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Abstract

In this paper, we discuss an inverse eigenvalue problem for constructing a 2n x 2n
Jacobi matrix T" such that its 2n eigenvalues are given distinct real values and its leading
principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary
condition for the solvability of the above problem is given in this paper. Furthermore, we
present a new algorithm and give some numerical results.
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1. Introduction

A real symmetric tridiagonal matrix 77 , of the form

a; Bi 0
T = b1
0 ﬂnfl (7%

with G; > 0 is called a Jacobi matrix.

In 1979, Hochstand [1] put forward the inverse eigenvalue problem (I): Given a Jacobi matrix
T, and real values: \; < Ay < -+ < Ag,, construct an irreducible symmetric tridiagonal matrix
T' 2, whose eigenvalues are Ai, Az, - - - , A2y, and the leading principal submatrix 77 ,, is the given
T,.

Hochstand also proved that the solution is unique if it exists. In 1987, Boley and Golub [2]
proposed a numerical method for solving Problem (I), but this method needs to compute all
the eigenvalues and eigenvectors of T} ,,, which seems expensive in computational time. Dai [3]
gave a sufficient and necessary condition for solving this problem, which was further improved
by Xu [4]. But both algorithms need to compute 2n + 1 determinants of matrices of order 2n.
Furthermore, in the process of constructing 74 2., we find that 71 ,, is reconstructed, which may
make T ,, different from the given one due to the computing error. In this paper, the inverse
problem is solved by an idea completely different from the previous ones. In fact, since 17 ,, is
given , we may only take measures to obtain 7},41,2, and [,.

In this paper, we present a new algorithm based on the following (k) Jacobi inverse eigenvalue
problem [5]: Given real number sets S1 = {p1, -+, pr-1}, S2 = {fk+1, ", pn} and Sg =
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{1, -+, A}, we construct Ty ,, of the form
Tip—1 Br—1
Tl,n = ﬂkfl (77 ﬂk )

Bk Thtin

where the eigenvalue sets of T4 y—1, Tk+1,, and T4 ,, are Sq,S2 and Ss, respectively.
Let

ar B 0
B '
: 6n71
T1,2n = 6717 1 (e7%) 671
Bn
ﬂanl
0 ﬁQn—l Qap

be a 2n x 2n irreducible symmetric tridiagonal matrix, and denote its submatrix T, , (p < q)
by

op By 0
By apy1 Bpyr
Tpq = 5p+1
: : 61]*1
0 ﬂqfl qu

Here, we assume that T} 2, and T}, 4 are Jacobi matrices. Rewrite

Tl,n—l ﬁn—l
T1,2n = ﬁn—l Qp, ﬁn »
671 Tn+1,2n

where (3, and T),41 2, in problem (I) need to be obtained from the given values {)\; %21 and
the matrix 17 ,,.

The paper is organized as follows. In Section 2, a sufficient and necessary condition for
solving Problem (I) is given in two cases: Ti,—1 and Tj 2, have or do not have common
eigenvalues. We also prove that if the solution exists, then it is unique. In Section 3, we present
the corresponding algorithm and give two numerical examples.

2. The Basic Theorems

2.1. Some basic lemmas

In this section, we first give some preliminary results which play a fundamental role in this
paper. The proofs are omitted here; they can be found in the corresponding references.

Lemma 2.1. [6] Let the eigenvalues of T, be 01 < 0 < -+ < 0,, with corresponding unit
eigenvectors S, Sa,- - ,Sn. Denote the i-th component of S; (j = 1,2,---,n) by Si;. Then,
Jor p<wv,

X (03)8,3S0; = X1.u—1(07)Bu - Bu—1 X410 (85),
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where Xp,q = det(A —Tp ).

For
Ty k-1 Br—1
Tn=1| Br1 ax B ;
B Thyinm
let the eigenvalue sets of Ty ;—1 and Thi1,, be {s;}i" and {u;}?%, ., respectively. Then we
have
(SSJLZ_)?:X,Lk—iQ('ui)7 i=1,-- k-1 (2.1)
X151 (Ha)
and
(Sﬁ))Q:XfL’L(”i)’ i=k+1,--,n, (2.2)
' Xk+1,n(lu’i

where S,il_)u is the (k — 1)-th element of the i-th eigenvector of T} ;1 and Sﬁ-) is the first
element of the i-th eigenvector of Tj41 -

Lemma 2.2. [5] If Th y—1 and Tk+1,, have no common eigenvalues, then any root of the equa-
tion
k—1 (61@*15(1) 4)2 n (ﬂks(Q))Q
F(\) =)\ — _ k—14) Li) _y
W= =3 == )

i=1

(2.3)
i=k+1

is an eigenvalue of T,,. On the other hand, any eigenvalue of T, is a root of Eq. (2.3). If T1 -1
and Tyi1,, have common eigenvalues, each common eigenvalue is an eigenvalue of Ty, and
other eigenvalues of T, are roots of Eq. (2.3). Similarly, in this case, any root of Eq. (2.3) is
an eigenvalue of T,.

Lemma 2.3. [5] Let A\ < pj, < Ag < pj, < -+ < Wi, < An. Then the following linear
algebraic equations system:

)\I] :)\i_ak Z':17...,n7
R
has unique solution x = (x1,x2, - ,Tp_1) and
n
IT (N = 1)
Ty =—t >0, j=1,---,n—1 (2.4)
IT (ki = 15)

e
Rl
S

Lemma 2.4. [5] If there is no common number between {u;}i=! and {mitisy i1, then the
necessary and sufficient condition of the (k) problem having a solution is

)\1<,ui1<)\2<---<uin71<)\n.

Furthermore, if a given (k) problem has a solution, then the solution is unique.
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Lemma 2.5. [5] Given three real number sets S1 = {A1, A2, -+, An}, S2 = {p1, o, -+, pk—1}
and S3 = {fik+1, Lk+2, " -, n} SO that each set has different elements and

>\1 < >\2 << >\n71 < )‘na 1225 < Mo < < Mgy o < Mg —15

where (j1,j2, - ,jn—1) s a permutation of (1,2,--- k=1, k+1,---,n). If uj, = pj,,,, the
sufficient and necessary condition for the (k) problem to have a solution is that the following
strict separation

A1 < sy < Ag < -e e < Wjn_s <>\n;

holds except pi, = Agy1 = Hj,,, instead of above pj, < Agy1 < pj,,,. Furthermore, if the (k)
problem has a solution, then there are infinitely many solutions.

2.2. Basic theorems

Now, we consider Problem (I). Denote the eigenvalues of 17 ,,—1 by p1, pi2, - -+ , tn—1 Whose
corresponding unit eigenvectors are Sfl), Sél), e ,Sfll_)l. Denote the (n — 1)-th component of

Sj(-l) by 57(1121,j (j=1,---,n—1). We discuss Problem (I) in two cases similar to [5]:
e (1) There is no common number between {y;}7=" and {\;}22,.
e (2) There are common numbers between {;}7-}" and {)\;}2",.

In Case (1), we define

n
‘Pn-‘rl,Qn(:u) =p" + Z Cn—iﬂn7i7 (2'5)
i=1
where
2n n
Cho1= —Z)\i +ZO¢¢, (2.6&)
i=1 i=1
1 2n
(=" _l:[l(&' — 1)
(pn+1,2n('u/j): 0 = p— s j: 1, 77’L—1 . (26b)
(ﬂnflsn_Lj)Q 1:[1 (/’L’L - /’L])
i#]
Here, (Co,C4,---,Cr_2)7 is the solution of the following system of equations
1w e ol Co p(p1)
1 cee 2 Ch p(p2)
- = . = : , (2.7)
. : :
L SR Cros plin—1)

where p(p) = @nt1.0n(p) —p™ — Crp_1p™ 1. It is known that ¢y,41,2, (1) is uniquely determined.

In Case (2), for simplicity, we assume that there is only one common element between
{1 ?;11 and {\;}77,, say u1 = A,. If there are two or more common elements, the analysis is
analogous. Define

Pn+1,2n(p) = (10— p1)n—1(), (2.8)
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where .
Yo (p) = p" T+ Cp™ (2.9)
2n 122
Cn72 = *ZAz +Zai+)\qa
i=1 i=1
and 2n
(1" [T v - )
=
i .
(l/}nfl(,ufj): (1) qn_l ) ‘7:27;77/*1
(6n715n_17j)2 ‘1:[1 (i — ,uj)
i#
Here (Cy,C1, -+ ,Cp_3)T is the solution of the system
1 gy - ouyd Co h(pz)
Lo o R I (2.10)
1 Hn-1 - H'Z:% Cn—3 h(un—l)

where h(u) = tn—1(n) — p" 1 — Cr_ap™ 2. Obviously, ¢n41,2, () is also unique.
For ¢n+1,2n(p) given in the above two cases, we have the following result.
Theorem 2.1. If Problem (I) has a solution, then

Oni1,2n(p) = det(pul — Tny12n).-

Proof. Rewrite Tine1 Bui
n— n—
Ton = Brn-1 Qi Bn ;
671 Tn+1,2n
and denote the eigenvalues of Tj11 20 bY fint1,- -, flon. First, in Case (1), if T} o, exists, it

follows from Lemma 2.2 that

n—1 (1) 2 2n (2)\2
1S - S
Fp) =X —an — Z 7@”)\1 _nil"z) — Z 7(?1 _12) =0, 1<p<2n.
i=1 p — Hi imng1 P T M

Notice that g,,—1 is given and S (1)

w1, =1,---,n—1) can be obtained by (2.1). Correspond-

ingly, (ﬁn_1S,(Ll_)17j)2 (j=1,---,n—1) is known. Furthermore, by (2.4),

2n
O
(Bn1Sp2y ) =2y =————, =1, ,n—1L (2.11)
IT (i = 15)
i=1
i#j
i#n
So, for j=1,--- ,n— 1, we rewrite (2.11) as
2n
fiow
(ﬂnflsn_l,j)Q = - =
n—1 n
-H1 (i — 115) _l:[l(un+i — 1)

i
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Denote 2n 2n,
¢n+1,2n(ﬂ) = (=" H (i — p) = H (1 — pq).
i=n+1 i=n+1

We get, for 1 <j<n-—1, 2n
" 1:[ (Ai = 5)
(ﬂnflsn_l,j)2 = - — )

D)"bnt1,2n (1)

175]
which gives 2n
(=D TT (N = 1y)
Ont12n(tj) = = : (2.12)
(81502 TT (i — 1)
i
By (2.6) and (2.12),
(Pn+1,2n(ﬂj) = ¢n+1,2n(ﬂj)a j=1-,n-1 (2'13)

Define n 4
Gntr2n(p) = p"+ > O™,
i=1

and notice that
2n n
s ==Y == (S0 Toau) = i
i=1 i=1

Hence, ©n+1,2n (1) — dnt1,2n(1) is a polynomial of degree n — 2. This, together with (2.13),
shows that
Pnt12n(B) = Ony12n () = det(pul — Ty 2n).
Second, for Case (2), we assume that g1 = Ag. If 17 9, exists, then there must exist one
eigenvalue of T}, 41 25, such that px = Ay = 1 (n+1 <k < 2n). By Lemma 2.2, A\, (p # ¢) can
be substituted into Eq. (2.3):

F()\ ) — )\ — o 75:1 (6% IS»,(II 1 7, 2 _ Z (27,)) o (6%*15511,)1’1)2 + (67LS§72]2)2 _ 0
’ ’ ! = M i=n+1 A M Ap — i1 '
ik

Forj=2..- n—1,

2n 2n
-H1(>\i = 115) 41_[1()\1' = 115)
1= 1=
i# i#
(ﬂnfls»,(ll_)l,j)Q = - an = ! ) (214)
L . n—1 n
zl;ll (ki MJ) [T (i — Mj) IT (pnti — )
i#j,n,k i=1 =l
i#£] i#k
2n
H ()\ - Ml)
o1 = (B8O (BaS = - F (2.15)
H (Mz‘ — p1)
Zn

ik
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Denote
2n 2n
on1() = (=" I —m= T (= m.
i=n—+1 i=n+1
i#k i#k
Then we have
2n
(=" 'H1()\i = 15)
7 .
On_1(p;) = o qn_l . j=2,-,n—1.
(ﬂn715n_17j)2 1:[1 (i — pj)
i#)
Let .
ona(p) = p" " Y Ol
i=2
where

n 2n n
;_2 = 7ZNn+i = 72)\1 +ZO¢¢ +>\q = Cn,Q.
;;:éllc =1 =1
Similarly, we can prove that 1,1 (¢) = op—1(p). Therefore,
Prnt1,2n(p) = (0 — p1)¥n-1(p) = (1 — p1)on-1(p) = det(pl — Tny1,2n)-

According to Lemma 2.4, Lemma 2.5 and above discussions, we obtain

Theorem 2.2. The sufficient and necessary condition of Problem (I) having a solution is:

o (L1). fint1,--" ; M2n, the roots of ppi1,2n(N) =0, are distinct real values.
o (Lo) (I1). Separation A1 < pryy < Ao <+ < Wiy, < Aap, holds, where (i1,i2," -+ ,i2n—1)
is a permutation of (1,2,--- m—1,n+1,---,2n), or
o (La)(l2). If pigy, = Aqus " s iy, = Ag between {i}" and {\;}3", above strict sepa-
ration holds except Hig,—1y = Ag, = i, instead of above Pigg,—1y < Age < iy, (s =
L land n+1 <, 1) < 2n), and for j = qu,- -, q, Ts; — (ﬁn_ls'r(zl—)l,ij)2 > 0, where
xjff"(“j), j=1,---,n—1,n+1,---,2n, (2.16)
)
where
2n
1()‘10 - :u) 2n
p:
np) = —— () = 11 (tp — 125 -

I (.~ ) =

p:,éj,n,iql,l,~~~ ,iqlfl
Furthermore, if Problem (1) has a solution, then the solution is unique.

Proof. By Lemma 2.4, Lemma 2.5 and Theorem 2.1, the necessity of (L;) and (Ls2) (I1)
is obvious. Moreover, if there are common numbers between {u;}7=' and {\;}?",, just as in
(2.15), we have

Tiy = (ﬁn—157(1121,ij)2 + (ﬁnsfi)j,l)Q-
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Hence
xij _(ﬁn_lsr(zlzl,ij)Q >O7 j:q17"' > ql,
and by the two lemmas, the necessity (L2) (I2) is easy to verify.
Now we prove that (L) and (Ls) are also sufficient. In Case (1), by (L1) and (L2)(l1),

2n
IT (N = 1)
zj=—"t——— >0, j=n+1--,2n (2.17)
_l:ll(ﬂi — 1)
i)
i#n
Let
2
Xj = (BuS0))? = a, (2.18)
where
2n
Bo=1| > Xj5 SP) =VX/Bu j=n+l- 2 (2.19)
j=n+1
Let g1 be an n x 1 vector whose j-th element is szﬂ- (j =1,---,n). Then it is well-known that
Ty +1,2n can be constructed uniquely [7] with 41, nt2, -+, pon and g1. From the process of
constructing (2.11) and (2.17), we know that A1, Ag, -+, Ao, are the roots of Eq. (2.3). So, by
Lemma 2.2, A1, A2, -+, A2y, are exactly the eigenvalues of T 5, that we construct.

Now we prove the sufficiency of (L1) and (L2) (I2). For simplicity and without loss of
generality, we assume that there is only one common eigenvalue, 11 = Ay = p (n+1 < k < 2n).
Consider the system of equations

2n .
i .
E \— _*Aifana Z%Qa
=1 NTH
Jj#Fnk
whose unique solution is given by © = (21, , Zn—1,Tnt1,"** ,Th—1,Tht1," " ,Tan), Where

2n
_1:[1(%‘ — 1)
i#q
2n

[T (i —py)

i#n,k,j

By condition (Lg)(l2), z1 — (ﬂn,15221’1)2 > 0. Let
Xi=a1 = (BucrSi10)° = (6510 (2:20)

X]:sz(ﬂns£,2]))2ﬂ ]:n+17ak71ak+]—aa2na (221)

2n

2 .
Bu=\ 3 X0 SP =VX/Bu j=ntl. .2 (2.22)
j=n+1
With 5, Sﬁ) (J=n+1,---,2n), Tht1,2, can be uniquely constructed [7]. Similar to Case
(1), A1, A2, -+, Aoy are also exactly the eigenvalues of T7 2, that we construct. Moreover, it is

easy to verify that the solution of Problem (I) is unique.
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3. Algorithm and Numerical Examples

Summarizing the above discussions, we can give the following algorithm for solving Problem

(D):

n—1

Step 1: Compute {u;};— , the eigenvalues of T} ,,—1 which is the (n — 1) x (n — 1) leading
principal submatrix of the given matrix 7T5,.

Step 2: Compute (S(l)

nfl,i)27i = 1) e, N — 1 by (21)

Step 3: Find @,41,2,(p) by (2.5) and (2.7) in Case (1), and by (2.8)-(2.10) in Case (2), and
then obtain fin41, fint2, -+, thon Dy solving @, 112, () = 0. If they satisfy conditions (L)
and (Lg) of Theorem 2.2, continue. Otherwise, Problem (I) has no solution.

Step 4: Compute z;; by (2.17) in Case (1) and by (2.16) in Case (2). If in Case (2),
Ty — (ﬂn,lS,(Ll_)uj)Q < 0, then the problem (I) has no solution. Otherwise, compute (3, by
(2.18)-(2.19) or (2.20)-(2.22).

Step 5: Compute Sﬁ) (j=n+1,---,2n) by (2.19) or (2.22).

Step 6: Construct Tj,11,2, from Sf}, (J =n+1,---,2n) and piny1, fint2, 5 H2n DY
Lanczos Process or Givens Orthogonal Reduction Process [2,7].

Example 1. Consider

S OO k= OO
O O = Ol = O O O
O = O = O O O O
_ N = O O O O O
o — O O O O O O

O O O O O =N
OO OO = WO

O O OO OO =

Its eigenvalues are

A1 = 0.25380581740172, Ay = 1.78932147067715, Az = 2.96106654125555,
Aq = 3.99627320510481, A5 = 5.00372679490000, A¢ = 6.03893345873617,
A7 = 7.21067852932706, g = 8.74619418259755.

Now we reconstruct a Jacobi matrix with these eigenvalues and 77 4 according to the above
algorithm.

Step 1: Pick T3 3. Its eigenvalues (u1, po, p3) are

(0.26794919243112, 2.00000000000000, 3.73205080756887).
Step 2: Compute ((Séll))Q, (Ség)Q, (S§1§)2) as follows:

(0.04465819873852, 0.33333333333333, 0.62200846792815).

Step 3: Find
@s.8(p) = pt — 26p° + Cop® + Cip' + Co,
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where (Cy, Cy,C3) are given by

(1.55500000000003 x 103, — 1.02699999999998 x 10, 0.24799999999998 x 10%).
It can be verified that the roots of @5 g(u) = 0 are

s e 4.25471875981424  5.82271708097246
pr ps || 7.17728201897388 8.74528124023941 |
Step 4: Find B4 = 0.99999999998965.

Step 5: Compute Sf},j =5,6,7,8

2 2

l S{ S 1
2 2
S S3)

0.77795054674394 0.55327107602016
0.20117378247848 0.06246512352891 |

Step 6: Construct 75 g from p;,7 =5,6,7,8 and Sf},j =5,6,7,8
as = 4.99999999967063, G5 = 0.99999999885204, ag = 5.99999999169626,

Bs = 0.99999998932013, a7 = 6.99999997518876, (7 = 0.99999999063476,
ag = 8.00000003344434.

The reconstruction of T} g is then obtained.

Example 2. Given

410 0
1410
Ta=1¢ 1 41
00 1 4

and the eigenvalues of T} g are

A1 = 2.31949546297742, Ay = 3.15418996943928, Az = 4.00000000000000,
A4 = 4.51656171330962, A5 = 5.14362819027225, A¢ = 5.59203832346487,
A7 = 6.16629426322943, g = 7.10779207697774.

Step 1: The eigenvalues (p1, p2, pig) of T 3 are

(2.58578643762690, 4.00000000000000, 5.41421356237310).
There is one common eigenvalue between T3 g and 717 3.
Step 2: Compute ((Séll))Q, (532,12))2, (Sélg)Q) as follows:

(0.25000000000000, 0.50000000000000, 0.25000000000000).
Step 3: Find ¥3(u) = p® — 24pu2 + Cip + Cy with

Co = —2.09999999980931 x 102,  C; = 1.06999999996435 x 102

The roots (u, (7, 1s) for 13 are

(4.99999999937818, 5.99999999767866, 7.00000000294316),

which are eigenvalues of T5 g together with ps = 4.00000000000000.
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Step 4: Compute zo = 0.75000000000014. Then

(83559) = 0.50000000000000 < x5, (B1S{9)? = x2 — (83555)? = 0.25000000000014.
Moreover, we have

(BuS{0)? (BaS{H)? 0.25000000190807 0.25000000140841
(BSR)? Ba | 0.24999999311876  0.99999999821769 |

Step 5: We obtain

S¢ s%) 0.50000000089130 0.50000000279922
s@ 5™ | | 0.50000000220956 0.49999999400991 |

Step 6: Construct T5 s from p;,% = 5,6,7,8 and Sf},j =5,6,7,8,
as = 5.49999998942810, (5 = 1.11803398498655, ag = 5.50000000604590,
B¢ = 0.89442719636495, a7 = 5.50000000583800, (B7 = 0.67082039502598,

g = 5.49999999868799.

Finally, we give the eigenvalues of the constructed matrix to compare them with the given
ones. The eigenvalue set is

S ={2.31949546304336, 3.15418996957387, 3.99999999976149, 4.51656171398453,
5.14362818931108, 5.59203832427922, 6.16629426303990, 7.10779207700656}.
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