

Maxwell equations by taking ε′ complex of the form

ε′ = ε (θ + iη).
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Table 4.1: Number of iterations of BICGCR for a perfectly conducting sphere, and memory used for

factorization. The preconditioning used is incomplete factorization on the finite element matrix Q1.

Threshold 1e− 4 1e− 3 0.01 0.05 0.08 0.1

θ = 1, η = 0 30/370 Mo ∞/350 Mo ∞/340 Mo ∞/326 Mo ∞/318 Mo ∞/314 Mo

θ = 1, η = 0.5 55/299 Mo 55/242 Mo 55/149 Mo 82/74 Mo 116/55 Mo 145/47 Mo

θ = 1, η = 1 97/244 Mo 97/197 Mo 99/108 Mo 110/53 Mo 133/40 Mo 155/34 Mo

=⇒

F
−1

i

K̂

Fig. 4.2. Subdivided Q1 mesh of a elementary quadrilateral Q2 transformation Fi to go from unit

square to a small square of the subdivided mesh.
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Fig. 4.3. At left, time for 1 000 iterations of COCG on a test-case of 200 000 d.o.f.s. At right, storage

required before iterative solving (iterations vectors are not included).

Damping is obtained under the assumption η > 0. The preconditioner is constructed on the

damped Maxwell equations, while non-damped Maxwell equations are solved.

The effect of damping is to “localize” the inverse of the matrix so that the incomplete fac-

torization works fine. In Table 4.1, we put the number of iterations of BICGCR preconditioned

by ILUT, according to η and different values of the threshold. The incomplete factorization is

called ILUT [27], but we only store the U factor, considering that the L factor can be recovered

by symmetry. We can see that, if you don’t use damping, the incomplete factorization crashes

very fast, and there is no gain in storage. The gain in storage increases with damping, but also

the number of iterations. The parameters chosen will be equal to (1, 1) for all other numerical

experiments of the paper.

In order to have a low storage, we use a subdivided a Q1 mesh to compute a Q1 matrix.

The procedure can be summarized by Fig. 4.2. There is an exact matching between degrees
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Fig. 5.1. The dielectric spherical torus.

of freedom (d.o.f.s) of the high-order mesh and d.o.f.s of low-order provided a diagonal scaling.

This diagonal scaling is due to the transform DF ∗−1
i incorporated in the definition of the basis

functions.

4.3. Cost of the matrix-vector product. Comparison with tetrahedra

In this section, we numerically compare hexahedral and tetrahedral elements for the first

family. The results are summarized in Fig. 4.3. The mesh and the matrix are main components

of the storage requirement. For Q1 and R1, the mesh represents the main part. As we can see,

the storage needed decreases for hexahedra, whereas it dramatically increases for tetrahedra.

The hexahedral elements provide a matrix-vector product which becomes faster than for tetra-

hedral elements for an order of approximation greater or equal to 3. In practice, the use of high

order for tetrahedra of the first family is quite difficult because of this high storage.

5. Numerical Results

5.1. A dielectric spherical torus

In this experiment, we treat a metallic sphere coated by a dielectric layer (Fig. 5.1) in the

time domain. The radius of the sphere is equal to 0.5m whereas the width of the dielectric is

0.25m. The relative permittivity εr in the dielectric is equal to 10. This sphere is illuminated

by a Gaussian plane wave of frequency 0.5 GHz.

In Fig. 5.2, we give the comparison of the value of the electric field at the point (-0.76,0)

computed by FDTD (10 and 20 points per wavelength) and our method with a mesh composed

of 16984 hexahedra (obtained by split tetrahedra adapted to the wavelength) for Q3 and Q5

approximations. The FDTD with 20 points/λ requires 1100s of CPU versus 300s for the Q3

DG approximation and 10 times more storage for a very bad accuracy in long times.

5.2. The Cobra cavity

The scattering of a cobra cavity in the time-harmonic domain is studied (cf. Fig. 5.3). Its

length is 3m and a plane wave of frequency 1 GHz illuminates its open end. If we want to
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Table 5.1: Efficiency of first family on cobra cavity.

Order Number d.o.f.s Error on the RCS BICGCR ILUT(0.05)

Q4 412 000 0.45 dB 14 039 s 2 247 s

34 800 (47Mo) 1 900 (391 Mo)

Q6 187 000 0.4 dB 12 096 s 846 s

41 500 (22Mo) 1 700 (161 Mo)
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Fig. 5.2. Ey component of the electric field at a point of the domain after propagation across 10

wavelengths (left) and 120 wavelengths (right).

Fig. 5.3. At left mesh of the cavity, at right real part of x-component of electric field.

obtain an error less than 0.5 dB for the RCS (see Fig. 5.4), we get results of Table 5.1. For a

Q6 approximation, we need 187 000 d.o.f.s, the computational time is 846s, if we use the ILUT

preconditioner. The iterative solver converged in 1700 iterations and needs 161 Mo of storage.
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Fig. 5.4. Radar cross section for the cobra cavity.

Fig. 5.5. The surfacic mesh of the plane (before splitting into hexahedra) (left) and the final snapshot

(right).

In this case, we used curved hexahedral elements, in order to have a good approximation of the

geometry. For the definition of a curved Fi, we refer to the book of Solin et al. [28].

5.3. Scattering by an airplane

This last experiment illustrates the possibilities of the methods in terms of storage and

CPU time. We consider an airplane of length 11m in the time domain, illuminated by a time-

harmonic plane wave of frequency 0.75 GHz. The whole mesh (obtained by split tetrahedra)

contains about 78 000 elements and a Q4 DG approximation was used, which leads to about

30 000 000 of degrees of freedom. A local time-stepping technique was used and the dissipation

coefficient β defined in (2.14) is equal to 0.1. This experiment requires a storage of 0.8 Go and

the wave used 25 hours of CPU on a monoprocessor computer (2.4 Go and 3.2 GHz) to reach

the end of the plane. In Fig. 5.5, we show the triangular surfacic mesh (before splitting) and a

snapshot at the final time. We validated the accuracy of the solution by a comparison with a

Q5 approximation on the same mesh.
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6. Conclusion

Mixed spectral approximations provide fast and low-storage algorithms both in the time

domain and the time-harmonic domain, provided some numerical dissipation. Their advantage

over tetrahedral methods is obvious. On the other hand, time domain approximation can

efficiently compete with FDTD methods. However, the use of split tetrahedra for meshing

remains a handicap for the performance of the method. Some alternative meshing strategies

are under study.
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[18] Y. Haugazeau and P. Lacoste, Condensation de la matrice masse pour les éléments finis mixtes
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