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Abstract

In this paper, we investigate the condition numbers for the generalized matrix inversion

and the rank deficient linear least squares problem: minx ‖Ax− b‖2, where A is an m-by-n

(m ≥ n) rank deficient matrix. We first derive an explicit expression for the condition

number in the weighted Frobenius norm ‖ [AT, βb] ‖F of the data A and b, where T is a

positive diagonal matrix and β is a positive scalar. We then discuss the sensitivity of the

standard 2-norm condition numbers for the generalized matrix inversion and rank deficient

least squares and establish relations between the condition numbers and their condition

numbers called level-2 condition numbers.
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1. Introduction

In this paper, we consider a condition number for the linear least squares (LLS) problem

[8-11]

min
x

‖Ax − b‖2,

where A ∈ Rm×n (m ≥ n) is a rank deficient matrix. The condition number for the LLS

problem with full rank is well studied, see, e.g., [3]. In the standard 2-norm analysis, the

condition number is defined as

cond(A, b) = lim
ǫ→0+

sup

{

‖(A + E)†(b + f) − A†b‖2

ǫ ‖A†b‖2
, ‖E‖2 ≤ ǫ‖A‖2, ‖f‖2 ≤ ǫ‖b‖2

}

,

where A† is the Moore-Penrose inverse of A defined as the unique matrix X satisfying

AXA = A, XAX = X, (AX)T = AX, and (XA)T = XA,

where AT is the transpose of A [7].
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The condition number discussed in this section is based on a general theory of condition

introduced by Rice [6]. In the context of the LLS, the problem is viewed as a mapping from

a pair (A, b) to the LLS solution xLS = A†b. The norm of a pair (A, b) in the domain of the

mapping is defined by the weighted Frobenius norm:

‖[AT βb]‖F, (1.1)

where T is positive and diagonal and β > 0. The weights T and β provide flexibility. Later,

we will show that a large diagonal of T allows perturbation on b only and a large β allows

perturbation on A only. The norm of a solution x in the image of the mapping is chosen as the

Euclidean norm ‖x‖2.

In Rice’s theory of condition, an absolute δ-condition is first defined by:

µδ = inf{σ | ‖[ET βf ]‖F ≤ δ ⇒ ‖(A + E)†(b + f) − A†b‖2 ≤ σδ}. (1.2)

This definition says the image of a δ-neighborhood of a pair (A, b) is contained in a σδ-

neighborhood of the solution A†b. So, σ is an upper bound for the magnification of the map-

ping and µδ is the least upper bound. Then, the asymptotic absolute condition number for the

weighted LLS problem in the norms chosen above is

µ = lim
δ→0

µδ.

The relative condition number is defined by

ν =
‖[AT βb]‖F

‖A†b‖2
µ.

As explained above, similar to the standard condition number, the δ-condition in (1.2) measures

the enlargement of the mapping from (A, b) to A†b. What is different from the standard

condition number is that the weighted Frobenius norm is used in the domain space of pairs

(A, b).

Gratton [4] considered the case when T = αI (α > 0), and A is of full column rank and

gave the expression of condition number for LLS problem.

In this paper, we consider the case when A is rank deficient under the condition that the

perturbation E on A satisfies

range(E) ⊆ range(A) and range(ET) ⊆ range(AT), (1.3)

where range(E) denotes the column space of E.

The rest of the paper is organized as follows. The absolute and relative condition numbers

in the weighted Frobenius norm are given in Section 2. Then, in Section 3, we analyze the

sensitivity of the generalized matrix inversion condition number and the rank deficient LLS

condition number, called level-2 condition numbers introduced by Higham [5].

2. Condition Numbers

In this section, we present explicit expressions for the absolute and relative condition num-

bers for the rank deficient LLS problem in the weighted Frobenius norm described in the

previous section.
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Theorem 2.1. Suppose the perturbation E in A satisfies the conditions (1.3). Then the abso-

lute condition number of the rank deficient LLS problem in the weighted Frobenius norm (1.1)

on the data A and b and the Euclidean norm on the solution xLS is

µ = ‖A†‖2

√

β−2 + ‖T−1xLS‖2
2. (2.1)

Proof. From [1], when E is small (‖A†‖2‖E‖2 < 1) and satisfies the conditions (1.3), we

have

(A + E)† = (I + A†E)−1A†. (2.2)

Thus, for small E and f , the linear term in (A + E)†(b + f) − A†b is

−A†EA†b + A†f = −A†(ExLS − f)

= −A†(ET (T−1xLS) − β−1(βf)),

which implies that

‖A†(ExLS − f)‖2
2 = ‖A†(ExLS − f)‖2

F

≤ ‖A†‖2
2(‖ET ‖2

F‖T
−1xLS‖

2
2 + β−2‖βf‖2

2).

It then follows that if

‖[ET βf ]‖F =
√

‖ET ‖2
F + ‖βf‖2

2 ≤ δ,

then

‖A†(ExLS − f)‖2 ≤ δ‖A†‖2

√

‖T−1xLS‖2
2 + β−2 .

Since −A†(ExLS −f) is the linear term in (A+E)†(b+f)−A†b, the absolute condition number

is bounded above by

µ = lim
δ→0

µδ ≤ ‖A†‖2

√

‖T−1xLS‖2
2 + β−2 . (2.3)

In the following we will show that this upper bound is reachable. We will first construct

perturbations E0 and f0, then show that the linear term ‖A†(E0xLS − f0)‖2 for the particular

E0 and f0 is equal to δ‖A†‖2

√

‖T−1xLS‖2
2 + β−2 . This proves the theorem since (1.2) says

that µδ is the minimal upper bound for all perturbations E and f and µ = limδ→0 µδ. In

particular, let rank(A) = r < n and u and v be respectively the left and right singular vectors

corresponding to the smallest positive singular value σr of A, then σ−1
r = ‖A†‖2 and

A†u = ‖A†‖2 v.

Constructing

E0 = −
δ

η
u(T−2xLS)

T and f0 =
δ

β2η
u,

where η =
√

‖T−1xLS‖2
2 + β−2, we have

range(E0) ⊆ range(u) ⊆ range(A),

range(ET
0 ) ⊆ range(xLS) ⊆ range(A†) = range(AT),

and

‖[E0T βf0]‖
2
F = ‖[

δ

η
u(T−1xLS)

T δ

βη
u]‖2

F

=
δ2

η2
‖u[(T−1xLS)

Tβ−1]‖2
F =

δ2

η2
‖u‖2

2η
2 = δ2.
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Now, for E0 and f0, the linear term

−A†E0xLS + A†f0

=
δ

η
A†u(T−2xLS)

TxLS +
δ

β2η
A†u

=
δ

η
A†u(‖T−1xLS‖

2
2 + β−2) = δη‖A†‖2 v,

which implies that

‖A†E0xLS − A†f0‖2 = δ‖A†‖2

√

‖T−1xLS‖2
2 + β−2 .

This completes the proof of the theorem.

Corollary 2.1. Taking T = I and β = 1 in the condition number µ of Theorem 2.1 gives the

case where both A and b are equally perturbed. By letting T = αI, where α > 0, and α → ∞

(β → ∞), no perturbation on the matrix A (on the right-hand side b) is permitted.

Proof. The perturbations E and f must satisfy

‖[ET βf ]‖F ≤ δ.

Therefore, T = αI and α → ∞ imply E = 0, that is no perturbation on A. Similarly, β → ∞

implies no perturbation on b.

Using the definition of the relative condition number ν we can get the following formula.

Corollary 2.2. When the perturbation E in A satisfies the conditions (1.3), the relative con-

dition number is

ν =
‖A†‖2‖[AT βb]‖F

‖xLS‖2

√

β−2 + ‖T−1xLS‖2
2 .

In the special case of equal perturbations on A and b (T = I and β = 1),

ν =
‖A†‖2‖[A b]‖F

‖xLS‖2

√

1 + ‖xLS‖2
2 .

Wei and Wang [10, Corollary 3.2] showed the Frobenius norm condition number for LLS:

condF =
‖A†‖2

‖xLS‖2
(‖A‖F‖xLS‖2 + ‖b‖2).

From the above corollary, when T = I and β = 1, we have

ν ≥ condF(A, b),

using ‖[A b]‖F =
√

‖A‖2
F + ‖b‖2

2 and the Cauchy-Schwarz inequality

‖A‖F‖xLS‖2 + ‖b‖2 ≤
√

‖A‖2
F + ‖b‖2

2

√

1 + ‖b‖2
2.
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3. Condition Number Sensitivity

In practice, the computed condition number is the exact condition number for a perturbed

problem. How sensitive is the condition number to the perturbation on the data? Demmel [2]

introduced the concept of condition numbers of the condition numbers, called level-2 condition

numbers by Higham [5]. Demmel [2] showed that for certain problems, the level-2 condition

number is the condition number up to a constant factor. In this section, we show that the

level-2 condition numbers for the generalized matrix inversion and rank deficient least squares

are in the same magnitude order of their corresponding condition numbers.

We begin with the definitions of the standard condition numbers. The standard condition

numbers can be viewed as a special case of the general condition numbers introduced in Sec-

tion 1, where the weights T = I and β = 1 and the 2-norm, instead of the weighted Frobenius

norm, is chosen for the domain. The condition number for the generalized matrix inversion is

defined by

cond(A) = lim
ǫ→0+

sup

{

‖(A + E)† − A†‖2

ǫ‖A†‖2
, ‖E‖2 ≤ ǫ‖A‖2

}

, (3.1)

where E satisfies the conditions (1.3). The standard condition number for the least squares is

cond(A, b)

= lim
ǫ→0+

sup

{

‖(A + E)†(b + f) − A†b‖2

ǫ ‖A†b‖2
, ‖E‖2 ≤ ǫ‖A‖2, ‖f‖2 ≤ ǫ‖b‖2

}

, (3.2)

where E satisfies the conditions (1.3).

Wei and Wang [10, Corollaries 2.1, 3.1] derived

cond(A) = ‖A†‖2‖A‖2, and cond(A, b) = ‖A†‖2‖A‖2 +
‖A†‖2‖b‖2

‖A†b‖2
. (3.3)

The computed condition number cond(A) can be regarded as the exact condition number

cond(A + E) for some small perturbation E. Thus, we define the level-2 condition number

for the generalized matrix inversion:

cond[2](A) = lim
ǫ→0+

sup

{

|cond(A + E) − cond(A)|

ǫ cond(A)
, ‖E‖2 ≤ ǫ‖A‖2

}

, (3.4)

where E satisfies the conditions (1.3).

Similarly, we define the level-2 condition number for the least squares:

cond[2](A, b)

= lim
ǫ→0+

sup

{

|cond(A + E, b + f) − cond(A, b)|

ǫ cond(A, b)
, ‖E‖2 ≤ ǫ‖A‖2, ‖f‖2 ≤ ǫ‖b‖2

}

, (3.5)

where E satisfies the conditions (1.3).

In the following, we will show that under certain conditions on the perturbations E and f ,

cond[2](A) and cond[2](A, b) are the same as cond(A) and cond(A, b) respectively up to constant

factors.

Before deriving the level-2 condition numbers, we present a useful bound for ‖(A + E)†‖2.

Lemma 3.1. Under the conditions (1.3),

‖(A + E)†‖2 = sup
{

‖A†‖2(1 + ǫ cond(A)) + O(ǫ2), ‖E‖2 ≤ ǫ‖A‖2

}

for small ǫ > 0.
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Proof. From (2.2), under the conditions (1.3) and ‖E‖2 ≤ ǫ‖A‖2,

‖(A + E)†‖2 = ‖A† − A†EA†‖2 + O(ǫ2)

for small ǫ > 0.

On the one hand, since ‖E‖2 ≤ ǫ‖A‖2,

‖A† − A†EA†‖2 ≤ ‖A†‖2(1 + ǫ‖A‖2‖A
†‖2) = ‖A†‖2(1 + ǫ cond(A)).

On the other hand, we construct an E0 such that ‖A† − A†E0A
†‖2 ≥ ‖A†‖2(1 + ǫ cond(A)).

Let u be the rth left singular vector of A, where r = rank(A). Then

‖A†u‖2 = σ−1
r = ‖A†‖2.

Defining

v = −A†u/‖A†‖2,

we have ‖v‖2 = 1, v ∈ range(A†) = range(AT), and

vTA†u = −‖A†u‖2
2/‖A

†‖2 = −‖A†‖2.

Now, we construct

E0 = ǫ‖A‖2uvT.

Then E0A
†u = −ǫ‖A‖2‖A

†‖2u. Also, it can be verified that ‖E0‖2 = ǫ‖A‖2, and E0 satisfies

the conditions (1.3), since range(E0) ⊆ range(u) ⊆ range(A) and range(ET
0 ) ⊆ range(v) ⊆

range(AT). Finally, applying E0A
†u = −ǫ‖A‖2‖A

†‖2u and ‖A†u‖2 = ‖A†‖2, we get

‖A† − A†E0A
†‖2 ≥ ‖(A† − A†E0A

†)u‖2

= ‖A†u + ǫ‖A‖2‖A
†‖2A

†u‖2

= ‖A†‖2(1 + ǫ cond(A)),

which completes the proof.

The following theorem shows that the level-2 condition number for the generalized matrix

inversion is about the same as the condition number.

Theorem 3.1. Under the conditions (1.3), the difference between the level-2 condition number

cond[2](A) and the condition number cond(A) is bounded by:

∣

∣

∣
cond[2](A) − cond(A)

∣

∣

∣
≤ 1.

Proof. Following the first equation in (3.3), we consider

cond(A + E) = ‖A + E‖2‖(A + E)†‖2.

The inequality ‖E‖2 ≤ ǫ‖A‖2 implies that ‖A+E‖2 ≤ (1+ ǫ)‖A‖2. Using Lemma 3.1, we have

cond(A + E) = ‖A + E‖2‖(A + E)†‖2

≤ (1 + ǫ)‖A‖2(‖A
†‖2(1 + ǫ cond(A)) + O(ǫ2))

= cond(A)(1 + ǫ cond(A) + ǫ) + O(ǫ2). (3.6)
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It then follows that

cond(A + E) − cond(A)

ǫ cond(A)
≤ cond(A) + 1 + O(ǫ). (3.7)

On the other hand, ‖E‖2 ≤ ǫ‖A‖2 also implies that ‖A + E‖2 ≥ (1 − ǫ)‖A‖2. Again, from

Lemma 3.1, there exists an E0 such that

cond(A + E0) = ‖A + E0‖2‖(A + E0)
†‖2

≥ (1 − ǫ)‖A‖2(‖A
†‖2(1 + ǫ cond(A)) + O(ǫ2)) (3.8)

= cond(A)(1 + ǫ cond(A) − ǫ) + O(ǫ2),

which implies
cond(A + E0) − cond(A)

ǫ cond(A)
≥ cond(A) − 1 + O(ǫ). (3.9)

Combining (3.7) and (3.9) proves the theorem.

Next, we present the relations between the level-2 condition number cond[2](A, b) for the

least squares and the condition number cond(A, b).

Theorem 3.2. Under the conditions (1.3), the level-2 condition number cond[2](A, b) for the

least squares defined in (3.5) is bounded by:

cond(A, b)

(1 + γ)2
−

1

1 + γ
≤ cond[2](A, b) ≤ 2 cond(A, b),

where γ = ‖b‖2/‖AA†b‖2, the secant of the angle between b and the projection AA†b.

Proof. Following the second equation in (3.3), we first consider

cond(A + E, b + f) = cond(A + E) +
‖(A + E)†‖2‖b + f‖2

‖(A + E)†(b + f)‖2
.

Applying ‖b + f‖2 ≤ (1 + ǫ)‖b‖2 and Lemma 3.1, we have

‖(A + E)†‖2‖b + f‖2 ≤ ‖A†‖2‖b‖2(1 + ǫ cond(A) + ǫ) + O(ǫ2).

Using the definition (3.2), we get

1

‖(A + E)†(b + f)‖2
≤

1

‖A†b‖2 − ‖(A + E)†(b + f) − A†b‖2

= ‖A†b‖−1
2

1

1 − ‖(A+E)†(b+f)−A†b‖2

‖A†b‖2

=
1

‖A†b‖2

(

1 +
‖(A + E)†(b + f) − A†b‖2

‖A†b‖2

)

+ O(ǫ2)

≤
1

‖A†b‖2
(1 + ǫ cond(A, b)) + O(ǫ2).

Consequently,

‖(A + E)†‖2‖b + f‖2

‖(A + E)†(b + f)‖2
≤

‖A†‖2‖b‖2

‖A†b‖2
(1 + ǫ cond(A, b) + ǫ cond(A) + ǫ) + O(ǫ2).
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Thus, from (3.6),

cond(A + E, b + f) ≤ cond(A)(1 + ǫ cond(A) + ǫ)

+
‖A†‖2‖b‖2

‖A†b‖2
(1 + ǫ cond(A, b) + ǫ cond(A) + ǫ) + O(ǫ2).

It then follows from the second equation in (3.3) that

cond(A + E, b + f) − cond(A, b)

≤ ǫ cond(A)(cond(A) + 1) +
‖A†‖2‖b‖2

‖A†b‖2
ǫ(cond(A, b) + cond(A) + 1) + O(ǫ2)

≤ ǫ cond(A, b)(cond(A, b) + cond(A) + 1) + O(ǫ2).

Thus, we get

cond(A + E, b + f) − cond(A, b)

ǫ cond(A, b)
≤ cond(A, b) + cond(A) + 1 + O(ǫ). (3.10)

Now, we derive a lower bound for cond(A + E, b + f). The condition ‖f‖2 ≤ ǫ‖b‖2 implies

‖b + f‖2 ≥ (1 − ǫ)‖b‖2. Moreover,

‖(A + E)†‖2 ≥ ‖A†‖2 − ǫ cond(A)‖A†‖2 + O(ǫ2), (3.11)

since, from (2.2),

‖A†‖2 = ‖A† − A†EA† + A†EA†‖2

≤ ‖(I + A†E)−1A†‖2 + ǫ‖A†‖2
2‖A‖2 + O(ǫ2)

= ‖(A + E)†‖2 + ǫ cond(A)‖A†‖2 + O(ǫ2).

Thus,

‖(A + E)†‖2‖b + f‖2 ≥ (‖A†‖2 − ǫ cond(A)‖A†‖2 + O(ǫ2))(1 − ǫ)‖b‖2

= ‖A†‖2‖b‖2(1 − ǫ cond(A) − ǫ) + O(ǫ2).

Applying the definition (3.2), we get

1

‖(A + E)†(b + f)‖2
≥

1

‖A†b‖2 + ‖(A + E)†(b + f) − A†b‖2

=
1

‖A†b‖2

(

1 −
‖(A + E)†(b + f) − A†b‖2

‖A†b‖2

)

+ O(ǫ2)

≥
1

‖A†b‖2
(1 − ǫ cond(A, b)) + O(ǫ2).

We then have

‖(A + E)†‖2‖b + f‖2

‖(A + E)†(b + f)‖2
≥

‖A†‖2‖b‖2

‖A†b‖2
(1 − ǫ cond(A) − ǫ cond(A, b) − ǫ) + O(ǫ2).

From (3.11) and ‖A + E‖2 ≥ (1 − ǫ)‖A‖2,

‖(A + E)†‖2‖A + E‖2 ≥ (‖A†‖2 − ǫ cond(A)‖A†‖2)(1 − ǫ)‖A‖2 + O(ǫ2)

= cond(A)(1 − ǫ cond(A) − ǫ) + O(ǫ2).
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We then get a lower bound for cond(A + E, b + f):

cond(A + E, b + f)

≥ cond(A)(1 − ǫ cond(A) − ǫ) +
‖A†‖2‖b‖2

‖A†b‖2
(1 − ǫ cond(A) − ǫ cond(A, b) − ǫ) + O(ǫ2),

which leads to

cond(A + E, b + f) − cond(A, b)

= cond(A + E, b + f) − cond(A) −
‖A†‖2‖b‖2

‖A†b‖2

≥ −ǫ

(

cond(A) +
‖A†‖2‖b‖2

‖A†b‖2

)

(cond(A) + cond(A, b) + 1) + ǫ cond(A)cond(A, b) + O(ǫ2)

= −ǫ cond(A, b)(cond(A) + cond(A, b) + 1) + ǫ cond(A)cond(A, b) + O(ǫ2)

≥ −ǫ cond(A, b)(cond(A) + cond(A, b) + 1) + O(ǫ2).

Therefore,

cond(A + E, b + f) − cond(A, b)

ǫ cond(A, b)
≥ −(cond(A) + cond(A, b) + 1) + O(ǫ). (3.12)

Combining (3.10) and (3.12), we get

|cond(A + E, b + f) − cond(A, b)|

ǫ cond(A, b)
≤ cond(A) + cond(A, b) + 1 + O(ǫ).

Finally,

cond[2](A, b) ≤ cond(A) + cond(A, b) + 1 ≤ 2 cond(A, b),

since

cond(A, b) = ‖A†‖2‖A‖2 +
‖A†‖2‖b‖2

‖A†b‖2
≥ cond(A) + 1.

In the following, we derive a lower bound for cond[2](A, b) defined in (3.5). Using (3.3), we

have

cond(A + E, b + f) − cond(A, b)

= cond(A + E) +
‖(A + E)†‖2‖b + f‖2

‖(A + E)†(b + f)‖2
− cond(A) −

‖A†‖2‖b‖2

‖A†b‖2
.

Let f = 0. Then

‖(A + E)†‖2‖b + f‖2

‖(A + E)†(b + f)‖2
−

‖A†‖2‖b‖2

‖A†b‖2

=
‖(A + E)†‖2‖A

†b‖2 − ‖A†‖2‖(A + E)†b‖2

‖(A + E)†b‖2‖A†b‖2
‖b‖2.

From Lemma 3.1, for any ǫ > 0, we can find an E0 such that

‖(A + E0)
†‖2 ≥ ‖A†‖2(1 + ǫ cond(A)) + O(ǫ2)

and, from (2.2), we have

‖(A + E)†b‖2 = ‖(I + A†E)−1A†b‖2 ≤ (1 + ǫ cond(A))‖A†b‖2 + O(ǫ2).
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Thus

‖(A + E0)
†‖2‖A

†b‖2 − ‖A†‖2‖(A + E0)
†b‖2 ≥ O(ǫ2),

which means that for E = E0 and f = 0,

‖(A + E)†‖2‖b + f‖2

‖(A + E)†(b + f)‖2
−

‖A†‖2‖b‖2

‖A†b‖2
≥ O(ǫ2).

Hence, for E = E0 and f = 0,

cond(A + E, b + f) − cond(A, b) ≥ cond(A + E) − cond(A) + O(ǫ2). (3.13)

On the other hand, let E = E0 be given in Lemma 3.1. Then, from (3.9),

cond(A + E0) − cond(A) ≥ ǫ cond(A)(cond(A) − 1) + O(ǫ2). (3.14)

From (3.3) and the inequality ‖A†b‖2 ≥ ‖AA†b‖2/‖A‖2, we have

cond(A, b) = cond(A) +
‖A†‖2‖b‖2

‖A†b‖2

≤ cond(A) +
‖A‖2‖A

†‖2‖b‖2

‖AA†b‖2
=cond(A)

(

1 +
‖b‖2

‖AA†b‖2

)

.

Consequently, for E = E0 and f = 0, using (3.13) and (3.14), we get

cond(A + E, b + f) − cond(A, b)

ǫ cond(A, b)

≥
cond(A + E) − cond(A)

ǫ cond(A, b)
+ O(ǫ)

≥
(cond(A) − 1)cond(A)

cond(A, b)
+ O(ǫ)

≥
cond(A) − 1

1 + ‖b‖2/‖AA†b‖2
+ O(ǫ)

≥
cond(A, b)

(1 + ‖b‖2/‖AA†b‖2)2
−

1

1 + ‖b‖2/‖AA†b‖2
+ O(ǫ).

Defining γ = ‖b‖2/‖AA†b‖2, which is the secant of the angle between b and the projection

AA†b, we claim that

cond(A, b)

(1 + γ)2
−

1

1 + γ
≥ 0, equivalently cond(A, b) ≥ 1 + γ.

Indeed, using

cond(A) ≥ 1, ‖A†b‖2 ≤ ‖A†‖2‖AA†b‖2,

and the second equation in (3.3), we get

cond(A, b) = cond(A) +
‖A†‖2‖b‖2

‖A†b‖2
≥ 1 +

‖b‖2

‖AA†b‖2
= 1 + γ.

Thus, from the definition (3.5) of cond[2](A, b), we have the lower bound:

cond[2](A, b) ≥
cond(A, b)

(1 + γ)2
−

1

1 + γ
.
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This completes the proof.

When the residual ‖r‖2 is small, ‖b‖2 ≈ ‖AA†b‖2 since ‖b‖2
2 = ‖r‖2

2 + ‖AA†b‖2
2. Then the

lower bound is approximately

cond[2](A, b) ≥
cond(A, b)

4
−

1

2
.

This theorem shows that the level-2 condition number cond[2](A, b) is almost the same as the

condition number cond(A, b), up to a small constant.

Finally we note that in practice, the computed condition number cond(A) = ‖A‖2‖A
†‖2 for

the generalized matrix inversion of A is actually ‖A+E1‖2‖(A+E2)
†‖2, where the perturbations

E1 and E2 may be different. We can generalize the definition (3.4) to

cond[2](A)

= lim
ǫ→0+

sup

{

‖A + E1‖2‖(A + E2)
†‖2 − cond(A)

ǫ cond(A)
, ‖E1‖2, ‖E2‖2 ≤ ǫ‖A‖2

}

.

We can show that cond[2](A), as cond[2](A) in Lemma 3.1, is also essentially same as cond(A).

Specifically, let E1 = ǫA and E2 = E0 given in Lemma 3.1. Then, from Lemma 3.1, we get

‖A + E1‖2‖(A + E2)
†‖2 = (1 + ǫ)‖A‖2‖A

†‖2(1 + ǫ cond(A)) + O(ǫ2)

= cond(A) + ǫ cond(A)(1 + cond(A)) + O(ǫ2).

It then follows that

cond[2](A) = cond(A) + 1.

4. Conclusion

In this paper, we first present explicit expressions for the absolute and relative condition

numbers for the rank deficient least squares problems in the weighted Frobenius norm. Because

the problem is rank deficient, we impose the conditions (1.3) on the perturbation matrix E. As

a consequence, our condition numbers are independent of the residual. We then analyze the

level-2 condition numbers for the generalized matrix inversion and rank deficient least squares

problem in 2-norm. We show that the level-2 condition numbers are essentially the same as

their corresponding condition numbers.

Acknowledgments. We would like to thank two referees for their useful comments on our

paper. The first author is supported by the National Natural Science Foundation of China under

grant 10471027 and Shanghai Education Committee. The third author is partially supported

by Natural Science and Engineering Research Council of Canada and supported by Shanghai

Key Laboratory of Contemporary Applied Mathematics of Fudan University during Sanzheng

Qiao’s visit.

References

[1] A. Ben-Israel, On error bounds for generalized inverses, SIAM J. Numer. Anal., 3 (1966), 585-592.

[2] J.W. Demmel, On condition numbers and the distance the nearest ill-posed problem, Numer.

Math., 51 (1987), 251-289.



572 Y.M. WEI, H.A. DIAO AND S.Z. QIAO

[3] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University,

Baltimore, 1996.

[4] S. Gratton, On the condition number for linear least squares problems in a weighted Frobenius

norm, BIT, 36 (1996), 523-530.

[5] D.J. Higham, Condition numbers and their condition numbers, Linear Algebra Appl., 214 (1995),

193-213.

[6] J.R. Rice, A theory of condition, SIAM J. Numer. Anal., 3 (1966), 287-310.

[7] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Science Press,

Beijing/New York, 2004.

[8] M. Wei, Relationship between the stiffly weighted pseudoinverse and multi-level constrained pe-

sudoinverse, J. Comput. Math., 22 (2004), 427-436.

[9] M. Wei, On stable perturbations of the stiffly weighted pseudoinverse and weighted least squares

problem, J. Comput. Math., 23 (2005), 527-536.

[10] Y. Wei and D. Wang, Condition numbers and perturbation of the weighted Moore-Penrose inverse

and weighted linear least squares problem, Appl. Math. Comput., 145 (2003), 45-58.

[11] W. Xu, Y. Wei and S. Qiao, Condition numbers for structured least squares problems, BIT, 46

(2006), 203-225.


