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Abstract

We consider the unbalanced Procrustes problem with an orthonormal constraint on

solutions: given matrices A ∈ Rn×n and B ∈ Rn×k, n > k, minimize the residual ‖AQ −

B‖F over the Stiefel manifold of orthonormal matrices. Theoretical analysis on necessary

conditions and sufficient conditions for optimal solutions of the unbalanced Procrustes

problem is given.
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1. Introduction

Given two matrices A ∈ Rm×n and B ∈ Rm×k with n > k, we consider the orthonor-

mal Procrustes problem: Find an orthonormal matrix Q ∈ Rn×k that solves the following

constrained optimization problem:

min
QT Q=I

‖AQ − B‖2
F , (1.1)

where ‖ · ‖F denote the Frobenius norm. The set of orthonormal matrices in Rn×k defines the

orthonormal Stiefel manifold

S = {Q ∈ Rn×k : QT Q = I}. (1.2)

In general, m ≥ n. If m ≫ n, the size of the problem can be reduced by QR decomposition

with no difficulties. Therefore, without loss of generality, we assume that the matrix A is square

with order n, i.e., write (1.1) as

min
QT Q=I

‖AQ − B‖2
F , A ∈ Rn×n, B ∈ Rn×k, n ≥ k. (1.3)

We refer to (1.3) as the balanced Procrustes problem if k = n, and the unbalanced Procrustes

problem when k < n.

The balanced problem is simple and has been solved analytically [4, 8]; solutions are given

by the singular value decomposition (SVD) or pole decomposition of AT B. However, the

unbalanced Procrustes problem seems to be quite difficult. First, if A is rank deficient in

column, i.e., r = rank(A) < n, then by SVD A = UrΣrV
T
r of A,

‖AQ − B‖2
F = ‖ΣrV

T
r Q − UT

r B‖2
F + ‖(U⊥

r )T B‖2
F ,
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where U⊥
r denotes the orthogonal complement of Ur. Hence the problem (1.3) is equivalent to

minQT Q=Ik
‖ΣrV

T
r Q−UT

r B‖F . Though ‖ΣrV
T
r Q−UT

r B‖F = ‖ΣrX−UT
r B‖F with X = V T

r Q

and ‖X‖ ≤ 1, the optimization problem mentioned above is not equivalent to the constrained

LS problem

min
‖X‖≤1

‖ΣrX − UT
r B‖F .

Second, necessary and sufficient conditions for a global minimum of the unbalanced problem are

still not clear, though some necessary conditions and sufficient conditions for local and/or global

optimal solutions have been reported [3]. Third, except the special case when k = 1 for which

a quadratic convergent method is proposed and careful analysis for its quadratic convergence

is also given in [10], no sufficient analysis is reported for the convergence of existing iterative

algorithms for solving the unbalanced problem when k > 1, partially due to lack of sufficient

theoretical analysis for optimal solutions. Indeed, these iterative algorithms may be divergent

or/and not efficient when the problem scale is large or A is ill conditioned.

The purpose of this paper is to show a deep understanding to the unbalanced Procrustes

problem. We are interested in conditions of optimal solutions for the unbalanced problem. An

analysis for local or global optimal solutions is given, which simplifies the discussions given

in [3]. Based upon the analysis presented in this paper, a successive projection (SP) method

for solving the unbalanced Procrustes problem will be proposed in a separate paper, together

with a careful analysis for the convergence of the successive projection method and reports of

numerical experiments.

The rest of this paper is arranged as follows. In Section 2, we review the structures of

optimal solutions of the balanced problem. A discussion of necessary conditions for global

optimization solutions of the unbalanced Procrustes problem is given in Section 3. In Section

4, we present some sufficient conditions of a local and/or global minimum of the unbalanced

problem.

Notations. Given an orthonormal matrix Q ∈ Rn×k, we call H ∈ Rn×(n−k) an orthogonal

complement of Q if [Q, H ] is a (square) orthogonal matrix. The spectral norm of a vector or a

matrix is simply denoted as ‖ · ‖, while ‖ · ‖F denotes the Frobenius norm of matrices. As used

in general, I denotes an identity matrix with certain matrix size.

2. Structure of Solutions to Balanced Procrustes Problem

The balanced Procrustes problem, i.e., k = n, is relatively simple; it can be solved by the

SVD of the matrix AT B. Here we cite a theorem that illustrates the structure of solutions of

the balanced Procrustes problem.

Theorem 2.1. [4, p.695] Let

AT B = U

[

Σ1 0

0 0

]

V T

be the singular value decomposition of AT B, where Σ1 = diag(σ1, · · · , σr), and r = rank(AT B).

Then all solutions of the balanced Procrustes problem (1.3) can be formulated as

Q = U

[

Ir 0

0 T

]

V T , (2.1)
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with any orthogonal matrix T .1)

It is easy to prove Theorem 2.1. In fact, by the singular value decomposition (SVD) AT B =

Udiag(σ1, σ2, · · · , σp)V
T of AT B with r = rank(AT B), one can show that

‖AQ − B‖2
F = ‖A‖2

F + ‖B‖2
F − 2

r
∑

i=1

ziiσi,

where zii are the first r diagonal elements of the orthogonal matrix Z = V T QT U . This equality

shows that ‖AQ − B‖F is a minimum if and only if zii = 1 for i = 1, · · · , r, or equivalently,

Z = diag(I, T ) with orthogonal matrix of order n − r.

The structure (2.1) of an optimal solution Q to the balanced Procrustes problem implies

that QT AT B = V diag(σ1, σ2, · · · , σp)V
T is (symmetric) positive semi-definite. In fact, we can

prove that it is also true vice versa.

Theorem 2.2. The orthogonal matrix Q is an optimal solution to the balanced Procrustes

problem (1.3), if and only if QT AT B is a positive semi-definite matrix.

Proof. We only need to show the sufficiency. Let Q be orthogonal and QT AT B positive semi-

definite. Also let AT B = UrΣrV
T
r be the SVD of AT B, where both Ur and Vr are orthonormal

and the diagonal matrix Σr = diag(σ1, σ2, · · · , σr) is nonsingular. By the symmetry of QT AT B,

QT UrΣrV
T
r = VrΣrU

T
r Q. Denoting by C = UT

r QVr, we have

CT Σr = ΣrC, CΣr = ΣrC
T .

It follows that

CΣ2
r = ΣrC

T Σr = Σ2
rC.

Writing Σr = diag(σi1I, · · · , σik
I) with different σi1 , · · · , σik

, we conclude that C =

diag(C1, · · · , Ck) with diagonal blocks conforming to those of Σ. Clearly C is symmetric be-

cause CT Σr = ΣrC implies that C1, · · · , Ck are symmetric. Therefore, by UT
r QVr = C we

have

QT Ur = VrC + V ⊥
r S, (2.2)

where S satisfies CT C + ST S = I and V ⊥
r is an orthogonal complement of Vr. On the other

hand, because

QT AT B = VrCΣrV
T
r + V ⊥

r SΣrV
T
r

is symmetric, V ⊥
r SΣrV

T
r should be symmetric, too, which implies that S = 0 and hence C

is orthogonal. Thus, C must be the identity matrix since it is orthogonal and symmetric. It

follows form (2.2) that Ur = QVr and that

(Ur, U⊥
r )T Q(Vr, V ⊥

r ) = diag(I, T ),

where U⊥
r is an orthogonal complement and T is orthogonal. Therefore we can write

Q = (Ur, U⊥
r )diag(I, T )(Vr, V ⊥

r )T .

1) The formula given in [4] absorbs the orthogonal matrix T into the left or right orthogonal matrices of the

SVD implicitly.
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By Theorem 2.1, Q is an optimal solution. �

Remark. Theorem 2.2 states that an optimal solution to the balanced problem can be obtained

by a polar decomposition of AT B:

AT B = QS,

where Q is orthonormal and S is a symmetric and positive semi-definite matrix. However this

is not true for the unbalanced problem.

A solution to the unbalanced Procrustes problem is a column part of a solution to a relative

balanced Procrustes problem [5, 6]. This property together with Theorem 2.2 helps us to

propose conditions for global minimum of the unbalanced Procrustes problem.

3. Necessary Conditions for Unbalanced Procrustes Problems

Let Q be a solution of the unbalanced Procrustes problem (1.3), and H is an orthogonal

complement of Q. For any orthogonal matrix G = [G1, G2],

‖A[Q, H ] − [B, AH ]‖F = ‖AQ − B‖F ≤ ‖AG1 − B‖F ≤ ‖AG − [B, AH ]‖F .

It shows that [Q, H ] is a solution to the following balanced Procrustes problem:

min
GT G=I

‖AG − [B, AH ]‖F . (3.1)

Conversely, any solution G = [G1, G2] to (3.1) gives

‖AG1 − B‖F = ‖AQ − B‖F , A(G2 − H) = 0.

So we have the following simple result.

Theorem 3.1. If Q is an optimal solution to the unbalanced Procrustes problem (1.3), and

H is an orthogonal complement of Q, then [Q, H ] is a solution to (3.1), and for any solution

G = [G1, G2] of (3.1), G1 is also an optimal solution of (1.3) and A(G2 − H) = 0.

The following two theorems show necessary conditions without involving the orthogonal

complement H of a solution Q.

Theorem 3.2. If Q is an optimal solution to the unbalanced Procrustes problem (1.3), then

QT AT B is also positive semidefinite, and there is a symmetric matrix Λ such that

AT AQ + QΛ = AT B. (3.2)

Proof. By Theorem 3.1, [Q, H ] is a solution to (3.1). It follows from Theorem 2.2 that

[Q, H ]T AT [B, AH ] is symmetric and positive semi-definite. Hence, its (1,1) block QT AT B is

also positive semidefinite. In addition, since [Q, H ]T AT [B, AH ] is symmetric,

HT (AT B − AT AQ) = 0.

So, there is a matrix Λ such that AT B − AT AQ = QΛ. Hence

Λ = QT AT B − QT AT AQ

and is symmetric. �
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Theorem 3.3. Let Q be a solution of the unbalanced Procrustes problem (1.3). Denote Qj =

[q1, · · · , qj−1, qj+1, · · · , qk]. Then

‖Aqj − bj‖ = min
q⊥Qj ,‖q‖=1

‖Aq − bj‖, j = 1, · · · , k. (3.3)

Proof. The proof is simple. Assume that there is j such that

‖Aqj − bj‖ > min
q⊥Qj ,‖q‖=1

‖Aq − bj‖.

Denote q∗j = arg min
q⊥Qj ,‖q‖=1

‖Aq − bj‖ and Q∗ = [q1, · · · , qj−1, q
∗
j , qj+1, · · · , qk]. It is easy to

verify that

‖AQ − B‖2
F − ‖AQ∗ − B‖2

F = ‖Aqj − bj‖
2 − ‖Aq∗j − bj‖

2 > 0,

a contradiction to the assumption that Q is an optimal solution to (1.3). �

The following theorem shows the relations between the conditions (3.3) and (3.2).

Theorem 3.4. An orthonormal matrix Q satisfies (3.3) and that (AQ)T B is symmetric, if and

only if (3.2) holds for the symmetric matrix Λ = (AQ)T (B − AQ) and the diagonals λjj of Λ

satisfy

λjj ≥ −σ2
min(A[qj , H ]), j = 1, · · · , k, (3.4)

where H is an orthogonal complement matrix of Q.

Proof. First, if Q satisfies (3.3), then for each j, x = e1, the first column of the identity

matrix I is an optimal solution to the problem min‖x‖=1 ‖A[qj , H ]x − bj‖. By Theorem 2.2 of

[10], there exists λj ≥ −σ2
min(A[qj , H ]) such that

(A[qj , H ])T A[qj , H ]e1 − λje1 = (A[qj , H ])T bj ,

i.e.,

[

qT
j

HT

]

AT Aqj +

[

λj

0

]

=

[

qT
j

HT

]

AT bj . (3.5)

It follows that

HT AT (B − AQ) = 0.

We can write AT (B −AQ) = QΛ with the symmetric matrix Λ = (AQ)T (B −AQ). Obviously,

λj = qT
j AT (bj − Aqj) = λjj .

Conversely, if AT AQ + QΛ = AT B, we have

(A[qj , H ])T A[qj , H ]e1 − λjje1 = (A[qj , H ])T bj .

By Theorem 2.2 of [10], if the inequalities in (3.4) hold, then qj must be the solution of the

following problem

min
q⊥Qj ,‖q‖=1

‖Aq − bj‖,

completing the proof. �

The equality (3.2) is necessary but not sufficient for a global minimum. Theorem 3.4 shows

that necessary condition (3.3) for global optimal solutions is stricter than condition (3.2). It
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is not clear if (3.3) is also sufficient or not. However, it may be much closer to a unknown

necessary and sufficient condition. This can be partially verified by comparing the conditions

(3.4) and the sufficient conditions (4.1) given later in Theorem 4.1. Besides, the Algorithm SP

proposed in [11] is based on solving the problems in (3.3) together with a technique of global

correction and always gives a global optimization solution for all the tests we have done. This is

also why we should rather consider sufficient conditions by imposing conditions on the necessary

condition (3.2) than sufficient conditions based upon (3.3) in the next section.

4. Sufficient Conditions for Unbalanced Procrustes Problems

To show how an orthonormal matrix Q satisfying (3.2) can be a global or local optimal

solution, we need following simple and important lemma.

Lemma 4.1. If an orthonormal matrix Q satisfies AT AQ + QΛ = AT B with symmetric Λ,

then for any orthonormal matrix Q̂,

‖AQ̂ − B‖2
F = ‖AQ − B‖2

F + ‖A(Q̂ − Q)‖2
F + tr(Λ(Q̂ − Q)T (Q̂ − Q)).

Proof. Simply write AQ̂ − B = (AQ − B) + A∆ with ∆ = Q̂ − Q. Taking norms and using

AT (AQ − B) = −QΛ with symmetric Λ gives

‖AQ̂ − B‖2
F = ‖AQ − B‖2

F + ‖A(Q̂ − Q)‖2
F − 2tr((∆T Q + QT ∆)Λ).

On the other hand, because both Q̂ = Q + ∆ and Q are orthonormal, one can verify that

∆T Q + QT ∆ = −∆T ∆.

Substituting it into the equality above, we obtain the required result. �

By Lemma 4.1, a sufficient condition for a unique global minimum follows immediately: If Λ

is positive, the Q is the unique optimal solution to the problem (1.3). However, this condition

is too strong to be satisfied generally. The following theorem shows a weaker condition for

optimal solutions.

Theorem 4.1. Let orthonormal matrix Q satisfy AT AQ + QΛ = AT B with symmetric Λ. If

σ2
n(A) + λmin(Λ) ≥ 0, (4.1)

then Q is a (global) optimal solution to the unbalanced Procrustes problem (1.3). Moreover, if

(4.1) holds strictly, Q is the unique optimal solution.

Proof. Let Q̂ = Q + ∆ be any orthonormal matrix that differs from Q, and let

Λ = Udiag(λ1, · · · , λk)UT be the eigenvalue decomposition of Λ. Denote by W = ∆ · U =

[w1, · · · , wk]. Then

‖A∆‖2
F + tr(∆Λ(∆)T ) = ‖AW‖2

F + tr
(

diag(λ1, · · · , λk)WT W
)

=

k
∑

j=1

(

‖Awj‖
2 + λj‖wj‖

2
)

≥

k
∑

j=1

(σ2
n(A) + λj)‖wj‖

2 ≥ 0.
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By Lemma 4.1, we have that ‖AQ̂ − B‖2
F ≥ ‖AQ − B‖2

F . �

Remark. (4.1) is also a necessary condition if k = 1. See [10, Theorem 2.2].

The condition (4.1) is similar in form to a necessary condition given in [3]. Later in this

section, we will give an easy-to-follow analysis for local minima.

Theorem 4.2. Let the orthonormal matrix Q satisfy AT AQ + QΛ = AT B with symmetric Λ.

If for any nonzero matrix ∆ such that QT ∆ is skew-symmetric,

‖A∆‖2
F + tr(∆Λ∆T ) > 0, (4.2)

then Q is a local optimal solution to the unbalanced Procrustes problem.

Proof. If Q is not a local optimal solution to the problem (1.3), then there is a sequence of

{Q(i)} such that Q(i) → Q and

‖AQ(i) − B‖F < ‖AQ − B‖F .

Denote by

∆(i) = Q(i) − Q, α(i) = ‖∆(i)‖, ∆̂(i) = ∆(i)/α(i).

Because {∆̂(i)} is bounded, without loss of generality, we can assume that {∆̂(i)} is convergent.

Let ∆ = limi→∞ ∆̂(i). Recalling that both Q and Q(i) = Q + ∆(i) are orthonormal, we have

QT ∆(i) + (∆(i))T Q + (∆(i))T ∆(i) = 0.

Dividing the equality above by α(i) and taking i → ∞ yields that ∆TQ is skew-symmetric. On

the other hand, by Lemma 4.1 we have

‖A∆(i)‖2
F + tr((∆(i))T ∆(i)Λ) < 0.

It follows that

‖A∆‖2
F + tr(∆Λ(∆)T ) ≤ 0,

contradicting the assumption of the theorem. �

A matrix ∆ ∈ Rn×k for which QT ∆ is skew-symmetric defines a tangent vector of Q on

the Stiefel manifold S (1.2). The following result shows that (4.2) is essentially necessary for a

local minimum in the Stiefel manifold.

Theorem 4.3. Let the orthonormal matrix Q satisfy AT AQ + QΛ = AT B with symmetric Λ.

If there is a nonzero matrix ∆ such that QT ∆ is skew-symmetric and

‖A∆‖2
F + tr(∆Λ∆T ) < 0,

then Q is not a local optimal solution to the unbalanced Procrustes problem.

Proof. Let Q(t) is a differentiable curve on S that is defined locally for small t and satisfies

Q(0) = Q and Q̇(0) = ∆. Then by Lemma 4.1,

‖AQ(t) − B‖2
F − ‖AQ − B‖2

F

t2
= ‖A

Q(t) − Q

t
‖2

F + tr(Λ
(Q(t) − Q)T (Q(t) − Q)

t2
).
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Letting t → 0, we have

lim
t→0

‖AQ(t) − B‖2
F − ‖AQ − B‖2

F

t2
= ‖A∆‖2

F + tr(Λ∆T ∆) < 0,

which implies that for sufficient t 6= 0,

‖AQ(t) − B‖2
F < ‖AQ − B‖2

F .

So Q is not a local minimum. �

Therefore, a weaker sufficient condition for local minimums is that the minimum of ‖A∆‖2
F +

tr(∆Λ(∆)T ) on the tangent space of the Stiefel manifold is positive. Note that a tangent vector

∆ can be written in the form ∆ = QS +HX with skew-symmetric S and arbitrary X . For this

∆,

tr(∆Λ(∆)T ) = tr(Λ(ST S + XT X)).

To drive such a weaker sufficient condition, let us consider the following constrained problem:

min
(

‖AQS + AHX‖2
F + tr(Λ(ST S + XT X))

)

s.t. ST = −S, tr(ST S + XT X) = 1.
(4.3)

To characterize its minima by Lagrange Multiplier Method, we write

‖AQS‖2
F + tr(ΛST S) = tr(ST ((AQ)T AQ + Λ)S) = tr((BS)T AQS).

So the Lagrange multiplier function of (4.3) reads

L = ‖AQS + AHX‖2
F + tr(Λ(ST S + XT X)) − µ(tr(ST S + XT X) − 1)

= tr
(

(BS)T AQS + (AHX)T AHX + ΛXT X + 2(BS)T AHX
)

−µ
(

tr(ST S + XT X) − 1
)

.

Taking the derivatives of L on S and X , respectively, and setting them to be zero gives

1

2

(

BT AQS + SBT AQ + BT AHX − (AHX)T B
)

= µS, (4.4)

(AH)T AHX + (AH)T BS + XΛ = µX. (4.5)

That is, the multiplier µ is an eigenvalue of the linear operator L defined by

L(S, X) =

[

1
2

(

BT A(QS + HX) −
(

BT A(QS + HX)
)T

)

(AH)T (AHX + BS) + XΛ

]

.

We multiply (4.4) and (4.5) by ST and XT on the left-hand sides, respectively. Taking the

sum of the traces of the two products yields

‖AQS + AHX‖2
F + tr(Λ(ST S + XT X))

= tr
(

(BS)T AQS + (AHX)T AHX + ΛXT X + 2(BS)T AHX
)

= µ.

Here we have used the condition tr(ST S + XT X) = 1 and the symmetry of BT AQ. Therefore,

a minimum of the constrained problem (4.3) is an eigenvalue of L with respect to Y = (S, X)

in the subspace V = V1 ⊕ V2, where

V1 =

{(

S

0

)

∣

∣

∣
S ∈ Rk×k, ST = −S

}

, V2 =

{(

0

X

)

∣

∣

∣
X ∈ R(n−k)×k

}

.
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Clearly, V1 is an invariant subspace of L. V1 and V2 are orthogonal to each other with inner

product tr(Y T
1 Y2). The eigenvalue set of L consists of the eigenvalues of two linear operators

defined in the following lemma.

Lemma 4.2. Define two linear operators L1 and L2 by

L1(S) =
1

2
(BT AQS − (BT AQS)T ), ST = −S ∈ Rk×k,

L2(X) = (AH)T AHX + XΛ, X ∈ R(n−k)×k,

respectively. Then the spectrum of L is given by λ(L) = λ(L1) ∪ λ(L2).

Proof. Let us denote by Φ1, · · · , ΦN1
a basis of V1 and Ψ1, · · · , ΨN2

a basis of V2. We can

write

L(Φj) =
∑

i

Φiαij , L(Ψj) =
∑

i

Φiγij +
∑

i

Ψiβij ,

or equivalently in matrix form,

L([Φ1, · · · , ΦN1
, Ψ1, · · · , ΨN2

]) = [Φ1, · · · , ΦN1
, Ψ1, · · · , ΨN2

]

[

L11 L12

0 L22

]

,

where L11 = (αij), L12 = (γij), and L22 = (βij). Therefore the eigenvalues of L are given by

the eigenvalues of L11 and L22. Now we show that λ(Li) = λ(Lii), i = 1, 2. To this end, writing

Φi = [ST
i , 0]T and Ψi = [0, XT

i ]T , we have

L1(Sj) =
∑

i

Siαij , L2(Xj) = [0, I]L(Ψj) =
∑

i

Xiβij .

If µ is an eigenvalue of L11, and s = (s1, · · · , sN1
)T is the corresponding eigenvector, we

denote S =
∑

i Sisi, and have

L1(S) =
∑

j

L1(Sj)sj =
∑

j

∑

i

Siαijsj

=
∑

i

Si(
∑

j

αijsj) =
∑

i

Siµsi = µS.

One can also verify that eigenvalues of L1 are eigenvalues of L11. The proof for the equivalence

between the eigenvalue sets of L2 and of L22 is similar and is deleted here. �

Now we can show sufficient conditions for local optimal solutions to the unbalanced Pro-

crustes problem.

Theorem 4.4. Let Q be an orthonormal matrix and H the orthogonal complement of Q. As-

sume that AT AQ + QΛ = AT B holds for symmetric Λ. If BT AQ is positive definite and

σ2
min(AH) + λmin(Λ) > 0, (4.6)

then Q is an local optimal solution to (1.3).
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Proof. By Lemma 4.2 and the discussions ahead of it, we only need to prove that both L1

and L2 are positive definite. First, for nonzero skew-symmetric matrix S,

tr(STL1(S)) = tr(ST BT AQS).

So the first condition that BT AQ is positive definite implies that L1 is positive definite. Below

we show that the positive definiteness of L2 follows from the second condition. To this end, let

Λ = Udiag(λ1, · · · , λk)UT be the eigenvalue decomposition of Λ. Denote W = XU . If X 6= 0,

then W 6= 0 and

tr(XTL2(X)) = ‖AHX‖2
F + tr(ΛXT X)

= ‖AHW‖2
F + tr(diag(λ1, · · · , λkWT W )

=
∑

j

(‖AHwj‖
2 + λj‖wj‖

2)

≥
∑

j

(σ2
min(AH) + λj)‖wj‖

2 > 0,

completing the proof. �

The conditions (4.1) and (4.6) are quite similar to each other. Since (AH)T (AH) is a

Rayleigh quotient of AT A,

σ2
min(AH) = λmin((AH)T (AH)) ≥ λmin(A

T A) = σ2
min(A).

So condition (4.6) is weaker than (4.1). This is why Theorem 4.4 only guarantees a local

minimum.

Finally, we propose sufficient conditions for multiple solutions to the problem (1.3).

Theorem 4.5. Let Q∗ be an optimal solution. Q(t) (t ∈ [0, 1]) is the geodesic curve connecting

Q∗ and Q on the orthonormal Stiefel manifold such that Q(0) = Q∗ and Q(1) = Q. If for each

t ∈ [0, 1], the symmetric matrix Λ(t) = (AQ(t))T (B − AQ(t)) satisfies

AT AQ(t) + Q(t)Λ(t) = AT B, (4.7)

then each Q(t) is also an optimal solution.

Proof. For simplicity, we denote by Q̇(t) the component-wise derivative of the matrix Q(t)

with respect to t. Note that Q(t)T Q(t) = I. Taking derivatives of the two sides of the equality

with respect to t yields that

QT (t)Q̇(t) + Q̇T (t)Q(t) = 0.

It implies that QT (t)Q̇(t) is skew-symmetric. We take the derivative again to the function

φ(t) = ‖AQ(t) − B‖2
F , and obtain that

d

dt
φ(t) = 2tr(Q̇(t)T AT (AQ(t) − B)) = −2tr(Q̇(t)T Q(t)Λ(t)) = 0.

Therefore,

‖AQ(t) − B‖F = ‖AQ∗ − B‖F ,

i.e., Q(t) is also an optimal solution. �
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