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Abstract

In this paper, the superconvergence results are derived for a class of boundary con-
trol problems governed by Stokes equations. We derive superconvergence results for both
the control and the state approximation. Base on superconvergence results, we obtain
asymptotically exact a posteriori error estimates.
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1. Introduction

Finite element approximation of optimal control problems plays a very important role in
the numerical methods for these problems. The literature in this aspect is huge. A priori
error estimates of finite element approximation were established for the distributed optimal
control of problems governed by partial differential equations; see, for example, [6] and [10]. A
posteriori error estimates of some distributed optimal control problems has been studied, see,
[18], [19], [20] and [11]. As one of important kinds of optimal control problems, the boundary
control problem is widely used in scientific and engineering computing. A priori error estimates
have been provided for linear boundary control problems, see [7] and [9]. A posteriori error
estimates have also been obtained for boundary control problems, see [16] and [17]. In recent
years, the superconvergence property of some distributed optimal control problems including
the distributed optimal control problem governed by Stokes equations have been investigated,
see, for example, [5], [12], [15], [24]. Although superconvergence property of finite element
approximation is widely used in numerical simulations, it is not yet been utilized in boundary
control problems.

In this work, we present the superconvergence analysis and a posteriori error estimates for
the finite element approximation of the boundary control problems governed by Stokes equa-
tions. The purpose of this work is to derive superconvergence results of the control and the
state for the boundary control problems governed by Stokes equations. Based on superconver-
gence results, we obtain asymptotically exact a posteriori error estimates. The obtained error
estimates can then be used as a posteriori error indicators to construct reliable adaptive finite
element methods.
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The outline of this paper is as follows: In section 2, we shall give a weak formula for the
boundary control problem and then discuss the finite element approximation of the control
problem. In section 3, a superconvergence result for the control u is derived by applying
patch recovery operator and the supercovergence analysis technique. In section 4, recovery and
superconvergence for state and co-state are derived by using L2 projection methods. In section
5, recovery type a posteriori error estimates are derived. In the last section, we discuss briefly
some possible future work.

Let Ω be a bounded open set in R
2 with Lipschitz boundaries ∂Ω. In this paper we adopt the

standard notation Wm,q(Ω) for Sobolev spaces on Ω with the norm ‖.‖m,q,Ω and the seminorm
|.|m,q,Ω. We shall extend these (semi)norms to vector functions whose components belong to

Wm,q(Ω). We set Wm,q
0 (Ω) ≡ {w ∈ Wm,q(Ω) : w|∂Ω = 0}. We denote Wm,2(Ω)(Wm,2

0 (Ω)) by
Hm(Ω)(Hm

0 (Ω)) equipped with the norm ‖.‖m,Ω and the seminorm |.|m,Ω. In addition, c or C
denotes a general positive constant independent of h.

2. Finite Element Approximation of Boundary Control Problems

In this section, we study the finite element approximation of the boundary control prob-
lems governed by Stokes equations, where the boundary control is applied on the part of
the boundary, and the fixed boundary condition is given on the other part of the bound-
ary. In the rest of the paper, let Ω be a bounded open set in R

2 with boundaries ∂Ω, where
∂Ω = Γa ∪ Γb, Γa ∩ Γb = ∅, meas(Γa) > 0 and meas(Γb) > 0. We shall take the state space
V = {v ∈ (H1(Ω))2 : v|Γa

= 0}, the control space U = (L2(Γb))
2, and the observation space

Y = (L2(Γb))
2. Let B be a linear continuous operator from U to U. Let K = {u ∈ U : u ≥ 0}.

We are interested in the following boundary control problem: Give f, yd, zb, find (y,u) ∈ V×K
such that

min
u∈K

{
1

2
‖y − yd‖

2
L2(Γb)

+
1

2
‖u‖2

L2(Γb)
},

−△y + ∇r = f in Ω,

divy = 0 in Ω, (2.1)

y = 0 on Γa,

∂y

∂n
− rn = zb + Bu on Γb,

where f ∈ (L2(Ω))2, yd, zb ∈ (L2(Γb))
2. Let H = (L2(Ω))2, Q = L2(Ω), and let

a(y,w) =

∫

Ω

∇y · ∇w, ∀y,w ∈ V,

b(v, r) =

∫

Ω

rdivv ∀(v, r) ∈ V ×Q,

(f ,w) =

∫

Ω

fw, ∀(f ,w) ∈ H× V,

(u,v)U =

∫

Γb

uv, ∀u,v ∈ U.

Then the weak formula of the state equation reads: find (y(u), r(u)) ∈ V ×Q such that

a(y(u),w) − b(w, r(u)) = (f ,w) + (Bu + zb,w)U ∀w ∈ V.

b(y(u), φ) = 0 ∀φ ∈ Q.

For the above problem, it is well known that the following Babuška-Brezzi condition holds (see
[8]):

sup
v∈V

b(v, q)

‖v‖1,Ω
≥ C‖q‖0,Ω ∀q ∈ Q,
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where C is a constant independent of v and q.

Using the weak formula, our boundary control problem can be restated as the following
(BCP):

min
u∈K⊂U

{
1

2
‖y − yd‖

2
L2(Γb)

+
1

2
‖u‖2

L2(Γb)
},

a(y(u),w) − b(w, r(u)) = (f ,w) + (zb +Bu,w)U ∀w ∈ V,

b(y(u), φ) = 0 ∀φ ∈ Q.

It is well known (see, e.g., [13]) that the control problem (BCP) has a unique solution (y, r,u)
and that (y, r,u) is the solution of (BCP) if and only if there is a co-state (p, s) ∈ V×Q such
that (y, r,p, s,u) satisfies the following optimality conditions (BCP-OPT):

a(y,w) − b(w, r) = (f + w) + (zb +Bu,w)U ∀w ∈ V, (2.2)

b(y, φ) = 0 ∀φ ∈ Q, (2.3)

a(q,p) + b(q, s) = (y − yd,q)U ∀q ∈ V, (2.4)

b(p, ψ) = 0 ∀ψ ∈ Q, (2.5)

(u +B∗p,v − u)U ≥ 0 ∀v ∈ K ⊂ U. (2.6)

where B∗ is the adjoint operator of B.

Let us consider the finite element approximation of the control problem (BCP).

Let Ωh be a polygonal approximation to Ω with boundary ∂Ωh. Let T h be a partitioning
of Ωh into disjoint regular triangles τ , so that Ω̄h = ∪τ∈T h τ̄ . Let hτ denote the maximum
diameter of the element τ in T h, Let h = maxτ∈T h hτ . We assume that Ω is a convex polygon
so that Ω = Ωh.

Let Vh ⊂ V and Qh ⊂ L2(Ω) be two finite element spaces for velocity and pressure,
respectively, associated with the partition T h. Let Pr be the set of polynomial of degree no
more than r with r ≥ 0. Assume that the polynomial space in the construction of Vh contains
P1, and that of Qh contains P0. The two finite element spaces Vh and Qh are assumed to
satisfy the following properties:

Property P1. (Approximation property of Vh): For all y ∈ (Hm+1(Ω))2,

inf
v∈Vh

(‖y − v‖0,Ω + h‖y − v‖1,Ω) ≤ Chm+1‖y‖m+1,Ω, m = 0, 1.

Property P2. (Approximation property of Qh): For all r ∈ Hm(Ω),

inf
q∈Qh

‖r − q‖0,Ω ≤ Chm‖r‖m,Ω, m = 0, 1.

Property P3. (Uniform Babuška-Brezzi condition):

sup
v∈Vh

b(v, q)

‖v‖1,Ω
≥ C‖q‖0,Ω, ∀q ∈ Qh.

These above assumptions are satisfied by some finite elements, e.g., the mini element and the
Bernardi-Raugel element of order one.

Let T h
U

be a partitioning of Γb, so that Γb = ∪s∈T h
U
s̄. s̄ and s̄′ have at most one common

vertex if s̄ and s̄′ ∈ T h
U

. Associated with T h
U

is another finite dimensional subspace Wh
U

of
L2(Γb), such that χ|s are polynomial of order zero for all χ|s ∈ Wh

U
and s ∈ T h

U
. Here there is

no requirement for the continuity. Let Uh = (Wh
U

)2. Let hs denote the length of the element
s in T h

U
, Let hU = maxs∈T h

U

{hs}.

Let

Kh = {vh ∈ Uh : vh ≥ 0}.

Then a possible finite element approximation of (BCP), which we shall label (BCP)h, is as
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follows:

min
uh∈Kh⊂Uh

{
1

2
‖yh − yd‖

2
L2(Γb)

+
1

2
‖uh‖

2
L2(Γb)

},

a(yh,wh) − b(wh, rh) = (f ,wh) + (zb +Buh,wh)U ∀wh ∈ Vh,

b(yh, φh) = 0 ∀φh ∈ Qh,

where Kh is a closed convex set in Uh.
It follows that the control problem (BCP)h has a solution (yh, rh, uh) and that if a pair

(yh, rh,uh) ∈ Vh×Qh×Uh is the solution of (BCP)h, then there is a co-state (ph, sh) ∈ Vh×Qh

such that (yh, rh,ph, sh,uh) satisfies the following optimality conditions, which we shall label
(BCP-OPT)h:

a(yh,wh) − b(wh, rh) = (f + wh) + (zb +Buh,wh)U ∀wh ∈ Vh, (2.7)

b(yh, φh) = 0 ∀φh ∈ Qh, (2.8)

a(qh,ph) + b(qh, sh) = (yh − yd,qh)U ∀qh ∈ Vh, (2.9)

b(ph, ψh) = 0 ∀ψh ∈ Qh, (2.10)

(uh +B∗ph,vh − uh)U ≥ 0 ∀vh ∈ Kh ⊂ Uh. (2.11)

It is well known that for the problem (2.2)-(2.6) and its finite element approximation (2.7)-
(2.11), the following error estimate holds:

e ≡ ‖u− uh‖0,Γb
+‖y − yh‖1,Ω +‖r− rh‖0,Ω +‖p− ph‖1,Ω +‖s−sh‖0,Ω ≤ C(h+hU), (2.12)

if y,p ∈ (H2(Ω))2 and r, s ∈ H1(Ω), u ∈ (H1(Γb))
2.

Assume that Stokes equations have Hk-regularity (k = 1, 2) in the sense that for any give

f ∈ (Hk−2(Ω))2, g ∈ Hk−1(Ω) and zb ∈ (Hk− 3
2 (Γb))

2, the following problem

a(y,w) − b(w, r) = (f ,w) + (zb,w)U ∀w ∈ V. (2.13)

b(y, φ) = (g, φ) ∀φ ∈ Q. (2.14)

has a unique solution y ∈ V ∩ (Hk(Ω))2 and r ∈ Hk−1(Ω) such that

‖y‖k,Ω + ‖r‖k−1,Ω ≤ C(‖f‖k−2,Ω + ‖g‖k−1,Ω + ‖zb‖k− 3
2
,Γb

). (2.15)

The following lemmas are important in deriving superconvergence results.

Lemma 2.1. (see [1]) Assume that Ω is a convex polygon. Then,

‖γ0v‖0,∂Ω ≤ C(Ω)‖v‖
1
2

0,Ω · ‖v‖
1
2

1,Ω ∀v ∈ H1(Ω),

where γ0 is the trace operator, C(Ω) is the constant dependent on Ω.

Lemma 2.2. (see [8]) Let Ω be a convex polygon and let p ≥ 1 and s ≥ 0 be two real numbers,
s− 1

p = l + σ where l ≥ 0 is an integer and 0 < σ < 1. Then

‖γ0v‖s−1,p,∂Ω ≤ ‖γ0v‖s− 1
p

,p,∂Ω ≤ C‖v‖s,p,Ω.

Lemma 2.3. (see [8]) Under hypotheses P1, P2 and P3, assume that Stokes equations
(2.13)-(2.14) have H2-regularity . Let (Ψ, ρ) be the solution of Stokes equations (2.13)-(2.14),
and let Ψ ∈ V ∩ (H2(Ω))2, ρ ∈ H1(Ω). Then

‖Ψ − Ψh‖0,Ω ≤ Ch2(‖Ψ‖2,Ω + ‖ρ‖1,Ω), (2.16)

‖Ψ − Ψh‖1,Ω + ‖ρ− ρh‖0,Ω ≤ Ch(‖Ψ‖2,Ω + ‖ρ‖1,Ω), (2.17)

where (Ψh, ρh) ∈ Vh ×Qh is the finite element approximation of (Ψ, ρ).

3. Superconvergence Analysis and Recovery for the Control u

In this section, we will provide the superconvergence results. Firstly, let us consider the
superconvergence analysis for the control u. Let

Γ+
b = {∪s : s ⊂ Γb, u|s > 0},



Superconvergence and a Posteriori Error Estimates for Boundary Control Governed by Stokes Equations 347

Γ0
b = {∪s : s ⊂ Γb, u|s = 0},

Γb
b = Γb \ (Γ+

b ∪ Γ0
b).

In this paper, we assume that u and T h
U

are regular such that meas(Γb
b) ≤ ChU.

Lemma 3.1. Let u and uh be the solutions of (2.2)-(2.6) and (2.7)-(2.11), respectively. As-
sume that p ∈ (H2(Ω))2, γ0p ∈ (W 1,∞(∂Ω))2, and u ∈ (W 1,∞(Γb))

2. Let uI ∈ Kh be the
L2-project of u, such that

uI |s =

∫

s u
∫

s 1
, ∀s ∈ T h

U.

Assume that Ω is convex. Then,

‖uh − uI‖0,Γb
≤ C(h

3
2 + h

3
2

U
). (3.1)

Proof. Note that uh,uI ∈ Kh ⊂ K. It follows from (2.6) and (2.11) that

(u +B∗p,u− uh)U ≤ 0,

and

(uh +B∗ph,uh − uI)U ≤ 0.

It follows that

‖uh − uI‖
2
0,Γb

= (uh − uI ,uh − uI)U ≤ −(B∗ph,uh − uI)U − (uI ,uh − uI)U

= (B∗p,u− uh)U + (B∗p,uI − u)U + (uI ,uI − uh)U + (B∗(p − ph),uh − uI)U

≤ −(u,u− uh)U + (B∗p,uI − u)U + (uI ,uI − uh)U + (B∗(p− ph),uh − uI)U (3.2)

= (uI − u,uI − uh)U + (u + B∗p,uI − u)U + (B∗(p − p(uh)),u − uI)U

+(B∗(p − p(uh)),uh − u)U + (B∗(p(uh) − ph),uh − uI)U,

where p(uh) is the solution of the auxiliary equation:

a(y(uh),w) − b(w, r(uh)) = (f ,w) + (zb +Buh,w)U ∀w ∈ V, (3.3)

b(y(uh), φ) = 0 ∀φ ∈ Q, (3.4)

a(q,p(uh)) + b(q, s(uh)) = (y(uh) − yd,q)U ∀q ∈ V, (3.5)

b(p(uh), ψ) = 0 ∀ψ ∈ Q. (3.6)

It is clear that for any given uh ∈ Kh, this system has an unique solution.
Let πc be the integral average operator such that πcu = uI . It follows from the definition

of uI that

(uI − u,uI − uh)U =
∑

s

(uI − uh)

∫

s

(πcu − u) = 0, (3.7)

and

(B∗(p− p(uh)),u − uI)U =
∑

s

∫

s

(

B∗(p − p(uh)) − πc(B∗(p − p(uh)))

)

(u − πcu)

≤ C
∑

s

h2
s|B

∗(p − p(uh))|1,s|u|1,s ≤ Ch2
U‖p− p(uh)‖1,∂Ω‖u‖1,Γb

. (3.8)

Using Lemma 2.2, (2.2)-(2.5) and (3.3)-(3.6), we have that

‖p− p(uh)‖1,∂Ω ≤ C‖p− p(uh)‖2,Ω ≤ C‖y − y(uh)‖ 1
2
,∂Ω ≤ C‖y − y(uh)‖1,Ω

≤ C‖B(u − uh)‖0,Γb
≤ C‖u− uh‖0,Γb

≤ C‖u− uI‖0,Γb
+ C‖uI − uh‖0,Γb

(3.9)

≤ ChU|u|1,Γb
+ C‖uI − uh‖0,Γb
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and

(B∗(p− p(uh)),uh − u)U = (p − p(uh), B(uh − u))U = a(y(uh) − y,p − p(uh))

= (y − y(uh),y(uh) − y)U ≤ 0. (3.10)

It follows from Schwarz inequality that

(B∗(p(uh) − ph),uh − uI)U ≤ C‖B∗(p(uh) − ph)‖0,∂Ω‖uh − uI‖0,Γb

≤ C‖p(uh) − ph‖
2
0,∂Ω + Cδ‖uh − uI‖

2
0,Γb

, (3.11)

where δ is an arbitrary small positive constant. Then, it follows from (3.7)-(3.11) that

‖uh − uI‖
2
0,Γb

≤ (u +B∗p,uI − u)U + Ch2
U
‖u‖1,Γb

(hU‖u‖1,Γb
+ ‖uI − uh‖0,Γb

)

+C‖p(uh) − ph‖
2
0,∂Ω + Cδ‖uI − uh‖

2
0,Γb

≤ (u +B∗p,uI − u)U + Ch3
U‖u‖2

1,Γb
+ C‖p(uh) − ph‖

2
0,∂Ω

+Cδ‖uI − uh‖
2
0,Γb

.

Then we have,

‖uh − uI‖
2
0,Γb

≤ C(u +B∗p,uI − u)U + Ch3
U‖u‖2

1,Γb
+ C‖p(uh) − ph‖

2
0,∂Ω. (3.12)

Let p(yh) ∈ V ∩ (H2(Ω))2 be the solution of the equation:

a(q,p(yh)) + b(q, s(yh)) = (yh − yd,q)U ∀q ∈ V, (3.13)

b(p(yh), ψ) = 0 ∀ψ ∈ Q. (3.14)

Then it follows from (3.5), (3.13) and (2.15) that

‖p(yh) − p(uh)‖0,∂Ω ≤ C‖p(yh) − p(uh)‖1,Ω ≤ C‖yh − y(uh)‖− 1
2
,Γb

≤ C‖yh − y(uh)‖0,∂Ω.

(3.15)
Note that yh and ph are the standard finite element approximations of y(uh) and p(yh),
respectively. We have that (see, e.g., [3])

‖yh − y(uh)‖0,Ω + h‖yh − y(uh)‖1,Ω ≤ Ch2(|y(uh)|2,Ω + |r(uh)|1,Ω) ≤ Ch2, (3.16)

and

‖ph − p(yh)‖0,Ω + h‖ph − p(yh)‖1,Ω ≤ Ch2(|p(yh)|2,Ω + |s(yh)|1,Ω) ≤ Ch2. (3.17)

Therefore, it follows from (3.15)-(3.17) and Lemma 2.1 that

‖p(uh) − ph‖0,∂Ω ≤ ‖p(uh) − p(yh)‖0,∂Ω + ‖p(yh) − ph‖0,∂Ω

≤ C‖yh − y(uh)‖0,∂Ω + C‖ph − p(yh)‖
1
2

0,Ω‖ph − p(yh)‖
1
2

1,Ω (3.18)

≤ C‖yh − y(uh)‖
1
2

0,Ω‖yh − y(uh)‖
1
2

1,Ω + Ch
3
2

≤ Ch
3
2 .

Note that

(u +B∗p,uI −u)U =

∫

Γ+

b

(u +B∗p)(uI −u) +

∫

Γ0
b

(u +B∗p)(uI −u) +

∫

Γb
b

(u +B∗p)(uI −u),

and
(u +B∗p)|Γ+

b
= 0, (uI − u)|Γ0

b
= 0.

Then,

(u +B∗p,uI − u)U =

∫

Γb
b

(u +B∗p)(uI − u)

=
∑

s⊂Γb
b

∫

s

(

u +B∗p− πc(u +B∗p)

)

(πcu − u) ≤ C
∑

s⊂Γb
b

h2
s|u +B∗p|1,s|u|1,s

≤ Ch2
U

(‖u‖2
1,∞,Γb

+ ‖p‖2
1,∞,∂Ω)meas(Γb

b) ≤ Ch3
U
. (3.19)

Therefore, (3.1) follows from (3.12), (3.18) and (3.19).
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In order to provide the global superconvergence for the control u, we construct the recovery
operator Rh on the mesh T h

U
. Define the set of the piecewise linear functions for control as

follows:
Uh

lin = {v ∈ C(Γb) : v ∈ P1(s) ∀s ∈ T h
U
},

where P1(s) stands for the set of the linear functions on the element s ∈ T h
U

. Set Rhv ∈ Uh
lin.

The values of Rhv on the nodes are defined by least-squares argument on an element patches
surrounding the nodes as follows. Let zi be a node, ωzi

= {∪s : s ∈ T h
U
, zi ∈ s̄}, Vzi

be the
linear function space on ωzi

. Set Rhv(zi) = σzi
(zi), where σzi

satisfies that

E(σzi
) = min

w∈Vzi

E(w),

where

E(w) =
∑

s∈ωzi

(
∫

s

(w − v)

)2

.

Lemma 3.2. Assume that u ∈ (W 1,∞(Γb))
2 and u|Γ+

b
∈ (H2(Γ+

b ))2. Then,

‖Rhu − u‖0,Γb
≤ Ch

3
2

U
, (3.20)

where Rh is the recovery operator defined above.

Proof. Note that u ∈ (W 1,∞(Γb))
2, and u ∈ (H2(Γ+

b ∪ Γ0
b))

2. Let

Γ++
b = {∪s : ωz ⊂ Γ+

b , ∀z ∈ s̄}, Γ00
b = {∪s : ωz ⊂ Γ0

b , ∀z ∈ s̄}, Γbb
b = Γb \ (Γ++

b ∪ Γ00
b ).

Then,
Rhu(x) = u(x) = 0 ∀x ∈ Γ00

b . (3.21)

It can be proved by the standard technique (see, e.g., [3]) that

‖Rhu − u‖0,Γ++

b
≤ Ch2

U‖u‖2,Γ+

b
, (3.22)

and
‖Rhu − u‖2

0,Γbb
b

≤ Ch2
U
‖u‖2

1,Γbb
b

≤ Ch2
U
‖u‖2

1,∞,Γb
meas(Γbb

b ).

Note that meas(Γb
b) = O(hU) and hence meas(Γbb

b ) = O(hU). We have that

‖Rhu − u‖0,Γbb
b
≤ Ch

3
2

U
. (3.23)

Therefore, It follows from (3.21)-(3.23) that

‖Rhu − u‖2
0,Γb

= ‖Rhu − u‖2
0,Γ++

b

+ ‖Rhu − u‖2
0,Γ00

b
+ ‖Rhu − u‖2

0,Γbb
b

≤ Ch4
U

+ 0 + Ch3
U

≤ Ch3
U
.

This proves (3.20).

Theorem 3.1. Suppose all conditions of Lemma 3.1 and Lemma 3.2 are valid. Then,

‖Rhuh − u‖0,Γb
≤ C(h

3
2 + h

3
2

U
). (3.24)

Proof. Let uI be defined in Lemma 3.1. Then,

‖Rhuh − u‖0,Γb
≤ ‖u−Rhu‖0,Γb

+ ‖Rhu−RhuI‖0,Γb
+ ‖RhuI −Rhuh‖0,Γb

. (3.25)

It follows from Lemma 3.2 that

‖u−Rhu‖0,Γb
≤ Ch

3
2

U
. (3.26)

Noting the definition of Rh, we have that

Rhu = RhuI , (3.27)

and
‖RhuI −Rhuh‖0,Γb

≤ C‖uI − uh‖0,Γb
. (3.28)

It has been proved in Lemma 3.1 that

‖uI − uh‖0,Γb
≤ C(h

3
2 + h

3
2

U
). (3.29)

Therefore, (3.24) follows from (3.25)-(3.29).
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Corollary 3.1. Let u and uh be the solutions of (2.2)-(2.6) and (2.7)-(2.11), respectively.
Assume that Ω is convex. Then,

‖u− uh‖− 1
2

,Γb
≤ C(h

3
2 + h

3
2

U
). (3.30)

Proof. For any function Φ ∈ (H
1
2 (Γb))

2, let ΦI ∈ Uh be the L2-project of Φ, such that

ΦI |s =

∫

s Φ
∫

s 1
.

we have
(u − uh,Φ)U = (u − uh,Φ− ΦI)U + (u− uh,ΦI)U. (3.31)

Note that

(u− uh,Φ − ΦI)U ≤ ‖u− uh‖0,Γb
‖Φ− ΦI‖0,Γb

≤ C(hU + h)h
1
2

U
‖Φ‖ 1

2
,Γb

≤ C(h
3
2 + h

3
2

U
)‖Φ‖ 1

2
,Γb
. (3.32)

It follows from Lemma 3.1 that

(u − uh,ΦI)U = (uI − uh,Φ)U ≤ ‖uI − uh‖0,Γb
‖Φ‖0,Γb

≤ C(h
3
2 + h

3
2

U
)‖Φ‖ 1

2
,Γb
. (3.33)

Therefore, it follows from (3.31)-(3.33) that

‖u− uh‖− 1
2
,Γb

= sup
Φ∈H

1
2 (Γb)

(u− uh,Φ)U
‖Φ‖ 1

2
,Γb

≤ C(h
3
2 + h

3
2

U
).

This proves the Corollary.

4. Superconvergence Analysis for State and Co-state

In this section, we will discuss the superconvergence for the state and the co-state. The
technique used in this section can be find in, e.g., [23]. Firstly, we will construct the recovery
on coarse meshes for the state y, r and the co-state p, s. Let T Hi , i = 1, 2, be another two
finite element partitions with mesh sizes Hi, where h < Hi (i = 1, 2). It will be essential to
our argument to allow Hi to be sufficiently large compared to h. In this paper, we construct
the partition T Hi , i = 1, 2, such that they are quasi-uniform and regular (see, [3]). Let VH1 ⊂
(L2(Ω))2 and QH2 ⊂ H1(Ω) be finite element spaces consisting of piecewise polynomials of
degree two and order one associated with the meshes T H1 and T H2 , respectively. Define PH1

and PH2
to be the L2 projectors from L2(Ω) onto the finite element spaces VH1 and QH2

respectively. Then, we can find that PH1
yh, PH1

ph, PH2
rh, PH2

sh are good recovery of yh,
ph, rh and sh.

In the following, we will provide some important lemmas, which will be useful for establishing
superconvergence results.

Lemma 4.1. Suppose the mesh T H1 is quasi-uniform (see, [3]), and VH1 ⊂ (L2(Ω))2. Suppose
that all conditions of Lemmas 3.1 and 3.2 are valid. Let (y, r,p, s) and (y(uh), r(uh),p(uh), s(uh))
be the solutions of (2.2)-(2.6) and (3.3)-(3.6), respectively. Assume (y, r) and (p, s) belong to
(V ∩ (H3(Ω))2) ×H1(Ω), and (y(uh), r(uh)) and (p(uh), s(uh)) belong to (V ∩ (H2(Ω))2) ×
H1(Ω). Let (yh, rh, ph, sh) be the solutions of (2.7)-(2.11). Then

‖∇(y − PH1
yh)‖0,Ω + ‖∇(p − PH1

ph)‖0,Ω ≤ C(H2
1 + h2H−1

1 + h
3
2 + h

3
2

U
). (4.1)

Proof. We first estimate ‖∇(y − PH1
yh)‖0,Ω. It is easy to see that

‖∇(y − PH1
yh)‖0,Ω ≤ ‖∇y −∇PH1

y‖0,Ω + ‖∇PH1
y −∇PH1

y(uh)‖0,Ω

+‖∇PH1
y(uh) −∇PH1

yh‖0,Ω. (4.2)

It is well known (see, e.g., [2] and [21]) that

‖∇y −∇PH1
y‖0,Ω ≤ ‖y − PH1

y‖1,Ω ≤ CH2
1 |y|3,Ω. (4.3)



Superconvergence and a Posteriori Error Estimates for Boundary Control Governed by Stokes Equations 351

Using (2.2)-(2.3) and (3.3)-(3.4), we know y − y(uh) is the solution of the following equation:

a(y − y(uh),w) − b(w, r − r(uh)) = (B(u − uh),w)U ∀w ∈ V, (4.4)

b(y − y(uh), φ) = 0 ∀φ ∈ Q. (4.5)

Hence, it follows from (2.15) with k = 1 and Corollary 3.1 that

‖y − y(uh)‖1,Ω ≤ C‖B(u− uh)‖− 1
2
,Γb

≤ C‖u − uh‖− 1
2
,Γb

≤ C(h
3
2 + h

3
2

U
). (4.6)

Therefore, using the H1-stability of the L2−projection into finite element space (see, e.g., [2]
and [4]), we have

‖∇PH1
y −∇PH1

y(uh)‖0,Ω ≤ ‖PH1
(y − y(uh))‖1,Ω ≤ C‖y − y(uh)‖1,Ω ≤ C(h

3
2 + h

3
2

U
). (4.7)

Moreover, by the inverse inequality and (3.16), we have that

‖∇PH1
y(uh) −∇PH1

yh‖0,Ω ≤ CH−1
1 ‖PH1

y(uh) − PH1
yh)‖0,Ω ≤ Ch2H−1

1 . (4.8)

Therefore, it follows from (4.2), (4.3), (4.7) and (4.8) that

‖∇(y − PH1
yh)‖0,Ω ≤ C(H2

1 + h2H−1
1 + h

3
2 + h

3
2

U
). (4.9)

Similarly, we can estimate ‖∇(p− PH1
ph)‖0,Ω. Again, we have

‖∇(p− PH1
ph)‖0,Ω ≤ ‖∇p−∇PH1

p‖0,Ω + ‖∇PH1
p−∇PH1

p(uh)‖0,Ω

+‖∇PH1
p(uh) −∇PH1

ph‖0,Ω, (4.10)

and

‖∇p−∇PH1
p‖0,Ω ≤ ‖p− PH1

p‖1,Ω ≤ CH2
1 |p|3,Ω. (4.11)

It follows from (2.4)-(2.5) and (3.5)-(3.6) that p − p(uh) satisfies the following equation:

a(p − p(uh),q) + b(q, s− s(uh)) = (y − y(uh),q)U ∀q ∈ V, (4.12)

b(p− p(uh), ψ) = 0 ∀ψ ∈ Q. (4.13)

Using (2.15), Lemma 2.2 and Corollary 3.1 , and noting that p − p(uh) is the solution of
(4.12)-(4.13), it can be deduced that

‖p− p(uh)‖1,Ω ≤ C‖y − y(uh)‖− 1
2

,Γb
≤ C‖y − y(uh)‖0,∂Ω ≤ C‖y − y(uh)‖1,Ω

≤ C‖B(u− uh)‖− 1
2
,Γb

≤ C‖u − uh‖− 1
2
,Γb

≤ C(h
3
2 + h

3
2

U
). (4.14)

Thus,

‖∇PH1
p−∇PH1

p(uh)‖0,Ω ≤ ‖PH1
(p−p(uh))‖1,Ω ≤ C‖p−p(uh)‖1,Ω ≤ C(h

3
2 +h

3
2

U
). (4.15)

By the inverse inequality and (3.18), we have that

‖∇PH1
p(uh) −∇PH1

ph‖0,Ω ≤ CH−1
1 ‖PH1

p(uh) − PH1
ph‖0,Ω ≤ Ch2H−1

1 . (4.16)

Therefore, it follows from (4.10), (4.11), (4.15) and (4.16) that

‖∇(p − PH1
ph)‖0,Ω ≤ C(H2

1 + h2H−1
1 + h

3
2 + h

3
2

U
). (4.17)

Then (4.1) follows from (4.9) and (4.17), and the proof of the theorem has been completed.

Similarly, we have the following result for r and s.

Lemma 4.2. Assume the mesh T H2 is quasi-uniform, and QH2 ∈ H1(Ω). Suppose that all
conditions of Lemmas 3.1 and 3.2 are valid. Let (yh, rh,ph, sh) and (y(uh), r(uh),p(uh), s(uh))
be the solutions of (2.7)-(2.11) and (3.3)-(3.6), respectively. Assume (y(uh), r(uh)) and (p(uh),
s(uh)) belong to (V ∩H2(Ω))2 × (H1(Ω), Then

‖PH2
r(uh) − PH2

rh‖0,Ω ≤ Ch2H−1
2 , (4.18)

‖PH2
s(uh) − PH2

sh‖0,Ω ≤ C(h2H−1
2 + h

3
2 ). (4.19)
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Proof. Note that rh is the standard finite element approximation of r(uh). The definitions
of ‖ · ‖0,Ω and PH2

give

‖PH2
r(uh) − PH2

rh‖0,Ω = sup
φ∈L2(Ω),‖φ‖0,Ω=1

|(PH2
r(uh) − PH2

rh, φ)|,

and
(PH2

r(uh) − PH2
rh, φ) = (r(uh) − rh,PH2

φ).

Then
‖PH2

r(uh) − PH2
rh‖0,Ω = sup

φ∈L2(Ω),‖φ‖0,Ω=1

|(r(uh) − rh,PH2
φ)|.

Consider the following problem that seeks (Ψ, ρ) ∈ V ×Q such that

a(Ψ,w) − b(w, ρ) = 0 ∀w ∈ V, (4.20)

b(Ψ, q) = (PH2
φ, q) ∀q ∈ Q. (4.21)

Replacing q in (4.21) by r(uh) − rh and using (2.7)-(2.11), (3.3)-(3.6) and (4.20), we have

(r(uh) − rh,PH2
φ)

= b(Ψ, r(uh) − rh) = b(Ψ − ΨI , r(uh) − rh) + b(ΨI , r(uh) − rh)

= b(Ψ − ΨI , r(uh) − rh) + a(y(uh) − yh,ΨI)

= b(Ψ − ΨI , r(uh) − rh) + a(y(uh) − yh,ΨI − Ψ) + a(y(uh) − yh,Ψ)

= b(Ψ − ΨI , r(uh) − rh) + a(y(uh) − yh,ΨI − Ψ) + b(y(uh) − yh, ρ− ρI),

where ΨI ∈ Vh and ρI ∈ Qh are two arbitrary functions in finite element spaces. Using Schwarz
inequality and the approximation properties P1 and P2, (2.15) and (2.17), we obtain

(r(uh) − rh,PH2
φ) ≤ ‖Ψ− ΨI‖1,Ω‖r(uh) − rh‖0,Ω + ‖y(uh) − yh‖1,Ω‖ΨI − Ψ‖1,Ω

+‖y(uh) − yh‖1,Ω‖ρ− ρI‖0,Ω

≤ Ch2(‖Ψ‖2,Ω + ‖ρ‖1,Ω)(‖y(uh)‖2,Ω + ‖r(uh)‖1,Ω)

≤ Ch2‖PH2
φ‖1,Ω(‖y(uh)‖2,Ω + ‖r(uh)‖1,Ω)

≤ Ch2H−1
2 ‖φ‖0,Ω.

Therefore
‖PH2

r(uh) − PH2
rh‖0,Ω ≤ Ch2H−1

2 .

This is (4.18).
Consider the auxiliary equation (3.13)-(3.14), it is clear that sh is the standard finite element

approximation of s(yh), where s(yh) is the solution of (3.13)-(3.14). Then, using the similar
way, we can prove that

‖PH2
s(yh) − PH2

sh‖0,Ω ≤ Ch2H−1
2 . (4.22)

It can been shown from (3.16), (4.22) and the property of L2 -projectors that

‖PH2
s(uh) − PH2

sh‖0,Ω = ‖PH2
s(uh) − PH2

s(yh) + PH2
s(yh) − PH2

sh‖0,Ω

≤ ‖s(uh) − s(yh)‖0,Ω + ‖PH2
s(yh) − PH2

sh‖0,Ω

≤ C‖yh − y(uh)‖− 1
2
,Γb

+ Ch2H−1
2

≤ C‖yh − y(uh)‖0,Γb
+ Ch2H−1

2

≤ C‖yh − y(uh)‖
1
2

0,Ω‖yh − y(uh)‖
1
2

1,Ω + Ch2H−1
2

≤ C(h
3
2 + h2H−1

2 ).

This proves (4.19).

Lemma 4.3. Suppose that all conditions of Lemma 4.2 are valid. Let (y, r,p, s) and (yh, rh,
ph, sh) be the solutions of (2.2)-(2.6) and (2.7)-(2.11), respectively. Assume (y, r) and (p, s)
belongs to (V ∩ (H2(Ω))2) ×H2(Ω), then

‖r − PH2
rh‖0,Ω + ‖s− PH2

sh‖0,Ω ≤ C(H2
2 + h2H−1

2 + h
3
2 + h

3
2

U
). (4.23)
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Proof. First, we estimate ‖r − PH2
rh‖0,Ω. It can be show that

‖r − PH2
rh‖0,Ω ≤ ‖r − PH2

r‖0,Ω + ‖PH2
r − PH2

r(uh)‖0,Ω + ‖PH2
r(uh) − PH2

rh‖0,Ω, (4.24)

where r(uh) is defined by (3.3)-(3.6). It is well known that

‖r − PH2
r‖0,Ω ≤ CH2

2 |r|2,Ω. (4.25)

Using Corollary 3.1 and (2.15) with k = 1, and noting that r − r(uh) is an analytic solution of
(4.4)-(4.5), it can be shown that

‖PH2
r − PH2

r(uh)‖0,Ω ≤ ‖r − r(uh)‖0,Ω ≤ C‖B(u − uh)‖− 1
2

,Γb

≤ C‖u − uh‖− 1
2
,Γb

≤ C(h
3
2 + h

3
2

U
). (4.26)

Combing (4.24)-(4.26) and (4.18) gives

‖r − PH2
rh‖0,Ω ≤ C(H2

2 + h2H−1
2 + h

3
2 + h

3
2

U
). (4.27)

Similarly, we can estimate ‖s− PH2
sh‖0,Ω. Again, it is easy to show that

‖s− PH2
sh‖0,Ω ≤ ‖s− PH2

s‖0,Ω + ‖PH2
s− PH2

s(uh)‖0,Ω + ‖PH2
s(uh) − PH2

sh‖0,Ω, (4.28)

and
‖s− PH2

s‖0,Ω ≤ CH2
2 |s|2,Ω. (4.29)

Moreover,

‖PH2
s− PH2

s(uh)‖0,Ω ≤ ‖s− s(uh)‖0,Ω ≤ C‖y − y(uh)‖− 1
2

,Γb

≤ C‖y − y(uh)‖1,Ω ≤ C‖B(u− uh)‖− 1
2
,Γb

(4.30)

≤ C‖u− uh‖− 1
2
,Γb

≤ C(h
3
2 + h

3
2

U
).

Combing (4.28)-(4.30) and (4.19) gives

‖s− PH2
sh‖0,Ω ≤ C(H2

2 + h2H−1
2 + h

3
2 + h

3
2

U
). (4.31)

Then (4.23) follows from (4.27) and (4.31). The theorem has been proved.
In this section, the recovery operator PH1

(for yh and ph) and PH2
(for rh and sh) are

provided. Our recovery technique (the postprocessing technique of least-squares surface fitting
discussed in this paper) is to project the finite element solution to another finite element space
of higher order with a different mesh. It is proved in Lemma 4.1 and 4.3 that after recovery,

the error is improved to be O(H2
1 + H2

2 + h2H−1
1 + h2H−1

2 + h
3
2 + h

3
2

U
), which is better than

the original error O(h+hU), if H1 and H2 are chosen suitably. In the following, let us consider
how to choose H1 and H2 to get global superconvergence. It also will be discussed in the next
section for a posteriori error estimate. Let

Hi = hαi , i = 1, 2,

with α1, α2 ∈ (0, 1). The parameter αi will play an important role later in achieving a super-
convergence for the finite element approximation (yh, rh,ph, sh).

Theorem 4.1. Suppose that all conditions of Lemmas 4.1 and 4.3 are valid. Let α1 = 2
3 and

α2 = 2
3 , i.e., H1 = h2/3, H2 = h2/3. Then

‖∇y − GH1
yh‖0,Ω + ‖∇p− GH1

ph‖0,Ω ≤ C(h
4
3 + h

3
2

U
), (4.32)

‖r − PH2
rh‖0,Ω + ‖s− PH2

sh‖0,Ω ≤ C(h
4
3 + h

3
2

U
). (4.33)

where GH1
= ∇PH1

, PH1
and PH2

are recovery operators defined in this section.

Proof. Let H1 = hα1 , it follows from Lemma 4.1 that

‖∇(y − PH1
yh)‖0,Ω + ‖∇(p − PH1

ph)‖0,Ω ≤ C(H2
1 + h2H−1

1 + h
3
2 + h

3
2

U
)

= C(h2α1 + h2−α1 + h
3
2 + h

3
2

U
). (4.34)
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We optimize the above estimate by choosing α1 such that

2α1 = (2 − α1).

Solving the above equation gives α1 = 2
3 . Substituting it to (4.34) implies (4.32). Similarly we

can prove (4.33).

Remark 4.1. It is proved by Theorem 3.1 and Theorem 4.1 that choosing the suitable Hi and
using the recovery process defined in Section 3 and 4, we have following global superconvergence
result:

‖Rhuh − u‖0,Γb
+ ‖∇y − GH1

yh‖0,Ω + ‖∇p− GH1
ph‖0,Ω

+‖r − PH2
rh‖0,Ω + ‖s− PH2

sh‖0,Ω ≤ C(h
4
3 + h

3
2

U
),

which is better than the standard error estimate:

‖uh − u‖0,Γb
+ ‖∇(y − yh)‖0,Ω + ‖∇(p − ph)‖0,Ω + ‖r − rh‖0,Ω + ‖s− sh‖0,Ω ≤ C(h+ hU).

Remark 4.2. Recalling the fitting finite element space VH1 ⊂ (L2(Ω))2 in Lemma 4.1, we
see that VH1 could be chosen as the finite element space consisting of discontinuous piecewise
quadratic polynomial. From Lemma 4.2, we know that the fitting finite element space QH2 ⊂
H1(Ω). Then QH2 is a surface fitting space consisting of continuous piecewise linear polynomial.
Note that PH1

and PH2
are the L2 projectors from L2(Ω) onto the finite element spaces VH1

and QH2 , respectively, and VH1 ⊂ (L2(Ω))2, QH2 ⊂ H1(Ω). It is easy to see that the cost
of computation for PH1

is much smaller than the one for PH2
, because that we can calculate

PH1
yh and PH1

ph piecewisely. Considering our optimal control problem, it is less important
to get the better approximation for r and s. We can only use PH1

to improve the accuracy of
yh and ph, and ignore the error of rh and sh. Then the cost of computation for the recovery
of rh and sh can be removed, which is much more than the one for yh and ph.

5. Recovery Type a Posteriori Error Estimates

Based on the recovery operator GH1
, PH2

and Rh, where Rh is defined in Section 3, GH1

and PH2
are defined in Section 4. we can defined the recovery type a posteriori error estimator:

ηg = ‖∇yh − GH1
yh‖0,Ω + ‖∇ph − GH1

ph‖0,Ω + ‖rh − PH2
rh‖0,Ω

+‖sh − PH2
sh‖0,Ω + ‖uh −Rhuh‖0,Γb

.

Then we have following a posteriori error estimate.

Theorem 5.1. Let Hi(i = 1, 2) > h. Suppose that the error enjoys the “non-degeneracy”
condition:

c(h+ hU) ≤ e, (5.1)

where e is defined in (2.12), and all conditions of Lemma 4.1-Lemma 4.3 are valid. Then, we
have the following results,

‖∇y − GH1
yh‖0,Ω + ‖∇p− GH1

ph‖0,Ω + ‖r − PH2
rh‖0,Ω

+ ‖s− PH2
sh‖0,Ω + ‖u−Rhuh‖0,Γb

≤Me, (5.2)

where e is the exact error defined by (2.12) and

M = C(H2
1/h+H2

2/h+ h/H1 + h/H2 + h
1
2 + h

1
2

U
).

Then we have that
ηg

1 +M
≤ e, (5.3)

and if M < 1,
ηg

1 +M
≤ e ≤

ηg

1 −M
. (5.4)
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If Hi = Hi(h) is chosen so that M → 0 as h→ 0 and hU → 0, the estimator is asymptotically
exact, i.e.,

lim
h→0, hU→0

ηg

e
= 1. (5.5)

Proof. Using Lemma 4.1-Lemma 4.3 and the “non-degeneracy” condition (5.1), we have

‖∇y − GH1
yh‖0,Ω + ‖∇p− GH1

ph‖0,Ω + ‖r − PH2
rh‖0,Ω + ‖s− PH2

sh‖0,Ω

+‖u−Rhuh‖0,Γb

≤ C(H2
1 +H2

2 + h2H−1
1 + h2H−1

2 + h
3
2 + h

3
2

U
)

≤
C

c
(
H2

1

h
+
H2

2

h
+

h

H1
+

h

H2
+ h

1
2 + h

1
2

U
)c(h+ hU) ≤Me.

This completes the proof of (5.2). Using triangle inequality, it is easy to prove (5.3) and (5.4)
from (5.2). The asymptotically exactness estimate (5.5) is the direct result of (5.4).

Remark 5.1. It is clear that M plays an important role in Theorem 5.1. If M is bounded,
we thus see that

ηg

1+M furnishes a lower bound for the real error. If M ≤ M̄ < 1, as h, hU and
Hi(i = 1, 2) vary, ηg is the lower and upper bound of the error e. Then we call ηg an equivalent
estimator. This would be the case, e.g., Hi = Kih with Ki fixed and sufficiently large (and
h, hU sufficiently small). We call ηg an asymptotically exact estimator if M → 0 as h→ 0 and
hU → 0 so that ηg is the approximation of e. This would be the case, e.g., Hi = Hi(h) were
chosen so that h/Hi → 0, and (Hi/h)h

1/2 → 0 as h→ 0. In other word, ηg is an asymptotically

exact estimator if Hi/h→ ∞ but not faster comparing h
1
2 → 0.

6. Discussions

In this paper, we discussed the recovery type superconvergence and a posteriori error esti-
mates for the boundary control problems governed by the Stokes equations. It is shown that
if the solution is smooth enough and the Stoke equations satisfy some regularity assumption,
recovery type superconvergence and a posteriori error estimates for the control, the state and
the co-state can be proved. Our results are applicable to many conforming finite element on
the regular meshes. It should be pointed that there is no any requirement for the uniform
partitions, which is usually required in the most superconvergence analysis.

There are many important issues still to be addressed in this area, for example, deriving the
global superconvergence analysis and a recovery type a posteriori error estimate for more com-
plicated control problems and finite element schemes. It is also interesting and very important
to investigate the more complicated constrained control problems, i.e., the closed convex set K
is more complicated. Finally, many computational issues have to be studied.
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