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Abstract

The convergence properties of Newton’s method for systems of equations with constant
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1. Introduction

Let X and Y be Euclidean spaces or more generally Banach spaces, and let

f : X → Y

be a Fréchet differentiable function. Consider the system of nonlinear equations

f(x) = 0. (1.1)

Such a system is widely used in both theoretical and applied areas of mathematics. Newton’s

method is the most efficient method for solving such systems. In the case when f ′(x) is an

isomorphism, there are two points of view to analyze the convergence properties for Newton’s

method: the Kantorovich type theorem and Smale’s point estimate theory. The Kantorovich

theorem gives the convergence criteria based on the boundary of f ′′ in a neighborhood of the

initial point x0, see Ortega and Rheinboldt [10] or Ostrowski [11]; while Smale’s point estimate

theory gives that based on the invariant

γ(f, x0) = sup
k≥2

∥

∥

∥

∥

f ′(x0)
−1 f

(k)(x0)

k!

∥

∥

∥

∥

1
k−1

,

(1.2)

see, e.g., Kim [8], Smale [13], Shub and Smale [12]. The convergence criteria based on the

radii around a solution of (1.1) were given independently by Traub and Wozniakowski in [14]

and Wang in [16]. Since then, there have been many extensions of the above results, see, e.g.,

[5, 7, 17–20]. In particular, a great progress was made by Wang [17, 18], where the notions of

* Received June 28, 2005; final revised June 29, 2006; accepted June 29, 2006.



706 X.B. XU AND C. LI

Lipschitz conditions with L average were introduced and Kantorovich’s and Smale’s convergence

criteria were unified, see also [21].

Recent attentions have been focused on the study of convergence properties of Newton’s

method for the case when f ′(x) is not an isomorphism. For example, Dedieu and Shub in [3]

(resp. [4]) developed the convergence properties for underdetermined (resp. overdetermined)

systems with surjective (resp. injective) derivatives under the hypothesis that f is analytic; Li

et al. [9] achieved the convergence for overdetermined systems with injective derivatives under

the hypothesis that f ′ satisfies the Lipschitz conditions with L average.

Dedieu and Kim [2] studied the convergence properties of Newton’s iteration for analytic

systems of equations with constant rank derivatives. They considered an analytic function

f : X → Y between two Euclidean spaces and obtained the convergence theorems for solutions

and the least square solutions of f = 0, respectively. This case generalizes both the surjective-

underdetermined case (rankf ′(x) = dimY) and the injective-overdetermined case (rankf ′(x) =

dimX).

In this paper, we will investigate the convergence properties of Newton’s method for systems

of equations with constant rank derivatives under the hypothesis that the derivatives satisfy

Lipschitz conditions with L average. The unified convergence properties are obtained. Our

results extend and improve those in [2]. We end this section by briefly describing the organi-

zation of this paper. The notion of Lipschitz condition with L average and several preliminary

results are given in Section 2. The main convergence theorem is stated and proved in Section 3.

In Section 4, we discuss the convergence for two special cases. These discussions result in the

Kantorovich type results and Smale’s point estimate results, respectively. The latter improves

the results in [2].

2. Notions and Preliminary Results

In this section, we give some properties related to the Moore-Penrose inverse, which will be

used in the next section. Let A : X → Y be a linear operator (or an m×n matrix). Recall that

an operator (or an n ×m matrix) A† : Y → X is the Moore-Penrose inverse of A if it satisfies

the following four equations,

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A,

where A∗ denotes the adjoint of A. Let kerA and imA denote the kernel and image of A,

respectively. For a subspace E of X, we use ΠE to denote the projection onto E. Then it is

clear that

A†A = ΠkerA⊥ and AA† = ΠimA
. (2.1)

The following two lemmas give some perturbation bounds for the Moore-Penrose inverse.

The first one is stated in [15, Corollary 7.1.1 (2)] and [15, Corollary 7.1.2], while the second one

is a direct consequence of [15, Corollary 7.1.1 (2)] and [15, Corollary 7.1.4].

Lemma 2.1. Let A and B be m×n matrices and let r ≤ min{m,n}. Suppose that rankA = r,

rank(A+B) ≤ r and ‖A†‖‖B‖ < 1. Then

rank(A+B) = r and ‖(A+B)†‖ ≤ ‖A†‖
1 − ‖A†‖‖B‖ .
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Lemma 2.2. Let A and B be m×n matrices and let r ≤ min{m,n}. Suppose that rankA = r,

rankB ≤ r and ‖A†‖‖B − A‖ < 1. Then

‖B† −A†‖ ≤ cr
‖A†‖2‖B −A‖

1 − ‖A†‖‖B −A‖ ,

where

cr =















1 +
√

5

2
if r < min{m,n},

√
2 if r = min{m,n} (m 6= n),

1 if r = m = n.

(2.2)

In the rest of this paper, we assume that X and Y are two Euclidean spaces with

m
def
= dimX ≤ n

def
= dimY

and that f is a continuously Fréchet differentiable function from an open subset U ⊆ X to Y.

We also need the following notations. Let IX denote the identity on X and K(A) = ‖A†‖‖A‖
the condition number of a linear operator A : X → Y. For ξ0 ∈ X, R > 0, let B(ξ0, R) denote

the open ball with radius R and center ξ0.

Let L(µ) be a positive nondecreasing function defined on [0,∞). The following notions of

Lipschitz conditions with L average were introduced in [17].

Definition 2.1. Let V ⊆ X and ξ ∈ V . Let f ′ be the Fréchet derivative of a function f : U ⊆
X → Y. Then f ′ is said to satisfy

(i) the center Lipschitz condition with L average at ξ on V if

‖f ′(x) − f ′(ξ)‖ ≤
∫ ‖x−ξ‖

0

L(µ)dµ, x ∈ V ; (2.3)

(ii) the radius Lipschitz condition with L average at ξ on V if

‖f ′(x) − f ′(xτ )‖ ≤
∫ ‖x−ξ‖

τ‖x−ξ‖
L(µ)dµ, x ∈ V, 0 ≤ τ ≤ 1, (2.4)

where xτ = ξ + τ(x − ξ).

Remark 2.1. If f : X → Y satisfies the radius Lipschitz condition with L average at ξ on V ,

then it also satisfies the center Lipschitz condition with L average at ξ on V .

Letting ξ, x ∈ X, we write, for simplicity,

θ(ξ, x) = ‖f ′(ξ)†‖
∫ ‖x−ξ‖

0

L(µ)dµ. (2.5)

The following lemma contains some properties of f ′ and f † under the center Lipschitz condition

with L average.

Lemma 2.3. Let x, ξ ∈ X be such that rankf ′(x) ≤ rankf ′(ξ) = r and θ(ξ, x) < 1. Suppose

that f ′ satisfies the center Lipschitz condition with L average at ξ on {ξ, x}. Then

rankf ′(x) = r, (2.6)

‖f ′(x)‖ ≤ ‖f ′(ξ)†‖−1(K(f ′(ξ)) + θ(ξ, x)), (2.7)

‖f ′(x)†‖ ≤ ‖f ′(ξ)†‖
1 − θ(ξ, x)

, (2.8)

‖f ′(x)† − f ′(ξ)†‖ ≤ cr
‖f ′(ξ)†‖θ(ξ, x)

1 − θ(ξ, x)
. (2.9)
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Proof. Note that

Πkerf ′(ξ) + f ′(ξ)†f ′(x) = IX − f ′(ξ)† (f ′(ξ) − f ′(x)) .

It follows that Πkerf ′(ξ) + f ′(ξ)†f ′(x) is nonsingular because

‖f ′(ξ)†(f ′(ξ) − f ′(x))‖ ≤ ‖f ′(ξ)†‖‖f ′(ξ) − f ′(x)‖ ≤ θ(ξ, x) < 1. (2.10)

Since, by (2.1),

Πimf ′(ξ)f
′(x) = f ′(ξ)f ′(ξ)†f ′(x) + f ′(ξ)Πkerf ′(ξ)

= f ′(ξ)
(

f ′(ξ)†f ′(x) + Πkerf ′(ξ)

)

,

we have that

rank
(

Πimf ′(ξ)f
′(x)

)

= rankf ′(ξ) = r;

hence

rankf ′(x) ≥ rank
(

Πimf ′(ξ)f
′(x)

)

= r,

which together with the assumptions implies (2.6). The estimate (2.7) follows from the following

observation:

‖f ′(x)‖ ≤ ‖f ′(ξ)‖ + ‖f ′(x) − f ′(ξ)‖ ≤ ‖f ′(ξ)‖ +

∫ ‖x−ξ‖

0

L(µ)dµ.

As for (2.8), we let A = f ′(ξ) and B = f ′(x) − f ′(ξ). Then

rankA = r, ‖A†‖‖B‖ ≤ θ(ξ, x) < 1,

by the assumptions and (2.10). Thus Lemma 2.1 is applicable to conclude that

‖f ′(x)†‖ = ‖(A+B)†‖ ≤ ‖A†‖
1 − ‖A†‖‖B‖ ≤ ‖f ′(ξ)†‖

1 − θ(ξ, x)
.

So (2.8) is proved. To prove (2.9), let A = f ′(ξ) and B = f ′(x). Then Lemma 2.2 is applicable.

Therefore,

‖f ′(x)† − f ′(ξ)†‖ ≤ cr
‖f ′(ξ)†‖2‖f ′(x) − f ′(ξ)‖

1 − ‖f ′(ξ)†‖‖f ′(x) − f ′(ξ)‖ ≤ cr
‖f ′(ξ)†‖θ(ξ, x)

1 − θ(ξ, x)
.

This completes the proof of Lemma 2.3.

3. Convergence Theorem

Recall that f is a continuously Fréchet differentiable function from an open subset U ⊆ X

to Y. Newton’s method for f is defined as follows.

xn+1 = xn − f ′(xn)†f(xn), n = 0, 1, · · · , (3.1)

where x0 ∈ X is an initial value. Note that, in the case when each f ′(xn) is an isomorphism,

(3.1) reduces to the classical Newton’s method defined by

xn+1 = xn − f ′(xn)−1f(xn), n = 0, 1, · · · . (3.2)
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Define the Newton operator Nf : U −→ X by

Nf (x) = x− f ′(x)†f(x), x ∈ U. (3.3)

Then Newton’s method (3.1) can be rewritten as

xn+1 = Nf (xn), n = 0, 1, · · · . (3.4)

Remark 3.1. Recall that the system (1.1) is a surjective-underdetermined (resp. injective-

overdetermined) system if the number of equations is less (resp. greater) than the number of

unknowns and f ′(x) is of full rank for each x ∈ U . Note that, for surjective-underdetermined

systems, the fixed points of Nf are the zeros of f , while for injective-overdetermined systems,

the fixed points of Nf are the least square solutions of f(x) = 0, which, in general, are not

necessarily the zeros of f .

The main results of this paper are given in Theorem 3.1 below. To prepare for the proof, we

begin with some lemmas. Let Z denote the set of all the least square solutions of f = 0. Then

Z = {ξ ∈ X : f ′(ξ)†f(ξ) = 0}. (3.5)

Recall that θ(ξ, x) is defined in (2.5).

Lemma 3.1. Let x ∈ X and ξ ∈ Z be such that rankf ′(x) ≤ rankf ′(ξ) and θ(ξ, x) < 1.

Suppose that f ′ satisfies the radius Lipschitz condition with L average at ξ on the line segment

{ξ + τ(x − ξ) : 0 ≤ τ ≤ 1}. Then

‖Nf(x)− ξ‖ ≤ ‖Πkerf ′(ξ)(x− ξ)‖

+ θ(ξ, x)‖x − ξ‖ + cr

(

K(f ′(ξ)) + θ(ξ, x)
)θ(ξ, x)‖x − ξ‖

1 − θ(ξ, x)

+
‖f ′(ξ)†‖

∫ ‖x−ξ‖
0

µL(µ)dµ

1 − θ(ξ, x)
+ cr

‖f ′(ξ)†‖‖f(ξ)‖θ(ξ, x)
1 − θ(ξ, x)

. (3.6)

Moreover, if f ′(x) is additionally of full rank, then

‖Nf(x) − ξ‖ ≤ ‖f ′(ξ)†‖
∫ ‖x−ξ‖
0

µL(µ)dµ

1 − θ(ξ, x)
+ cr

‖f ′(ξ)†‖‖f(ξ)‖θ(ξ, x)
1 − θ(ξ, x)

. (3.7)

Proof. It follows from (2.1) that

Nf (x) − ξ = Πkerf ′(x)(x− ξ) + f ′(x)†f ′(x)(x − ξ) − f ′(x)†f(x)

= Πkerf ′(x)(x− ξ) + f ′(x)† (f ′(x)(x − ξ) − f(x) + f(ξ)) − f ′(x)†f(ξ). (3.8)

Set

∆1 = ‖Πkerf ′(x)(x − ξ)‖,
∆2 = ‖f ′(x)† (f ′(x)(x − ξ) − f(x) + f(ξ)) ‖,
∆3 = ‖f ′(x)†f(ξ)‖.

Then from (3.8) we have

‖Nf (x) − ξ‖ ≤ ∆1 + ∆2 + ∆3. (3.9)
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Below we will estimate the bounds of ∆1, ∆2 and ∆3. From the assumption ξ ∈ Z and (2.9),

it is easy to see that

∆3 = ‖f ′(x)†f(ξ) − f ′(ξ)†f(ξ)‖

≤ ‖f ′(x)† − f ′(ξ)†‖‖f(ξ)‖ ≤ cr
‖f ′(ξ)†‖‖f(ξ)‖θ(ξ, x)

1 − θ(ξ, x)
.

As for ∆2, since f ′ satisfies the radius Lipschitz condition with L average at ξ on the line

segment {ξ + τ(x − ξ) : 0 ≤ τ ≤ 1}, we have

‖f ′(x)(x − ξ) − f(x) + f(ξ)‖ =

∥

∥

∥

∥

∫ 1

0

(f ′(x) − f ′(ξ + τ(x − ξ))) (x− ξ)dτ

∥

∥

∥

∥

≤
∫ 1

0

∫ ‖x−ξ‖

τ‖x−ξ‖
L(µ)dµ‖x− ξ‖dτ =

∫ ‖x−ξ‖

0

µL(µ)dµ.

This, together with (2.8), yields

∆2 ≤ ‖f ′(ξ)†‖
∫ ‖x−ξ‖
0 µL(µ)dµ

1 − θ(ξ, x)
.

It remains to estimate ∆1. To this end, note that, by (2.1),

Πkerf ′(x) = IX − f ′(ξ)†f ′(ξ) + f ′(ξ)†f ′(ξ) − f ′(x)†f ′(x)

= Πkerf ′(ξ) + f ′(ξ)†(f ′(ξ) − f ′(x)) + (f ′(ξ)† − f ′(x)†)f ′(x).

Therefore,

∆1 ≤ ‖Πkerf ′(ξ)(x− ξ)‖
+

{

‖f ′(ξ)†‖‖f ′(ξ) − f ′(x)‖ + ‖f ′(ξ)† − f ′(x)†‖‖f ′(x)‖
}

‖x− ξ‖

≤ ‖Πkerf ′(ξ)(x− ξ)‖ + ‖f ′(ξ)†‖
∫ ‖x−ξ‖

0

L(µ)dµ‖x− ξ‖

+ cr
‖f ′(ξ)†‖θ(ξ, x)

1 − θ(ξ, x)
‖f ′(ξ)†‖−1

(

K(f ′(ξ)) + θ(ξ, x)
)

‖x− ξ‖

= ‖Πkerf ′(ξ)(x− ξ)‖ + θ(ξ, x)‖x − ξ‖ + cr

(

K(f ′(ξ)) + θ(ξ, x)
)θ(ξ, x)‖x− ξ‖

1 − θ(ξ, x)
,

where we have used (2.7)-(2.9) and the assumption that f ′ satisfies Lipschitz condition with L

average. Thus (3.6) holds due to (3.9) and the bounds of ∆i (i = 1, 2, 3).

Finally, if f ′(x) is of full rank, then kerf ′(x) = {0}. Thus ∆1 = 0 and (3.6) holds due to

(3.9) and the bounds of ∆2 and ∆3. The proof of the lemma is complete.

The following lemma was given in [2, Lemma 12] where the result was stated for an analytic

function f .

Lemma 3.2. Suppose that f has a second Fréchet derivative on U . Let ξ ∈ Z. Then

(f ′†f)′(ξ) x̂ = Πkerf ′(ξ)⊥
x̂+ (f ′(ξ)∗f ′(ξ))†(f ′′(ξ) x̂)∗f(ξ), x̂ ∈ X. (3.10)

For simplicity, set

a(ξ) = ‖f ′(ξ)†‖2‖f(ξ)‖‖f ′′(ξ)‖, ξ ∈ Z. (3.11)
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Lemma 3.3. Suppose that f has a second Fréchet derivative on U . Let x ∈ X and ξ ∈ Z be

such that a(ξ) < 1. Then

‖Πkerf ′(ξ)(x− ξ)‖

≤ ‖Πker(f ′†f)′(ξ)(x − ξ)‖ +

(

cr
a(ξ) (1 + a(ξ))

1 − a(ξ)
+ a(ξ)

)

‖x− ξ‖. (3.12)

Proof. Define operators A and B respectively by

Ax̂ = Πkerf ′(ξ)⊥ x̂, x̂ ∈ X, (3.13)

Bx̂ = (f ′(ξ)∗f ′(ξ))†(f ′′(ξ) x̂)∗f(ξ), x̂ ∈ X. (3.14)

Then by Lemma 3.2, we have

(f ′†f)′(ξ) = A+B. (3.15)

From (3.13), we get kerA = kerf ′(ξ). Consequently,

Πkerf ′(ξ) = Πker(A+B) + (ΠkerA
− Πker(A+B))

= Πker(f ′†f)′(ξ) + (ΠkerA
− Πker(A+B)). (3.16)

Therefore, to complete the proof of this lemma, it suffices to prove

‖ΠkerA − Πker(A+B)‖ ≤ cr
a(ξ) (1 + a(ξ))

1 − a(ξ)
+ a(ξ). (3.17)

Note that, by (3.14),

Bx̂ ∈ im(f ′(ξ)∗f ′(ξ))† = (kerf ′(ξ)∗f ′(ξ))⊥ = kerf ′(ξ)⊥, x̂ ∈ X.

This together with (3.13) yields im(A+B) ⊂ kerf ′(ξ)⊥. It follows that

rank(A+B) = dim(im(A+B))

≤ dim(kerf ′(ξ)⊥) = rankΠkerf ′(ξ)⊥ = rankA.

Since

‖A†‖‖B‖ = ‖B‖ ≤ ‖(f ′(ξ)∗f ′(ξ))†‖‖f ′′(ξ)‖‖f(ξ)‖ ≤ a(ξ) < 1, (3.18)

Lemma 2.2 is applicable to get

‖(A+B)† −A†‖ ≤ cr
‖A†‖2‖B‖

1 − ‖A†‖‖B‖ . (3.19)

Noting that ΠkerA
= IX − ΠkerA⊥ , it follows from (2.1) that

‖ΠkerA
− Πker(A+B)‖ = ‖Πker(A+B)⊥ − ΠkerA⊥‖

= ‖(A+B)†(A+B) −A†A‖
= ‖((A+B)† −A†)(A +B) +A†B‖
≤ ‖(A+B)† −A†‖(‖A‖ + ‖B‖) + ‖A†‖‖B‖. (3.20)

Combining this with (3.18) and (3.19), we have

‖ΠkerA
− Πker(A+B)‖ ≤ cr

‖A†‖2‖B‖
1 − ‖A†‖‖B‖(‖A‖ + ‖B‖) + ‖A†‖‖B‖

≤ cr
a(ξ) (1 + a(ξ))

1 − a(ξ)
+ a(ξ).
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Hence (3.17) holds.

In order to state our main results, we introduce more notations. We first recall that cr,

θ(ξ, x) and a(ξ) are defined in (2.2), (2.5) and (3.11), respectively. For ξ ∈ Z and x ∈ X, let

P (ξ, x) = cr
‖f ′(ξ)†‖‖f(ξ)‖θ(ξ, x)
‖x− ξ‖(1 − θ(ξ, x))

+ cr
a(ξ) (1 + a(ξ))

1 − a(ξ)
+ a(ξ) (3.21)

and

Q(ξ, x) =
‖f ′(ξ)†‖

∫ ‖x−ξ‖
0

µL(µ)dµ

‖x− ξ‖2(1 − θ(ξ, x))
+

θ(ξ, x)

‖x− ξ‖ + cr

(

K(f ′(ξ)) + θ(ξ, x)
)

θ(ξ, x)

‖x− ξ‖(1 − θ(ξ, x))
, (3.22)

where we use the convention that

P (ξ, ξ) = lim
x→ξ

P (ξ, x), Q(ξ, ξ) = lim
x→ξ

Q(ξ, x).

Theorem 3.1. Suppose that f has the second Fréchet derivative on U . Let ξ0 ∈ Z and R > 0

be such that

‖f ′(ξ0)
†‖

∫ R

0

L(µ)dµ < 1, (3.23)

sup{a(ξ) : ξ ∈ Z ∩B(ξ0, R)} < 1 (3.24)

and

ν
def
= sup{Q(ξ, x)‖x− ξ‖ + P (ξ, x) : ξ ∈ Z ∩B(ξ0, R), x ∈ B(ξ0, R)} < 1. (3.25)

Suppose that Z ∩ B(ξ0, R) is a smooth submanifold in X, that rankf ′(x) ≤ rankf ′(ξ0) for

x ∈ B(ξ0, R) and that f ′ satisfies the radius Lipschitz condition with L average at each ξ ∈
Z ∩ B(ξ0, R) on B(ξ0, R). Let R0 = min{1, 1−ν

2ν
}R and let x0 ∈ B(ξ0, R0) be such that ξ0 is

the projection of x0 onto Z. Then Newton’s sequence {xn} generated by (3.1) is contained in

B(ξ0, R) and converges to a point in Z. Moreover,

d(xn, Z) ≤ νd(xn−1, Z), n = 1, 2, · · · , (3.26)

d(xn, Z) ≤ q d(xn−1, Z)2 + p d(xn−1, Z), n = 1, 2, · · · , (3.27)

where d(xn, Z) is the distance from xn to Z, n = 0, 1, 2, · · · ,

p = sup{P (ξ, x) : ξ ∈ Z ∩ B(ξ0, R), x ∈ B(ξ0, R)}, (3.28)

q = sup{Q(ξ, x) : ξ ∈ Z ∩ B(ξ0, R), x ∈ B(ξ0, R)}. (3.29)

Proof. Let n = 0, 1, · · · . Recall from (3.4) that xn = Nf (xn−1). Let ξn be the projection of

xn onto Z. Since Z ∩B(ξ0, R) is a smooth submanifold in X, we have

Πker(f ′†f)′(ξn)(xn − ξn) = 0.

Below we will use induction to verify the following assertions:

xn+1, ξn+1 ∈ B(ξ0, R)

‖xn − ξn−1‖ ≤ νd(xn−1, Z)

‖xn − ξn−1‖ ≤ q d(xn−1, Z)2 + p d(xn−1, Z)















, n = 1, 2, · · · . (3.30)
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By Lemma 3.1 and 3.3, one gets

‖x1 − ξ0‖ = ‖Nf(x0) − ξ0‖ ≤ Q(ξ0, x0)‖x0 − ξ0‖2 + P (ξ0, x0)‖x0 − ξ0‖. (3.31)

This implies that

‖x1 − ξ0‖ ≤ q d(x0, Z)2 + p d(x0, Z)

and

‖x1 − ξ0‖ ≤ ν‖x0 − ξ0‖ = ν d(x0, Z) < R.

Hence, x1 ∈ B(ξ0, R). Moreover, ξ1 ∈ B(ξ0, R) because

‖ξ1 − ξ0‖ ≤ ‖ξ1 − x1‖ + ‖x1 − ξ0‖ ≤ 2‖x1 − ξ0‖ ≤ 2ν‖x0 − ξ0‖ < R.

Hence, (3.30) holds for n = 1.

We now proceed by induction. Let k be a positive integer. Assume that (3.30) holds for

n ≤ k. Then, similar arguments as in the case when n = 1 show that

‖xk+1 − ξk‖ ≤ q d(xk, Z)2 + p d(xk, Z)

and

‖xk+1 − ξk‖ ≤ ν‖xk − ξk‖ = ν d(xk, Z).

Hence, for n = 1, 2, · · · , k + 1,

d(xn, Z) = ‖xn − ξn‖ ≤ ‖xn − ξn−1‖ ≤ ν‖xn−1 − ξn−1‖ = νd(xn−1, Z),

which implies that

‖xn − ξn−1‖ ≤ νnd(x0, Z), n = 1, 2, · · · , k + 1.

Therefore xk+1, ξk+1 ∈ B(ξ0, R) because

‖xk+1 − ξ0‖

≤ ‖xk+1 − ξk‖ + ‖ξk − ξ0‖ ≤ 2

k
∑

j=0

‖xj+1 − ξj‖

≤ 2(

k
∑

j=0

νj+1)‖x0 − ξ0‖ ≤ 2ν

1 − ν
‖x0 − ξ0‖ < R, (3.32)

and

‖ξk+1 − ξ0‖ ≤
k

∑

j=0

‖ξj+1 − ξj‖ ≤ 2
k

∑

j=0

‖xj+1 − ξj‖ < R.

We have now proved that (3.30) holds. This together with

d(xn, Z) = ‖xn − ξn‖ ≤ ‖xn − ξn−1‖, n = 1, 2, · · ·

gives (3.26) and (3.27). From (3.26), it is not difficult to see that {xn} converges to a point in

Z. The proof is complete.
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Corollary 3.1. Suppose that f has a second Fréchet derivative on U and that f = 0 has

solutions. Let ξ0 ∈ Z and R > 0 be such that

‖f ′(ξ0)
†‖

∫ R

0

L(µ)dµ < 1, λ
def
= qR < 1. (3.33)

Suppose that rankf ′(x) ≤ rankf ′(ξ0) for x ∈ B(ξ0, R) and that f ′ satisfies the radius Lipschitz

condition with L average at each ξ ∈ Z ∩ B(ξ0, R) on B(ξ0, R). Let R0 = min{1, 1−λ2

2λ
}R and

let x0 ∈ B(ξ0, R0) be such that ξ0 is the projection of x0 onto Z. Then Newton’s sequence {xn}
generated by (3.1) is contained in B(ξ0, R) and converges to a zero of f . Moreover,

d(xn, Z) ≤ q d(xn−1, Z)2 ≤ λ2n−1d(x0, Z), n = 1, 2, · · · . (3.34)

Proof. By a result in [6, Chap. I, Sect. 15.2], Z ∩ B(ξ0, R) is a smooth submanifold. Note

that a(ξ) = 0 for each ξ ∈ Z and p = 0. Therefore, the proof of this corollary is a simpler

version of the proof of Theorem 3.1 except for the following: For k > 1, if

‖xn − ξn‖ ≤ λ2n−1‖x0 − ξ0‖, n = 0, 1, · · · , k

and

‖xk+1 − ξk+1‖ ≤ q‖xk − ξk‖2,

then

‖xk+1 − ξk+1‖ ≤ q‖xk − ξk‖2 ≤ q(λ2k−1‖x0 − ξ0‖)2 ≤ λ2k+1−1‖x0 − ξ0‖.
While the estimate for ‖xk+1 − ξ0‖ in (3.32) becomes

‖xk+1 − ξ0‖ ≤ 2

k
∑

j=0

‖xj+1 − ξj‖

≤ 2(

k
∑

j=0

λ2j+1−1)‖x0 − ξ0‖ ≤ 2λ

1 − λ2
‖x0 − ξ0‖ < R.

4. Applications

In this section, we will apply the obtained results to some concrete cases. First, we take

L(µ) as a constant L > 0. Then the weak Lipschitz conditions in Definition 2.1 become the

classical Lipschitz condition. The expressions in (2.5), (3.21) and (3.22) take the forms of

θ(ξ, x) = L‖f ′(ξ)†‖‖x− ξ‖,

P (ξ, x) = CL
‖f ′(ξ)†‖2‖f(ξ)‖

1 − L‖f ′(ξ)†‖‖x− ξ‖ + cr
a(ξ) (1 + a(ξ))

1 − a(ξ)
+ a(ξ),

Q(ξ, x) = L‖f ′(ξ)†‖ + CL

(

K(f ′(ξ)) + L‖f ′(ξ)†‖‖x− ξ‖
)

‖f ′(ξ)†‖
1 − L‖f ′(ξ)†‖‖x− ξ‖

+
L

2

‖f ′(ξ)†‖
1 − L‖f ′(ξ)†‖‖x− ξ‖ ,

respectively. By recalling the definitions of Z, p, q, ν and λ in (3.5), (3.28), (3.29), (3.25) and

(3.33), respectively, we immediately obtain the convergence results under the classical Lipschitz

condition.
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Corollary 4.1. Suppose that f has a second Fréchet derivative on U . Let ξ0 ∈ Z, R > 0 and

L > 0 be such that

LR‖f ′(ξ0)
†‖ < 1, ν < 1,

and

sup{a(ξ) : ξ ∈ Z ∩ B(ξ0, R)} < 1.

Suppose that Z ∩ B(ξ0, R) is a smooth submanifold in X, that rankf ′(x) ≤ rankf ′(ξ0) for

x ∈ B(ξ0, R) and that f ′ satisfies the classical Lipschitz condition

‖f ′(x) − f ′(ξ)‖ ≤ L‖x− ξ‖, x ∈ B(ξ0, R), ξ ∈ Z ∩ B(ξ0, R).

Let R0 = min{1, 1−ν
2ν

}R and let x0 ∈ B(ξ0, R0) be such that ξ0 is the projection of x0 onto Z.

Then Newton’s sequence {xn} generated by (3.1) is contained in B(ξ0, R) and converges to a

point in Z. Moreover

d(xn, Z) ≤ νd(xn−1, Z) ≤ νnd(x0, Z), n = 1, 2, · · · ,

and

d(xn, Z) ≤ q d(xn−1, Z)2 + p d(xn−1, Z), n = 1, 2, · · · .

Corollary 4.2. Suppose that f has a second Fréchet derivative on U and that f = 0 has

solutions. Let ξ0 ∈ Z, R > 0 and L > 0 be such that

LR‖f ′(ξ0)
†‖ < 1, λ < 1. (4.1)

Suppose that rankf ′(x) ≤ rankf ′(ξ0) for x ∈ B(ξ0, R) and that f ′ satisfies the classical Lipschitz

condition

‖f ′(x) − f ′(ξ)‖ ≤ L‖x− ξ‖, x ∈ B(ξ0, R), ξ ∈ Z ∩ B(ξ0, R).

Let R0 = min{1, 1−λ2

2λ
}R and let x0 ∈ B(ξ0, R0) be such that ξ0 is the projection of x0 onto Z.

Then Newton’s sequence {xn} generated by (3.1) is contained in B(ξ0, R) and converges to a

zero of f . Moreover,

d(xn, Z) ≤ q d(xn−1, Z)2 ≤ λ2n−1d(x0, Z), n = 1, 2, · · · .

Next, taking L(µ) = 2bγ(1 − γµ)−3, where b = 1/ sup{‖f ′(ξ)†‖ : ξ ∈ Z} and γ > 0 is a real

number, we can deduce the improved ones of [2, Theorem 5] and [2, Theorem 6]. In this case,

the center and radius Lipschitz conditions defined in (2.3) and (2.4) are given by

‖f ′(x) − f ′(ξ)‖ ≤ b

(1 − γ‖x− ξ‖)2 − b,

and

‖f ′(x) − f ′(xτ )‖ ≤ b

(1 − γ‖x− ξ‖)2 − b

(1 − τγ‖x− ξ‖)2 , (4.2)

respectively.

For convenience, we adopt some notations used in [2]. Let v = γ‖x−ξ‖, ψ(v) = 1−4v+2v2

and α = ‖f ′(ξ)†‖‖f(ξ)‖γ (one should note that v is a function of x and ξ, while α is a function

of ξ). Recall that a(ξ) is defined by (3.11). Assuming

‖f ′(ξ)†‖‖f ′′(ξ)‖ ≤ 2γ, ξ ∈ Z, (4.3)
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we get

a(ξ) ≤ 2‖f ′(ξ)†‖‖f(ξ)‖γ = 2α, ξ ∈ Z. (4.4)

From (2.5), we have

θ(ξ, x) = ‖f ′(ξ)†‖
(

b

(1 − γ‖x− ξ‖)2 − b

)

≤ 2v − v2

(1 − v)2
.

Let R > 0, ξ0 ∈ Z and x ∈ B(ξ0, R). Then v ≤ Rγ and

θ(ξ0, x) < 1, if 0 ≤ Rγ < 1 −
√

2

2
. (4.5)

As in [2], we define the following functions for 0 ≤ v < 1 −
√

2
2 , K ≥ 0 and α ≥ 0:

A(v,K) =
1

ψ(v)
+

2 − v

(1 − v)2
+ cr

(2 − v)

ψ(v)

(

K +
2v − v2

(1 − v)2

)

,

B(v, α) = cr
2 − v

ψ(v)2
+ 2

(

1 + cr
1 + 2α

1 − 2α

)

.

Then it follows from (3.21), (4.4), (3.22), (3.29) and (3.25) that, for ξ ∈ Z and x ∈ X,

P (ξ, x) ≤ crα
2 − v

ψ(v)2
+ α

(

2cr
1 + 2α

1 − 2α
+ 2

)

= αB(v, α),

Q(ξ, x) ≤ γ

ψ(v)
+ γ

2 − v

(1 − v)2
+ cr

γ(2 − v)

ψ(v)

(

K(f ′(ξ)) +
2v − v2

(1 − v)2

)

= γA(v,K(f ′(ξ))),

q ≤ γAR
def
= γ sup {A(v,K(f ′(ξ))) : ξ ∈ Z ∩ B(ξ0, R), x ∈ B(ξ0, R)} , (4.6)

ν ≤ Λ
def
= sup {vA(v,K(f ′(ξ))) + αB(v, α) : ξ ∈ Z ∩ B(ξ0, R), x ∈ B(ξ0, R)} . (4.7)

By (4.3)-(4.5), it is not difficult to see that Theorem 3.1 yields the following corollary.

Corollary 4.3. Suppose that f has the second Fréchet derivative on U such that (4.3) is sat-

isfied. Let ξ0 ∈ Z, R > 0 and γ > 0 be such that

0 < Rγ < 1 −
√

2

2
, ν < 1 and sup

ξ∈Z∩B(ξ0,R)

α <
1

2
.

Suppose that Z ∩ B(ξ0, R) is a smooth submanifold in X, that rankf ′(x) ≤ rankf ′(ξ0) for

x ∈ B(ξ0, R) and that f ′ satisfies the radius Lipschitz condition (4.2) at each ξ ∈ Z ∩ B(ξ0, R)

on B(ξ0, R). Let R0 = min{1, 1−ν
2ν

}R and let x0 ∈ B(ξ0, R0) be such that ξ0 is the projection

of x0 onto Z. Then Newton’s sequence {xn} generated by (3.1) is contained in B(ξ0, R) and

converges to a point in Z. Moreover,

d(xn, Z) ≤ νd(xn−1, Z) ≤ νnd(x0, Z), n = 1, 2, · · · ,

and

d(xn, Z) ≤ q d(xn−1, Z)2 + p d(xn−1, Z), n = 1, 2, · · · .

Remark 4.1. Because ν ≤ Λ due to (4.7), and the fact that (4.3) is satisfied by the definition

of γ in [2], one can see that the above corollary is an improvement of Theorem 6 in [2]. We

note that γ and α here are corresponding to γR and α1 in [2], respectively. Moreover, there is a

typo in [2, Theorem 6], where the condition 0 < R < 1−
√

2/2 should be 0 < RγR < 1−
√

2/2.



Convergence of Newton’s Method for Systems of Equations with Constant Rank Derivatives 717

Recall that λ = qR, where q is defined in (3.29). Since λ ≤ γARR due to (4.6), one can

verify that the following corollary of Corollary 3.1 is an improvement of Theorem 5 in [2].

Corollary 4.4. Suppose that f has a second Fréchet derivative on U and that f = 0 has

solutions. Let ξ0 ∈ Z, R > 0 and γ > 0 be such that

0 < Rγ < 1 −
√

2

2
and λ < 1.

Suppose that rankf ′(x) ≤ rankf ′(ξ0) for x ∈ B(ξ0, R) and that f ′ satisfies the radius Lipschitz

condition (4.2) at each ξ ∈ Z ∩ B(ξ0, R) on B(ξ0, R). Let R0 = min{1, 1−λ2

2λ
}R and let x0 ∈

B(ξ0, R0) be such that ξ0 is the projection of x0 onto Z. Then Newton’s sequence {xn} generated

by (3.1) is contained in B(ξ0, R) and converges to a zero of f . Moreover,

d(xn, Z) ≤ q d(xn−1, Z)2 ≤ λ2n−1d(x0, Z), n = 1, 2, · · · .

In fact, the condition RARγ ≤ 1
2 in [2, Theorem 5] implies that λ = qR ≤ γARR ≤ 1

2 and

Rγ < 1−
√

2
2 due to AR ≥ 3. While the conditions x0 ∈ B(ξ0,

3
4R) in [2, Theorem 5] (misprinted

as x0 ∈ B(ξ0,
4
3R) there) and λ ≤ 1

2 yield that x0 ∈ B(ξ0, R0).
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