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Abstract

In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of

Maxwell’s equations in an isotropic medium to the case of an anisotropic medium. We verify

that the underlying theoretical framework carries over to anisotropic media (however error

estimates are not yet available) and completely describe the new scheme. We then consider

TM mode scattering, show how this results in a Helmholtz equation in two dimensions

with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In

one special case, convergence can be proved. We then show some numerical results that

suggest that the UWVF can successfully simulate wave propagation in anisotropic media.

Mathematics subject classification: 65N30, 65N12
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1. Introduction

Electromagnetic wave propagation in anisotropic media arises in several applications includ-

ing ground penetrating radar [3], microwave interaction with wood [13] and biological materi-

als [20]. This paper is devoted to developing a method for approximating the electromagnetic

field propagating in anisotropic media, with particular attention to microwave interactions with

anisotropic (e.g. wooden) scatterers. This implies that the wavelength of the radiation is neither

very large nor very small compared to features of scatterers located in the medium.

We shall develop a Discontinuous Galerkin (DG) method for the anisotropic Maxwell system

with the novelty that local solutions of the anisotropic Maxwell system on each element are used

as basis functions. This requires us to impose the restriction that the matrix electromagnetic

parameters ǫ (permittivity) and µ (permeability) must be piecewise constant on each element

in the mesh. More precisely, the method we shall develop is an extension of the Ultra Weak

Variational Formulation (UWVF) of Cessenat and Després [4–6] to anisotropic media. The basic

UWVF has proved to be a convenient method for approximating electromagnetic scattering in

isotropic media. For example, in [17] we detail the connection of the UWVF to standard

DG methods, give several extensions to the basic UWVF and provide validation results using

standard electromagnetic scattering benchmark problems.

It is, of course, possible to handle anisotropic media in the classical finite element method

for Maxwell’s equations based on Nédélec’s [26] edge elements. We have found the UWVF to
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be competitive with the edge finite element method, and in [17] we show that the UWVF can

be more memory efficient then edge elements and is also easily parallelized for electromagnetic

applications. This motivates our extension of the UWVF to anisotropic media.

The UWVF is by no means the only technique that can be used to approximated wave

propagation by using local solutions of the Maxwell system as basis functions. The UWVF

resembles the basic Trefftz type finite element technique that has been applied to Maxwell’s

equations in [27, 28] although the variational statement is different. At least for the Helmholtz

equation, other methods include least squares techniques [21, 25, 30] and enriched finite ele-

ment methods [31, 32]. In a different direction, the Partition of Unity Finite Element Method

(PUFEM) constructs a conforming approximation space as a product of partition of unity

functions (usually finite element hat functions) and plane waves [1, 22, 23]. As yet there is

probably not enough experience with the various methods to declare one preferable to another

(for interesting comparison results for the Helmholtz equation in 2D see [12, 14]).

The plan of this paper is as follows. In the remainder of the introduction we shall describe

in more detail the problem we shall study. Then in Section 2 we show that the fundamental

mathematical result behind the UWVF for Maxwell’s equations still holds for anisotropic media.

This implies that the basic UWVF can be extended to anisotropic media, and we give details. In

Section 3 we examine the choice of basis functions. As usual we employ a basis of plane waves on

each element [4]. Plane wave propagation in anisotropic media is a classical topic in textbooks

on electromagnetism (see e.g. [7, 19]). We shall summarize some of the relevant results, derive

some consequences for the UWVF and then show how to use the plane waves to discretize

the anisotropic UWVF. Almost all theoretical questions related to the 3D UWVF approach to

anisotropic media are still open: in particular, the relevant approximation properties of sums

of anisotropic plane waves are not known.

In Section 4 we discuss the case of electromagnetic wave propagation in an orthotropic

medium. This reduces to solving the Helmholtz equation in two dimensions with an anisotropic

“diffusion” coefficient. This problem can also be approximated by an extension of the UWVF in

[4] to orthotropic media (or by a restriction of the above mentioned 3D UWVF to the orthotropic

case). In contrast to the 3D case, the known convergence theory for the 2D Helmholtz UWVF

can be extended to the anisotropic case in one case. We summarize the main steps and results.

In Section 5 we present some preliminary numerical results for an orthotropic medium.

These results show that the UWVF is a promising method for dealing with anisotropic media.

One interesting result is that since we can view the Perfectly Matched Layer (PML) [2,24] as a

special (non-physical) anisotropic medium, it can be implemented in a general anisotropic code

without further modification. Our results show that this method of implementing the PML

works as well as our previous implementation based on special plane waves [16, 17].

The model problem we shall investigate is to approximate the electric and magnetic fields

E and H (appropriately scaled [24]) that satisfy the Maxwell system

−ikǫrE −∇×H = 0

−ikµrH + ∇×E = 0

}

in Ω, (1.1)

where Ω is a bounded polyhedral domain. Here k is the wave-number of the radiation that is

related to the temporal frequency ω > 0, the permittivity of free space ǫ0 and the permeability

of free space µ0 by k = ω
√

ǫ0µ0. The relative permittivity ǫr is assumed to be a complex valued
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matrix function of position x in Ω. In particular

ǫr(x) =

(

1

ǫ0
ǫ(x) +

i

ωǫ0
σ(x)

)

,

where σ(x) is the conductivity and ǫ(x) is the permittivity of the material at x. Both ǫ(x) and

σ(x) can be real symmetric matrices and physically we can assume that ǫ is strictly positive

definite and σ is positive semi-definite. In an isotropic medium both ǫ and σ are multiples of the

identity matrix. In the same way the relative permeability µr(x) = µ−1
0 µ(x) and is assumed to

be a real strictly positive definite matrix function of position (ruling out ferromagnetic media

- although we shall briefly comment on extending to this case later). Due to limitations in

the UWVF we also need to assume that ǫr and µr are piecewise constant matrix functions of

position.

Besides the Maxwell system (1.1) we also need a boundary condition on Γ = ∂Ω. Denoting

by n the unit outward normal to Ω on the boundary Γ, the boundary condition we shall use is

written as

−E × n+ γ(H × n) × n
= Q(E × n+ γ(H × n) × n) + g on Γ = ∂Ω, (1.2)

where Q, |Q| ≤ 1, is a real valued scalar function of position on Γ, γ > 0 is a strictly positive

real valued function of position and g ∈ L2
t (Γ) is a given tangential field (L2

t (Γ) is defined,

as usual, to be the space of vector functions in
(

L2(Γ)
)3

with zero normal component almost

everywhere on Γ). The above boundary condition can be rewritten in the more standard form

−E × n+ Z(H × n) × n = f ,

where f = (1 + Q)−1g and the surface impedance Z is given by

Z =

(

1 − Q

1 + Q

)

γ, Q 6= −1,

showing that the boundary condition (1.2) is just a convenient form of the standard impedance

boundary condition that includes both perfectly conducting and magnetic wall boundary con-

ditions.

2. Derivation of the UWVF for Anisotropic Media

Our first goal is to derive the continuous UWVF applied to Maxwell’s equations in an

anisotropic medium. The crucial point is that a suitable “Isometry Lemma” holds. We start by

covering Ω by a mesh of tetrahedra denoted Th. The elements in Th are assumed to be regular

and have a maximum radius h (i.e. the radius of the circumscribed sphere for each element in

Th is less than h). We also assume that the mesh is such that ǫr and µr are constant on each

element K ∈ Th. In our numerical examples the mesh is provided by a finite element mesh

generator, so it is, in fact, a conforming tetrahedral grid in 3D and a triangular grid in 2D.

Let K denote an element in the mesh with boundary ∂K and outward normal nK . Let ψ

and ξ denote smooth vector functions of position in K and let γ denote a strictly positive real

valued function on ∂K (we shall make precise our choice shortly, but on Γ the choice of γ is
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determined by the boundary condition (1.2)). Then direct calculation shows that

∫

∂K

1

γ
(E × nK + γ(H × nK) × nK) · (ξ × nK + γ(ψ × nK) × nK) dA

=

∫

∂K

1

γ
(−E × nK + γ(H × nK) × nK) · (−ξ × nK + γ(ψ × nK) × nK) dA

− 2

∫

∂K

(E × nK · ψ̄ +H · ξ̄ × nK) dA,

where the over-bar denotes complex conjugation, and we have used the fact that (H × nK) ×
nK = −HT where HT is the tangential component of H on ∂K (and similarly for ψ). Using

the standard integral identity that for any sufficiently smooth vector functions a and b (in

particular if the two functions are square integrable and have a square integrable curl)

∫

K

∇× a · b dV =

∫

∂K

nK × a · b dA +

∫

K

a · ∇ × b dV

and then using the Maxwell system (1.1) we obtain

∫

∂K

E × nK · ψ̄ +H · ξ̄ × nK dA

=

∫

K

E · ∇ × ψ̄ −∇×E · ψ̄ + ∇×H · ξ̄ −H · ∇ × ξ̄ dV

=

∫

K

E · (∇× ψ̄ − ikǫrξ̄) −H · (∇× ξ̄ + ikµrψ̄) dV.

Thus if we choose ξ and ψ to be smooth solutions of the adjoint Maxwell system

−ikǭrξ −∇×ψ = 0

−ikµ̄rψ + ∇× ξ = 0

}

in K, (2.1)

we have verified the conclusion of the following “Isometry Lemma” (c.f. Théorèm 13 of [4]).

Lemma 2.1 (Isometry Lemma) Suppose (ξ,ψ) is a smooth solution of (2.1) and that (E,H)

is a square integrable solution of (1.1) with square integrable curl and such that E×nK +γ(H×
nK) × nK) ∈ L2

t (∂K). Then the following identity holds

∫

∂K

1

γ
(E × nK + γ(H × nK) × nK) · (ξ × nK + γ(ψ × nK) × nK) dA

=

∫

∂K

1

γ
(−E × nK + γ(H × nK) × nK) · (−ξ × nK + γ(ψ × nK) × nK) dA.

The UWVF can now be constructed in the usual way with the only change being the appropriate

modified adjoint problem. More precisely, for each element K, let

XK = E × nK + γ(H × nK) × nK
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and let YK ∈ L2
t (∂K) denote any vector test function. Then let (ξ,ψ) solve the adjoint Maxwell

system (2.1) together with the boundary condition

ξ × nK + γ(ψ × nK) × nK = YK on ∂K.

We can then define FK : L2
t (∂K) → L2

t (∂K) by

FK(YK) = −ξ × nK + γ(ψ × nK) × nK on ∂K.

Following Cessenat [4] and using the Isometry Lemma and the above definitions we have
∫

∂K

1

γ
XK · YK dA =

∫

∂K

1

γ
(−E × nK + γ(H × nK) × nK) · FK(YK) dA. (2.2)

Although this has been derived for smooth YK , this expression is well defined for YK ∈ L2
t (∂K)

provided XK ∈ L2
t (∂K) and hence we may extend the conclusion of the Isometry Lemma to

this case. Recalling that if K ′ is another element in the mesh and K ′ ∩K = f where f is a face

in the mesh then nK = −nK′

so using the continuity of tangential electric and magnetic fields

across surfaces for solutions of (1.1) we have

−E × nK + γ(H × nK) × nK = E × nK′

+ γ(H × nK′

) × nK′

= XK′

.

Similarly for a face f of K on the boundary Γ the boundary condition (1.2) gives

−E × nK + γ(H × nK) × nK = QXK + g.

Thus the term −E×nK + γ(H ×nK)×nK in (2.2) can be replaced using XK , XK′

and data

as appropriate.

It remains to choose the strictly positive real scalar function γ for each face on the mesh (in

fact γ could be a symmetric positive definite matrix provided we interpret 1/γ as γ−1 and γ

maps tangential vector fields to tangential vector fields, but we currently see no advantage to

this choice). On the boundary, γ is given by the boundary condition. For interior element faces

the choice is somewhat arbitrary. Motivated by the standard absorbing boundary condition

whenever a face is between two elements in free space we choose

γ =
√

µ0/ǫ0.

For faces separating two elements K and K ′ with different possibly anisotropic electromagnetic

properties we suggest

γ =

√

‖µr|K‖‖µr|K′‖
‖ǫr|K‖‖ǫr|K′‖ ,

where ‖ · ‖ denotes a convenient matrix norm (for example the natural infinity norm), although

the best choice has yet to be determined.

Using (2.2) and the above observations, we that XK ∈ L2
t (∂K), K ∈ Th satisfies

∫

∂K

1

γ
XKYK dA −

∑

K′∈τ
h

∂K∩∂K′=f 6=φ

∫

f

1

γ
XK′

FK(YK) dA

−
∑

∂K∩Γ=f 6=φ

∫

f

1

γ
QXKFK(YK) dA =

∫

∂K∩Γ

1

γ
gFK(YK) dA, (2.3)
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for all YK ∈ L2
t (∂K) and all K ∈ Th. This provides a system of variational equations for

XK . For an isotropic medium and the above described choice of γ, (2.3) is exactly the UWVF

of [4, 6].

The UWVF system (2.3) is proved to have a unique solution in [4] this proof uses the

Isometry Lemma which we have verified in this case, and hence carries over to the anisotropic

UWVF. We also remark that if µr is not symmetric, the term µ̄r in the adjoint Maxwell system

(2.1) needs to be replaced by (µ̄r)
T where the superscript T denotes transpose. Hence the

UWVF could perhaps also be extended to ferromagnetic media.

3. Discrete UWVF for Anisotropic Media

To obtain a discrete UWVF we need to develop a set of solutions of the adjoint Maxwell

system that is convenient for computation (in particular allowing FK to be easily evaluated)

and that can be used to approximate functions in L2
t (∂K), for each K ∈ Th. As in the case of

the standard UWVF we use the plane waves. We assume that

ξ(x) = p exp(iKd · x), ψ(x) = q exp(iKd · x), (3.1)

where d, |d| = 1 is a given direction vector, K is a wave-number to be determined and p and q

are polarization vectors also to be determined. Since ξ and ψ are required to satisfy the adjoint

Maxwell system the unknowns p, q and K must satisfy

−kǭrp− Kd× q = 0,

−kµ̄rq + Kd× p = 0,

}

(3.2)

where we recall that ǫr and µr are constant matrices on K. Note that in contrast to an isotropic

medium p and q are not necessarily orthogonal to the direction of propagation d.

Let A and B denote 6 × 6 matrices given by

A =

(

0 −C

C 0

)

, with C =





0 −d3 d2

d3 0 −d1

−d2 d1 0





and

B =

(

ǭr 0

0 µ̄r

)

.

Then (3.2) can be written as

KAx = kBx,

where x = (p, q)
T
. This leads to solving the generalized eigenvalue problem of finding x 6= 0

and λ such that

Ax = λBx. (3.3)

For a given eigenvector x and non-zero eigenvalue λ we have K = k/λ where K gives the

equivalent wave number and p and q gives the polarization of the plane wave solutions in (3.1).

Note that since Cp = d× p we know that Cp = 0 if and only if p is a multiple of d. Thus

λ = 0 is an eigenvalue of multiplicity 2 with eigenspace spanned by (d, 0)
T

and (0,d)
T
. This
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leaves four non-zero eigenvalues for (3.3). However these remaining eigenvalues are paired, since

if (λ,p, q) is an eigen-triple for (3.3) then so is (−λ,−p, q) because

A

(

−p
q

)

=

(

−Cq

−Cp

)

= λ

(

ǭrp

−µ̄rq

)

= −λB

(

−p
q

)

.

We choose the eigenvalues with positive real part and we assume that, as in the isotropic case,

there are two independent (but now not necessarily orthogonal) polarizations for each direction

of propagation.

The preceding results are perhaps more obvious if we note that, when λ 6= 0, we can eliminate

either p or q in (3.2) to obtain the 3 × 3 eigensystems

CT µ̄−1
r Cp = λ2ǭrp, (3.4)

CT ǭ−1
r Cq = λ2µ̄rq, (3.5)

where we have used the fact that CT = −C. In both cases λ = 0 remains an eigenvalue with

corresponding eigenvector d. Once the eigenvalue λ2 and eigenvector p (or q) are determined

from (3.4) or (3.5) it is easy to obtain q (or p) using (3.2). We thus assume that we can compute

two eigentriples (K1,p
(1), q(1)) and (K2,p

(2), q(2)) with
{

p(1),p(2)
}

forming an independent set

and K1 6= 0, K2 6= 0. This is obvious if ǫr and µr are real symmetric because then (3.4) or

(3.5) can be reduced to a standard eigenvalue problem for a symmetric matrix but otherwise

still needs to be proved.

It remains to choose the normalization of the eigenvectors (p(j), q(j)), j = 1, 2. Note we

cannot choose |p(j)| = |q(j)| = 1. Motivated by equation (3.3) we could choose

(p̄(j))T Re(ǫr)p
(j) + (q̄(j))T Re(µr)q

(j) = 1.

An alternative would be to weight say |p(j)| = 1 then |q(j)| = |µ−1
r (K/ω)d × p(j)|. The best

choice of weight from the point of view of conditioning of the algorithm needs to be determined.

We now choose the plane waves

ξ(j)(x) = p(j) exp(iKjd · x)

ψ
(j)(x) = q(j) exp(iKjd · x)

}

j = 1, 2,

which gives us the two necessary plane-wave solutions for each d for use in the UWVF.

Even though (d,p, q) are not mutually orthogonal, we do have, for λ 6= 0 in (3.3),

(

d

0

)T

A

(

p

q

)

= λ

(

d

0

)T

B

(

p

q

)

,

so since d ·Cp = d · d× p = 0 for any p we see that d · ǭrp = 0 and similarly d · µ̄rq = 0. This

is just a statement that the divergence conditions ∇ · ǫrξ
(j) = 0 and ∇ · µrψ

(j) = 0 hold as is

to be expected for solutions of the adjoint Maxwell system.

In addition
(

q

p

)T

A

(

p

q

)

= −qT Cq + pT Cp = 0,

so q · ǭrp = 0 and p · µ̄rq = 0.

As in the classical UWVF a number of directions pK is chosen for each element K in the

mesh and directions dK
ℓ , 1 ≤ ℓ ≤ pK on the unit sphere are then chosen. We use the optimal
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spherical codes from [29]. In previous papers [17, 18] we have reported that the UWVF can

suffer from matrix ill-conditioning if pK is chosen too large. We expect the heuristics adopted,

for example, in [17] will prove to be necessary for anisotropic calculations. It may also be that

for anisotropic media the uniformly distributed directions are no longer optimal.

Once the directions and corresponding polarizations are determined, we then have 2pK

basis function pairs (ξ(j,ℓ),ψ(j,ℓ)), 1 ≤ j ≤ 2, 1 ≤ ℓ ≤ pK from which to build a discrete

approximation to function in L2
t (∂K). In particular, let

SK
h = span

{

YK
h = (ξ(j,ℓ) × nK + γ(ψ(j,ℓ) × nK) × nK)|∂K , 1 ≤ j ≤ 2, 1 ≤ ℓ ≤ pK

}

,

then the discrete UWVF is to seek XK
h ∈ SK

h such that

∫

∂K

1

γ
XK

h YK
h dA −

∑

K′∈τ
h

∂K∩∂K′=f 6=φ

∫

f

1

γ
XK′

h FK(YK
h ) dA

−
∑

∂K∩Γ=f 6=φ

∫

f

1

γ
QXK

h FK(YK
h ) dA =

∫

∂K∩Γ

1

γ
gFK(YK

h ) dA, (3.6)

for all YK
h ∈ SK

h and all K ∈ Th. Clearly for any YK
h ∈ SK

h we can easily compute FK(YK
h ) via

the plane wave expansion used to defined SK
h .

Eq. (3.6) gives rise to a matrix problem for the expansion coefficients of XK
h . In [4], special

basis functions for SK
h are chosen via the complex polarization that result in an improved spar-

sity pattern of the matrix. Given that (d,p, q) is not generally an orthogonal set, it is no longer

readily apparent that the complex polarization approach is applicable to anisotropic media.

Thus we propose the simpler choice of SK
h above and in general the use of the UWVF to solve

anisotropic propagation problems will be more expensive than the corresponding isotropic code.

The matrix system resulting from (3.6) can be solved using, for example, the bi-conjugate gra-

dient method. This simple iterative scheme is easily parallelized, a necessary step in obtaining

a useful algorithm, see [17] for details.

4. The Two Dimensional Case

We now present a simplified two dimensional problem. This problem will be used to test

the feasibility of the anisotropic UWVF in the next section. Assuming that the fields, sources

and electromagnetic parameters are independent of x3, and that the material is orthotropic so

that

ǫr =





ǫ11 ǫ12 0

ǫ12 ǫ22 0

0 0 ǫ33



 and µr =





µ11 µ12 0

µ12 µ22 0

0 0 µ33



 ,

the Maxwell system (1.1) can be reduced to the following Helmholtz equation in R
2 for the

third component of the magnetic field H3:

∇ · M∇H3 + k2µ33H3 = 0 in Ω ⊂ R
2, (4.1)

where Ω is now a domain in the (x1, x2) plane, and

M =
1

ǫ11ǫ22 − ǫ212

(

ǫ11 ǫ12
ǫ12 ǫ22

)

. (4.2)
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In this case, the magnetic field is said to have Transverse Magnetic (TM) polarization. In the

case of an isotropic medium M = ǫrI.

The two dimensional UWVF is based on a regular triangulation of Ω. We again denote the

set of triangles by Th (triangles having a maximum radius h). As usual for the UWVF, we

assume that M is constant on each triangle K in the mesh.

On each triangle K in the mesh Th, we may derive an Isometry Lemma. Corresponding

to the adjoint Maxwell system we need to use the anisotropic adjoint Helmholtz equation. In

particular, let ξ be a smooth solution of

∇ · M∇ξ + k2µ33ξ = 0 in Ω ⊂ R
2, (4.3)

where we have used the fact that M is symmetric. Using this function and similar steps to

deriving the Isometry Lemma in Section 2 we obtain

∫

∂K

1

γ
(−nK · M∇H3 + ikγH3)(−nK · M∇ξ + ikγξ)ds

=

∫

∂K

1

γ
(nK · M∇H3 + ikγH3)(nK · M∇ξ + ikγξ)ds, (4.4)

where nK denotes the unit outward normal to K.

Using the impedance boundary condition (see (1.2)) written for H3 as

n · M∇H3 + ikγH3 = Q(−n · M∇H3 + ikγH3) + g, (4.5)

where n is the unit outward normal to ∂Ω = Γ, |Q| ≤ 1 and g is given data, we can now

obtain the UWVF for the two dimensional Helmholtz equation. In particular, we define, for

each element in the mesh,

XK = −nK · M∇H3 + ikγH3 on ∂K

for each K ∈ Th, and

YK = −nK · M∇ξ + ikγξ on ∂K.

Then using the isometry result (4.4), we obtain the variational problem of determining XK ∈
L2(∂K) for all K ∈ Th such that

∫

∂K

1

γ
X kYK ds −

∑

K′∈T
h

K′∩K=e6=φ

∫

e

1

γ
XK′

FK(YK) ds

−
∑

∂K∩Γ=e6=φ

∫

e

1

γ
QXKFK(YK) ds =

∫

∂K∩Γ

1

γ
gFK(YK) ds, (4.6)

for all YK ∈ L2(∂K) and K ∈ Th. Here FK : L2(∂K) → L2(∂K) is the operator such that if

−nK · M∇ξ + ikγξ = YK on ∂K,

∇ · M∇ξ + k2µ33ξ = 0 in K,

then FK(YK) = nK ·M∇ξ + ikγξ on ∂K. The theory developed in the thesis of Cessenat [4–6]

is based on the Isometry Lemma and having verified the lemma for orthotropic media the theory

shows that the above problem has a unique solution.
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As in the case of the UWVF for the Maxwell system, problem (4.6) can be discretized by

using a basis of plane waves solutions of the anisotropic adjoint Helmholtz equation (4.3) in

each element. The first method is obtained by proceeding as in the 3D case. So we seek plane

wave solutions of (4.3) and thus assume

ξ = exp(iKx · d)

for some direction vector d ∈ R
2, with ‖d‖ = 1. Substitution into (4.3) gives

K2dT Md = k2µ33 and so K = k

(

µ33

dT Md

)
1
2

.

This gives an easy way to compute plane wave solutions of the adjoint problem and hence

discrete (4.6). We use pK direction vectors dK
ℓ , 1 ≤ ℓ ≤ pK per element, with the directions

equally spaced on the unit circle.

Let

SK
h =

{

(−nK · M∇ξh + ikγξh)|∂K | ξh ∈ span
{

exp(iKx · dK
ℓ ), 1 ≤ ℓ ≤ pK

}}

.

The discrete problem is then to find XK
h ∈ SK

h for each K ∈ Th such that (4.6) is satisfied with

XK
h replacing XK and for all test functions YK ∈ SK

h and K ∈ Th. This problem has a unique

solution using the arguments from [4].

At first sight the error estimates of [4,5] do not apply, but in the special case when M is real

and symmetric positive definite we can adopt a second approach to determining the plane waves

that allows the theory from [4, 5] to be used. For simplicity let µ33 = 1. For real, symmetric

positive definite M , there exists a unique positive definite square root M1/2. We denote by

K̃ = {x | M1/2x ∈ K}. Then it is shown in [10] that if u0 satisfies

∆u0 + k2u0 = 0 in K̃,

then u(x) = u0(M
−1/2x) satisfies

∇ · M∇u + k2u = 0 in K.

Since the map x→ M−1/2x is linear, the domain K̃ is a triangle.

Because M is constant, a plane wave on K̃ results in an anisotropic plane wave on K. Thus

we now choose a set of directions on K̃, say dK
ℓ , 1 ≤ ℓ ≤ pK (we use the superscript K since

they will result in plane waves on K) and now use the basis functions

ξK
ℓ (x) = exp(ik(M−1/2dK

ℓ ) · x), 1 ≤ ℓ ≤ pK ,

to construct SK
h .

The projection error estimates of [4, 5] are applicable on K̃ and by the mapping also on K

(of course with coefficients depending on M). In particular, let Ph denote the operator from
∏

K∈Th
L2(∂K) into

∏

K∈Th
SK

h such that Phξ|L2(∂K is the best L2(∂K) approximation of ξ|∂K

from SK
h . Then if pK = p = 2n + 1 (i.e. the same number of plane waves are used on each

element) and if u ∈ Cn+1(Ω) satisfies the anisotropic Helmholtz equation(4.1) in Ω we have

(

∑

K∈Th

‖(I − Ph)X‖2
L2(∂K)

)
1
2

≤ Chn−1/2‖u‖Cn+1(Ω),
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where

X|∂K = (−nk · M∇u + ikγu)|∂K .

Using this estimate and assuming that |Q| ≤ δ < 1, for some constant δ, the arguments of

Cessenat and Després now show that if Xh ∈
∏

K∈Th
L2(∂K) is such that Xh|∂K = XK

h (i.e.

the solution of the discrete UWVF equations) then for n ≥ 1

‖X − Xh‖L2(Γ) ≤ Chn−1/2‖u‖Cn+1(Ω).

This shows that the two dimensional UWVF becomes higher order as n increases even for

anisotropic media. Unfortunately, even though we observe convergence of the UWVF solution

throughout Ω, the convergence theory is not yet proved in this generality.

The preceding estimates assume that the same number of plane waves are used in each

element. In practice this can result in poorly conditioned matrix equations for the coefficients

of Xh unless the mesh is uniform or close to uniform. In practical computations we use a variable

number of directions per element, chosen so that a local condition number is well behaved [18].

We find that this choice controls the overall condition number.

5. Numerical Results

In this section, the feasibility of the anisotropic UWVF approximation is investigated via

two model problems for orthotropic media. First, we study propagation of the magnetic field

emitted by an infinitely long line source. Second, we investigate the scattering of the magnetic

field from a box which is infinitely long in one direction. In both cases, as we have seen in the

previous section, it is possible to reduce the problem to solving a single field component in a

plane. In this section we shall assume that µ3,3 = 1 and we shall also add a source term to the

Helmholtz equation since one of our test cases is to compute the field from a line source. Then

the anisotropic Helmholtz equation (4.1) reads

∇ · M∇H3 + k2H3 = f, (5.1)

where M is given by (4.2) and f is a source term. In the model problems, the wave number

k = ω
√

ǫ0µ0 is normalized so that k = ω by assuming that ǫ0 = µ0 = 1. Furthermore, we also

assume that µr = 1.

On the exterior boundary of the computational domain we use the boundary condition (4.5).

In the case of a lossless isotropic medium M = ǫrI, where ǫr ∈ R and I the identity matrix.

Hence, the choice γ = 1, Q = 0 and g = 0 provides a low order Enquist-Majda absorbing

boundary condition. For an anisotropic medium, however, a single value of γ that would

lead to an acceptable absorbing boundary condition, is not obvious. Therefore, an alternative

method reducing the numerical reflection of waves from the exterior boundary is needed.

A natural choice for truncating the computational domain for a code that incorporates a

general anisotropic medium is the Perfectly Matched Layer (PML) proposed by Bérenger [2].

It is well known that the decay of waves in the PML is obtained by using an increasing,

anisotropic absorption coefficient in the element layer(s) surrounding the actual computational

domain. In particular, the anisotropic Helmholtz equation characterizing the field in the PML

can be written in the form of Eq. (5.1) when M = diag
(

D1

D2
, D1

D2

)

and k2 = k2
0D1D2. Here, we
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use the complex stretched of spatial variables x′
1 and x′

2 in the Cartesian PML defined as

x′
1 =







x1 +
i

k0

∫ x1

x0
1

σ1dx1, |x1| ≥ x0
1,

x1, |x1| < x0
1,

(5.2)

x′
2 =







x2 +
i

k0

∫ x2

x0
2

σ2dx2, |x2| ≥ x0
2,

x2, |x2| < x0
2,

(5.3)

where σ1 and σ2 are the decay parameters (constants) in the x1- and x2-direction, respectively

and x0
j , 1 ≤ j ≤ 2 parametrizes the start of the layer. The constants D1 and D2 are obtained

from the stretched variables as

D1 =
∂x′

1

∂x1
and D2 =

∂x′
2

∂x2
. (5.4)

The use of a constant PML parameter σj , j = 1, 2 requires some comment. For the Maxwell

system before discretization the use of a piecewise constant decay parameter still results in a

perfect matching across the boundary (see for example [8,9]) but after discretization there will

be a spurious reflection across the surface where σ jumps. At least for finite difference methods,

this reflection is controlled by a sufficiently fine discretization near the interface and we expect

this to be the case also for the UWVF. A general (for example quadratic dependence) of the

absorption parameter can be allowed in the UWVF at the expense of having to compute the

inner products needed to calculate matrix entries by quadrature. This significantly increases

the time needed to assemble the linear system corresponding to the UWVF. In [16,17] we have

found that it is usually more efficient to use a constant absorption parameter (and perhaps a

slightly wider PML layer) than a more standard profile.

The best choice of decay parameters and the thickness of the PML is always an optimization

problem. However, motivated by the results of [16], we choose in this study σj = 2.0/Lj,

j = 1, 2, where Lj is the thickness of the PML.

All coding for following UWVF simulation is done using Matlab. The details for assembling

the UWVF matrix equations are given in [5] and [18]. In this study, the UWVF matrix equation

of the form (I − D−1C)X = D−1b is solved using Matlab’s backslash function.

5.1. A point source using the PML

In the first model problem, the field H3 is emitted by a singular source at the point x0.

For Eq. (5.1) the point source can be defined by setting f = δ(x0), where δ is the Dirac delta

function. The computational domain in a 2×2 rectangle surrounded by a 0.4 units thick PML.

The source is located at the point (0.5, 0.5). In Fig. 5.2, we show a solution of the problem when

M = diag(1, 2) and k = 2π (so the wavelength is unity). The UWVF simulation is computed

in the mesh of Fig. 5.1 using nine angularly equidistributed plane wave basis functions in all

elements of the mesh (a uniform choice of the number of directions is permissible here since the

elements are only lightly refined near the source). The discrete L2-error measured at the circle

with the radius r = 0.9 around the origin (0,0) is 0.85 %. The anisotropy of the medium can

be seen from the ellipsoidal amplitude distribution of the solution in the top panels of Fig. 5.2.

To investigate the effect of the PML on the accuracy of the point source simulation, we

plot the error as a function of the angular frequency ω (this also the wave number k because

of the special choice of constants) in Fig. 5.3. Results are computed in an isotropic medium
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Fig. 5.1. The mesh used for the point source simulations. The mesh is refined slightly near the location

of the source at (0.5, 0.5). The two outermost element layers constitute the PML.
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Fig. 5.2. Top row: The solution of the point source simulation at k = ω = 2π. The magnitude of the

exact solution is shown on the left and the UWVF approximation using the PML is on the right. A

rapid decay of the amplitude of the waves can be seen in the PML (|x1| > 1 and |x2| > 1). Bottom

row: The UWVF approximations for the same field |H3| along two lines crossing the computational

domain and the PML.
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Fig. 5.3. The error and the condition number of the UWVF system matrix as a function of the angular

frequency ω (or wave number k). Clearly the PML helps to improve the accuracy of the solution even

in the anisotropic case, but at the cost of a higher condition number for the matrix problem.

with ǫr = 1 and in an anisotropic medium with M = diag(1, 2) by using the PML and the low

order absorbing boundary condition (ABC) (4.5). In this case, we use seven plane wave basis

functions in all elements of the mesh.

For the ABC, we choose Q = 0, g = 0 and

γ = mean(k̂λM ), (5.5)

where k̂ is the mean value of the directional wave numbers k1 and k2 and λM contains the

eigenvalues of the matrix M . The eigenvalues λM are computed using Matlab’s eig-function.

The PML is implemented as an anisotropic absorbing medium as described at the start of

this section. On the exterior boundary of the PML, the ABC is used with above mentioned

parameters. Results show that the PML improves the accuracy but also leads to rather ill-

conditioned UWVF matrices. The ill-conditioning is known to hamper methods using plane

wave basis function in a strongly absorbing medium such as in the PML [15]. Plane wave basis

methods can be stabilized by adjusting the number of basis functions so that the condition

number remains at a low level [18]. This approach is not investigated further here.

Finally, we show the error of the anisotropic UWVF approximation as the function of the

number plane wave basis functions at a fixed frequency ω = 2π. The error shown in Figs. 5.3

and 5.4 is computed using the relative discrete L2-norm. The error is measured at 360 points

on the circle with the radius r = 0.9 around the origin (0,0).

5.2. Transmission

Next we consider a transmission problem modeling the scattering of electromagnetic waves

by an anisotropic dielectric medium. Fig. 5.5 shows the meshed geometry used in the UWVF

simulations. The computational domain consists of the 1 × 1 rectangular cross-section box

containing an anisotropic medium which is surrounded by a circular region (with radius r = 2)

containing a homogeneous, isotropic medium with ǫr = 1 and µr = 1. The permittivity matrix

for the rectangle is

M =

(

2 0

0 8

)

. (5.6)

We compute approximations for the problem using two different incident fields consisting

of respectively plane waves propagating in the direction of the positive x1- and x2-axis. The
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Fig. 5.4. The error and the condition number of the UWVF system matrix as a function of the number

of plane wave basis functions pK . Results are computed using the point source in an anisotropic medium

with M = diag(1, 2) at ω = 2π. The computational domain is truncated using the PML which leads

to rather ill-conditioned UWVF matrices. Provided the condition number is not too large, increasing

pK results in a rapid improvement of the error.
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Fig. 5.5. The mesh used for the UWVF transmission simulations.

UWVF approximation and a reference finite element (FE) approximation at the angular fre-

quency ω = 2π are shown in Fig. 5.6. The FE solutions are computed using a commercial finite

element package (the Electromagnetic module of Comsol Multiphysics 3.2) [11]. For the FE

approximation, the triangular mesh is generated so that approximately ten elements are used

for the shortest wavelength of the problem (which is λmin = 1/
√

8 in the x1-direction within

the box). The FE basis is constructed from quadratic Lagrange polynomials. The UWVF ap-

proximations are computed in the mesh of Fig. 5.5. The UWVF basis for each element consists

of nine angularly equispaced plane waves.

On the exterior boundary, the boundary condition (4.5) is used so that Q = 0, γ = k and

g = n · (∇H in
3 ) − ikH in

3 , (5.7)

where H in
3 = exp(ikd ·x) with |d| = 1 is the incident plane wave propagating in the direction d.

Note that this choice corresponds to the lowest order Enquist-Majda condition for the scattered
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Fig. 5.6. Simulated real parts of H3 for the anisotropic transmission problem. The first column shows

the finite element approximations for the incident plane wave propagating in the positive x1- and

x2-directions. The second column shows the corresponding UWVF approximations.

part of the magnetic field. While the use of the PML would make the model physically more

realistic, the low order absorbing boundary condition is used since this condition is readily

available in Comsol Multiphysics 3.2. The use of exactly same exterior boundary condition

makes possible a fair comparison of the FE and UWVF methods.

A comparison of the UWVF and FE approximation in Fig. 5.6 shows a good agreement

between the two methods. Both methods can capture the anisotropic features of the solution.

Namely, the difference of wave speeds in x1- and x2-directions is clearly seen as the object is

illuminated from different incident directions.

6. Conclusion

We have introduced a technique for using plane wave basis functions to approximate elec-

tromagnetic waves in an anisotropic medium. In particular, we focused on the use of the plane

wave basis with the Ultra-Weak Variational Formulation. A general theory was presented for

a 3D system of time-harmonic Maxwell’s equations. However, the proposed method was in-

vestigated via numerical simulations for a reduced 2D system characterized by the anisotropic
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Helmholtz equation. Simulations suggest that the plane waves may provide advantages over

commonly used polynomial discretizations since relatively large elements can be used by in-

creasing the number of plane wave basis functions in the large elements. This may reduce the

computational burden associated with wave simulations at high wave numbers.

The anisotropic plane wave basis also have the same well-known drawbacks as their isotropic

counterparts, namely, the number of basis functions for each element must be carefully adjusted

to avoid the ill-conditioning resulting matrix system. In this study, the elements size of the

meshes used in the simulations was relatively uniform and only moderate variation in the

material properties was used within the computational domain. This allowed the use of a

constant number of basis functions in all elements. In general, however, the choice of basis

must be made so that the number of basis functions varies from element to element as proposed

in [18]. The ill-conditioning of the problem is more severe if the computational domain contains

strongly absorbing media or the PML is used. This was also observed in the simulations of this

study.

Future topics of research include the numerical testing and theoretical analysis of the ex-

tension of the anisotropic plane wave basis to the 3D system of Maxwell’s equations. Also an

alternative choices of propagation directions for plane wave basis needs to be investigated since

the angularly equispaced directions used here may not be the optimal for anisotropic waves

due to the direction dependent wave speeds. For example, one may expect that the basis di-

rections need to be more densely clustered near the direction in which the physical waves have

the shortest wavelength. Finally, the performance of the plane wave basis method needs to be

compared with other existing simulation methods (such as the finite element method).
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