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Abstract

This paper discusses the numerical solution of Burgers’ equation on unbounded do-
mains. Two artificial boundaries are introduced and boundary conditions are obtained on
the artificial boundaries, which are in nonlinear forms. Then the original problem is re-
duced to an equivalent problem on a bounded domain. Finite difference method is applied
to the reduced problem, and some numerical examples are given to show the effectiveness
of the new approach.
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1. Introduction

For numerical solutions of partial differential equations on unbounded domains, the artifi-
cial boundary method is the most efficient method and has been applied to many application
problems [10, 16, 11, 5, 19, 15, 7, 8]. The artificial boundary method generally means to in-
troduce artificial boundaries, find boundary conditions on the artificial boundaries, and reduce
the original problem to an equivalent or approximate problem defined on a bounded domain.
In general, the boundary conditions on the artificial boundaries are obtained by considering the
exterior problems outside the artificial boundaries. In most cases, the basic assumption of the
artificial boundary method is that the equation is linear. Then analytic forms of the boundary
conditions on the artificial boundaries can be obtained. Usually, the artificial boundary method
can not be applied directly to nonlinear problems. However, for some problems, if the equa-
tion can be linearized outside the artificial boundaries, then it is possible to find the boundary
conditions on the artificial boundaries [9, 14, 6].

In this paper, we consider the numerical solution of the Burgers’ equation on unbounded
domains

ut + uux − νuxx = f(x, t), ∀(x, t) ∈ R × (0, T ], (1.1)

u(x, 0) = u0(x), (1.2)

u(x, t) → 0, |x| → +∞, (1.3)
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where ν > 0 is viscous coefficient, the source term f(x, t) and initial data u0(x) have compact
supports satisfying

supp{f(x, t)} ⊂ [xl, xr] × [0, T ], supp{u0(x)} ⊂ [xl, xr].

Burgers’ equation is a simple, but important model in fluid dynamics. Burgers’ equation itself
models various kind of physical phenomena such as turbulence [3]. Besides, due to its similarity
to the Navier-Stokes equation, the solution of Burgers’ equation is a natural first step towards
the designing of new numerical methods for flow problems. When the domain is bounded,
various numerical approaches have been discussed by many researches (see recent papers [2, 4]
and references therein). In this paper, we mainly deal with the difficulty of the unboundness of
the solution domain. The idea is to introduce artificial boundaries to make the computational
domain finite, and find boundary conditions on the artificial boundaries. Unlike linear problems,
these boundary conditions are nonlinear. Then we solve the problem on the finite domain, the
reduced problem is equivalent to the original problem in the sense that the solution is the same as
the restriction of the original problem. In section 2, we describe the artificial boundary method
using nonlinear boundary conditions. In section 3, we consider the numerical approximation of
the reduced problem. In section 4, we give some numerical examples to show the effectiveness
of the new approach.

2. The Artificial Boundary Method

Consider the problem (1.1)-(1.3). We introduce two artificial boundaries

Γl = {(x, t)| x = xl, 0 ≤ t ≤ T },
Γr = {(x, t)| x = xr, 0 ≤ t ≤ T }.

Then the unbounded domain Ω = R× [0, T ] is divided into three parts (see Fig. 1),

Fig. 1. The artificial boundaries

Ωl = {(x, t)| x ≤ xl, 0 ≤ t ≤ T },
Ωr = {(x, t)| x ≥ xr , 0 ≤ t ≤ T },
Ωi = {(x, t)| xl < x < xr, 0 ≤ t ≤ T },

where Ωi is the computational domain and its two boundary conditions at x = xl and x = xr

are to be determined.
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In order to obtain boundary conditions on Γl and Γr, we consider firstly the restriction of
u on the right semi-infinite domain Ωr, where the solution satisfies

ut + uux − νuxx = 0, in Ωr, (2.1)

u|t=0 = 0, (2.2)

u→ 0, x→ +∞, (2.3)

u|x=xr
= u(xr, t), 0 < t ≤ T. (2.4)

This problem can not be solved independently due to the unknown function u(xr, t). However,
if we assume that the boundary value u(xr, t) is given, then this is a well-posed problem. To
solve this problem analytically, we use the Cole-Hopf transformation [17] to reduce the nonlinear
Burgers equation to a linear heat equation. Let

ω(x, t) = −
∫

∞

x

u(y, t)dy, xr ≤ x < +∞,

then

ωt = −
∫

∞

x

ut(y, t)dy = νux − 1

2
u2, (2.5)

ωx = u, ωxx = ux. (2.6)

Substituting into (2.1)-(2.4), we obtain,

ωt +
1

2
ω2

x − νωxx = 0,

w|t=0 = 0,

w|x=xr
= w(xr , t),

w → 0, when x→ +∞.

Let v = ψ(ω) − 1 with ψ(ω) = e−
ω
2ν , then v satisfies

vt = νvxx, ∀(x, t) ∈ Ωr, (2.7)

v|t=0 = 0, ∀x ∈ [xr,+∞), (2.8)

v → 0 when x→ +∞ (2.9)

v|x=xr
= v(xr, t). (2.10)

This is the standard heat equation. By solving (2.7)-(2.10) we obtain the boundary condition
on the artificial boundary x = xr,

∂v(xr, t)

∂x
= − 1√

νπ

∫ t

0

1√
t− τ

∂v(xr, τ)

∂τ
dτ. (2.11)

For the numerical solution of heat equation on an unbounded domain, Han and Huang [12, 13]
proposed a class of artificial boundary conditions for one and two dimensional cases. The
convergence of difference scheme using artificial boundaries was given by Wu and Sun [18]. To
transform the boundary condition (2.11) back into the original variable u, considering

vx = φ′(ω)u, vt = φ′(ω)(νux − 1

2
u2),

we have

G(t)u(xr, t) = − 1√
νπ

∫ t

0

G(τ)√
t− τ

{νux(xr, τ) −
1

2
u(xr, τ)

2}dτ

where

G(t) = ψ′(ω)|x=xr
= − 1

2ν
exp(− ω

2ν
)|x=xr

.

Hence we obtain

u(xr, t) = − 1√
νπ

∫ t

0

G(τ)

G(t)
√
t− τ

{νux(xr, τ) −
1

2
u(xr, τ)

2}dτ.
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This is the boundary condition in the original variables, but it is rather difficult to be used
directly for computation, since the function G(t) contains an infinite integral. To simply this
boundary condition, let

gr(t) = − 1

2ν
ω|x=xr

=
1

2ν

∫ +∞

xr

u(y, t)dy,

then from equation (2.5), gr(t) is the solution of the following initial value problem,

dgr(t)

dt
= −1

2
ux(xr , t) +

1

4ν
u(xr, t)

2, gr(0) = 0.

So we have

gr(t) =

∫ t

0

(

−1

2
ux(xr , τ) +

1

4ν
u(xr, τ)

2

)

dτ. (2.12)

Thus, we have the first artificial boundary condition

u(xr, t) = − 1√
νπ

∫ t

0

egr(τ)−gr(t)

√
t− τ

{νux(xr, τ) −
1

2
u(xr, τ)

2}dτ. (2.13)

By using the Abel transform [1], we have the second artificial boundary condition from
(2.13),

ux(xr , t) =
1

2ν
u(xr, t)

2 − 1√
νπ

∫ t

0

∂

∂τ
(egr(τ)−gr(t)u)

1√
t− τ

dτ, (2.14)

which is simpler than the first artificial boundary condition (2.13). Therefore we obtain the
nonlinear artificial boundary conditions by coupling (2.13) (or (2.14)) and (2.12) with the
auxiliary function gr(t). For abbreviation, we write two artificial boundary conditions (2.13)
and (2.14) as

u(xr, t) = R1(u(xr, t), gr(t)), and ux(xr , t) = R2(u(xr, t), gr(t)).

with gr(t) given in(2.12).

For the left semi-infinite domain Ωl, we can also derive the similar artificial boundary con-
ditions,

u(xl, t) =
1√
νπ

∫ t

0

egl(τ)−gl(t)

√
t− τ

{νux(xl, τ) −
1

2
u(xl, τ)

2}dτ. (2.15)

and the second version

ux(xl, t) =
1

2ν
u(xl, t)

2 +
1√
νπ

∫ t

0

∂

∂τ
(egl(τ)−gl(t)u)

1√
t− τ

dτ, (2.16)

where

gl(t) =

∫ t

0

(

−1

2
ux(xl, τ) +

1

4ν
u(xl, τ)

2

)

dτ. (2.17)

We denote the two conditions (2.15) and (2.16) by

u(xl, t) = L1(u(xl, t), gl(t)), and ux(xl, t) = L2(u(xl, t), gl(t)).

Using these nonlinear artificial boundary conditions, the original problem (1.1)-(1.3) is reduced
to the following problem defined on the finite domain Ωi:

Find u(x, t) ∈ Ωi such that (2.18)

ut + uux − νuxx = f(x), in Ωi; (2.19)

u(x, 0) = u0(x), xl ≤ x ≤ xr; (2.20)

u(xr, t) = R1(u(xr, t), gr(t)), or ux(xr , t) = R2(u(xr, t), gr(t)); (2.21)

u(xl, t) = L1(u(xl, t), gl(t)), or ux(xl, t) = L2(u(xl, t), gl(t)), (2.22)

where gr(t) and gl(t) are given in (2.12) and(2.17), respectively.
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3. Numerical Approximation

In this section we consider the numerical solution of the reduced problem (2.18 )-( 2.22). In
the computational region [xl, xr], let h = ∆x = (xr − xl)/M be the spatial mesh size, and let
k = ∆t = T/N be the time step, where M and N are positive integers. Let the grid points and
time steps be

xj = xl + jh, tn = nk, j = 0, 1, · · · ,M, n = 0, 1, 2, · · · , N,
and denote the approximation of u(xj , t

n) by un
j . For the approximation of the Burgers’ equa-

tion, we use the second order implicit Crank-Nicolson scheme:

un+1
j − un

j

k
+ u

n+ 1
2

j

u
n+ 1

2

j+1 − u
n+ 1

2

j−1

2h
− ν

u
n+ 1

2

j+1 − 2u
n+ 1

2

j + u
n+ 1

2

j−1

h2
= f(xj , (n+

1

2
)k),

u0
j = u0(xj)

for j = 1, · · · ,M − 1, where

u
n+ 1

2

j =
1

2
(un

j + un+1
j ).

The scheme is unconditionally stable with the truncation error O(k2+h2). The resulting system
of equations from this approximation has M − 1 equations and M + 1 unknowns. Thus, two
extra conditions are needed to complete the system. These two conditions are provided by
the two artificial boundary conditions. Here we only provide discrete formulae of the second
conditions of (2.14) and (2.16). For the right boundary, we use,

un+1
M − un+1

M−2

2h
=

1

2ν
(un+1

M−1)
2 − 2

√
νπeg

n+1
r

·
n

∑

p=0

egp+1
r up+1

M−1 − egp
rup

M−1

k
(
√

tn+1 − tp −
√

tn+1 − tp+1). (3.1)

where

gn+1
r = gn

r +
1

2
(Qn

r +Qn+1
r )k,

and

Qp
r = −

up
M − up

M−2

4h
+

(up
M−1)

2

4ν
.

And on the left boundary, we also have

un+1
2 − un+1

0

2h
=

1

2ν
(un+1

1 )2 +
2

√
νπeg

n+1

l

·
n

∑

p=0

eg
p+1

l up+1
1 − eg

p

l up
1

k
(
√

tn+1 − tp −
√

tn+1 − tp+1). (3.2)

where

gn+1
l = gn

l +
1

2
(Qn

l +Qn+1
l )k,

and

Qp
l = −u

p
2 − up

0

4h
+

(up
1)

2

4ν
.

The approximations (3.1), (3.2) to artificial boundary conditions have the accuracy O(k
3
2 +

h2) [18]. The scheme is implicit, we must use iteration methods to numerically solve the system.
Here the simple iteration method is used in our numerical experiments.
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4. Numerical Examples

To show the effectiveness of the new approach using artificial boundaries, we present three
numerical examples in this section. In the first two examples, we consider the Burgers’ equation
without source term. In this case, the exact solutions are given, and the numerical solutions are
compared with the exact solution. In the third example, we consider the Burgers’ equation with
a source term. The exact solution to this problem is unknown. We take a numerical solution
computed on a very fine mesh as the exact solution, and then compare the numerical solutions
with it.
Example 1. We first consider the Burgers equation without source term

ut + uux − νuxx = 0, (4.1)

which has the exact solution

u(x, t) = −
x

t+1

1 +
√

t+1
t0
exp( x2

4ν(t+1) )
,

where t0 = exp(1/8ν). The solution represents two waves propagating to the left and right
respectively with amplitudes gradually decreasing. Using the proposed numerical method in
section 2 and section 3 with the initial condition obtained from the exact solution, we simulate
the result for two cases:

i) ν = 1, T = 16, [xl, xr] = [−8, 8]; and
ii) ν = 0.1, T = 12, [xl, xr] = [−3, 3].
Table 1 and 2 show the numerical errors and orders of accuracy for two cases with time step

k = h, where the L∞ and L1 errors are defined by

E∞ = max|u(xj , t
n) − un

j |, j = 0, 1, · · · ,M, n = 0, 1, · · · , N,

E1 =
1

(N + 1)(M + 1)

N
∑

n=0

M
∑

j=0

|u(xj , t
n) − un

j |.

We can see that the method gives second order of accuracy in both cases. The x − t solution
contours are plotted for N = 256 in Fig. 2. From the figures, no reflective waves can be seen
near the artificial boundaries, so artificial boundary condition is very effective.

Table 1. ν = 1, L∞ and L1 errors and orders of accuracy

N L∞ order L∞ order L1 order L1 order
16 1.544e-2 – 1.076e-3 –
32 5.202e-3 1.570 2.774e-4 1.956
64 1.248e-3 2.059 6.953e-5 1.996
128 2.951e-4 2.080 1.722e-5 2.014
256 7.363e-5 2.003 4.211e-6 2.032

Table 2. ν = 0.1, L∞ and L1 errors and orders of accuracy

N L∞ order L∞ order L1 order L1 order
16 7.544e-3 – 1.111e-3 –
32 1.950e-3 1.952 2.766e-4 2.006
64 4.854e-4 2.006 6.968e-5 1.989
128 1.222e-4 1.990 1.749e-5 1.994
256 3.053e-5 2.001 4.371e-6 2.000
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Fig. 2. (a) ν = 1, 15 contours from -0.5 to 0.5; (b) a = 0.1, 15 contours from -0.2 to 0.2

Example 2. Let α, µ and γ be constants, and let η = α(x−µt−γ)
ν

. We consider the Burgers’
equation (4.1) with

u(x, t) = −α+ µ+ (µ− α)eη

1 + eη
,

as the exact solution. This solution represents a travelling wave moving to the right with speed
µ. We take α, µ, γ = 1 and time step k = h. Similarly, we compute the solution for two cases

i) ν = 1, T = 24, [xl, xr] = [−8, 16];

ii) ν = 0.1, T = 4, [xl, xr] = [−1, 3].

We use the exact solution as the initial condition and left boundary condition. On the right
boundary, the artificial boundary condition is imposed. The L∞ and L1 errors and orders of
accuracy in x− t plane are listed in Tables 3 and 4. Here we can see that the numerical orders
approach to 1.5 when the mesh is refined. Fig. 3 is the solution plots in x − t plane for ν = 1
and ν = 0.1 with the same grid points N = 1024. Fig. 4 shows the error evolutions in time t at
the artificial boundaries for different grids. Clearly, the errors decrease rapidly as N increases.

Table 3. ν = 1, L∞ and L1 errors and orders of accuracy

N L∞ order L∞ order L1 order L1 order
32 5.809e-1 – 1.264e-2 –
64 1.582e-1 1.877 2.880e-3 2.134
128 4.528e-2 1.805 7.183e-4 2.003
256 1.429e-2 1.664 1.949e-4 1.882
512 4.799e-3 1.574 5.640e-5 1.789
1024 1.664e-3 1.528 1.716e-5 1.717

Table 4. ν = 0.1, L∞ and L1 errors and orders of accuracy

N L∞ order L∞ order L1 order L1 order
32 1.411 – 2.216e-2 –
64 4.153e-1 1.764 5.046e-3 2.135
128 1.127e-1 1.882 1.182e-3 2.094
256 3.316e-2 1.765 2.994e-4 1.981
512 1.068e-2 1.635 8.807e-5 1.888
1024 3.624e-3 1.559 2.296e-5 1.816
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Fig. 3. Solution in x − t plane. N = 1024. (a) ν = 1 ; (b) ν = 0.1
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Fig. 4. Errors evolutions in time t at artificial boundary with different grids.

(a) ν = 1, x = 16 ; (b) ν = 0.1, x = 3

Example 3. In this example, we consider the Burgers equation with a source term:

ut + uux − 1

5
uxx = (

1

2
+ sinπt)e−x2

,

u(x, 0) = 0.

We compute the solution using the artificial boundary conditions in the domain −4 ≤ x ≤ 4,
0 ≤ t ≤ 8. The exact solution to this problem is unknown. We take the numerical solution
computed on a very fine mesh (2048 grid points) and in a larger domain x ∈ [−8, 8] as the
”exact” solution for the purpose of comparison. Fig. 5(a) shows the surface plot of the numerical
solution for N = 256. The ”exact” solution is shown in Fig. 5(b). We can see that the numerical
solution well agrees with the ”exact” solution.

In Table 5, we show the numerical errors and orders in x− t plane. Fig. 6 are the solutions
for x ∈ [2, 4] at t = 6 and t = 8. When t = 6, the errors are very small. When t = 8, the errors
appear, but converge to the ”exact” solution rapidly when the mesh is refined.
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Table 5. L∞ and L1 errors and orders of accuracy

N L∞ order L∞ order L1 order L1 order
16 8.009e-1 – 3.192e-2 –
32 2.441e-1 1.714 7.271e-3 2.145
64 6.216e-2 1.973 1.697e-3 2.099
128 1.685e-2 1.886 4.168e-4 2.026
256 5.078e-3 1.730 1.031e-4 2.015
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Fig. 5. x − t solutions. (a) N = 256; (b) ”exact” solution
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Fig. 6. Diamond: N = 128, square: N = 256, solid: ”exact” solution. (a) t = 6, (b) t = 8

5. Conclusion

The artificial boundary method has been applied to the Burgers’ equation on unbounded
domains. Using the Cole-Hopf transformation we obtained the boundary conditions on the
artificial boundaries. These boundary conditions are in nonlinear forms. With the artificial
boundaries, we can solve the original unbounded problem in a much smaller domain, the com-
putational work can be greatly reduced. The numerical examples showed that the new approach
is very effective, the numerical solutions converge fast to the exact solutions.
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