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Abstract

In this paper we prove the convergence of the approximate proximal method for DC
functions proposed by Sun et al [6]. Our analysis also permits to treat the exact method.
We then propose an interesting result in the case where the second component of the DC
function is differentiable and provide some computational experiences which proved the
efficiency of our method.
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1. Introduction

The proximal point algorithm was introduced by Martinet [2] for solving proper lower semi-
continuous convex minimization problems and extensively studied by Rockafellar [4] in the
context of monotone variational inequalities. It is well-known that if we drop the convexity
assumption on the objective function several problems arise. The proximal mapping is not well-
defined and in general it is not nonexpansive anymore even in arbitrary small neighbourhoods
of minima. Only few research has been proposed concerning the construction of solutions in
this nonconvex case, see for instance [3]. Here we focus our attention on the method recently
proposed by Sun et al. [6]. To find a critical point of f := g − h, this method consists to
increasing the function h along the direction of the subgradient and then decreasing the function
f thanks to a proximal step. They proved that if the sequence generated by their algorithm is
bounded, then every cluster point is a critical point of f . The aim of the paper is to provide a
correct proof for the main result in the article [6]. Indeed, we propose a right and elementary
proof of the convergence result for the approximate form and we provide conditions ensuring the
boundedness of the generated sequences. Aftewards, by means of an epi-convergence argument,
we propose an interesting result in the case where the second component of the DC function is
differentiable. We then give some numerical experiments which proved the convergence of the
algorithm PMDC to local solutions and showed at the same time its robustness and efficiency
with respect to the algorithm DCA introduced by Pham Dinh Tao [3].

Let f be a DC function, i.e. f = g−h where f and g are two convex lower semi-continuous
and proper functions defined on IRn satisfying domg ∩ domh 6= ∅. We consider the problem:

min
x∈IRn

(g(x)− h(x)) (1.1)

and the associated dual
min

y∈IRn
(h∗(y)− g∗(y)), (1.2)
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g∗(y) = supx∈IRn(〈y, x〉 − g(x)), h∗ stand for the conjugate functions of g and h.
It is well known that

inf
x∈IRn

(g(x)− h(x)) = inf
y∈IRn

(h∗(y)− g∗(y)),

and that a necessary condition for x ∈ domf to be a local minimizer of f is ∂h(x) ⊂ ∂g(x).
As in general this necessary condition is hard to reach, we will focus our attention on finding
critical points of f , namely points satisfying the relaxed condition ∂h(x) ∩ ∂g(x) 6= ∅.
Throughout the paper f := g − h : IRn → IR is a real DC function. We recall that a vector w
is called an ε-subgradient (with ε ≥ 0) of g at x ∈ domg, if

g(u) ≥ g(x) + 〈w, u− x〉 − ε ∀u ∈ IRn. (1.3)

The set of all ε-subgradients of g at x, denoted by ∂εg(x), is called the approximate subdif-
ferential of g at x which reduces to exact subdifferential when ε = 0. We also recall that the
Moreau-Yosida approximate and the approximate proximal mapping of g are defined for c > 0
by

gc(x) := inf
u∈IRn

{g(u) +
1
2c
‖u− x‖2} and proxε

cg(x) := (I + c∂εg)−1(x).

It is worth mentioning the richness of the class of DC functions which contains the class of lower-
C2 functions and constitutes a minimal realistic extension of the class of convex functions. It
has been successfully used in many nonconvex applications such as finance, molecular biology,
mutlicommodity network, image restoration processing and seems particularly well suited to
model several nonconvex industrial problems (Robotic: computer’s vision, fuel mixture ...).

2. Approximate Proximal Point Algorithms

2.1 ε-Proximal Method for DC functions
The method we will study is an approximate form of the scheme by Sun et al which is based

on the following equivalence:

x is a critical point of g − h ⇔ x = proxcg(x + cw),∀c > 0 and w ∈ ∂h(x).

Thanks to this fixed-point formulation, Sun et al. [6] proposed an algorithm for finding a
critical point of a DC function. This method combines the proximal point algorithm with the
subgradient method. Here we consider the approximate version obtained by replacing the exact
subdifferential by the approximate one, since the function h (respectively g) is assumed to be
convex, proper and lower semicontinuous, ∂0h(x) = ∂h(x), for any x. Furthermore, directly
from the definition it follows that 0 ≤ ε1 ≤ ε2 ⇒ ∂ε1h(x) ⊆ ∂ε2h(x). Thus ∂εh(x) is an
enlargement of ∂h(x). The use of elements in ∂εh instead of ∂h allows an extra degree of
freedom which is very useful in various applications. On the other hand, setting ε = 0 one
retrieves the exact subdifferential, so that the exact method can be also treated. For all these
reasons, we consider the following scheme:
Algorithm. Proximal Method for DC Functions (PMDC)
Setp 1: Given x0, c0 ≥ c. Set k = 0.
Step 2: Compute wk ∈ ∂εk

h(xk) and set yk = xk + ckwk.
Step 3: Compute xk+1 ∈ proxεk

ckg(yk) ( ÄProximal step).
If xk+1 = xk stop. Otherwise increase k by 1 and loop to step 2.
The following proposition contains the convergence results of PMDC.
Theorem 2.1. Assume that f := g − h is bounded from below, ck ≥ c > 0 for any k ∈ IN
and suppose that

∑+∞
k=0 εk < +∞, then the sequence (f(xk))k∈IN is convergent and the sequence

(xk) is asymptotically regular in the following sense: lim
k→+∞

c−1
k ‖xk − xk+1‖ = 0. Moreover, if

the sequences (xk) and (wk) are bounded, then every cluster-point x∞ and w∞ of the sequences
(xk) and (wk) are critical points of the functions g − h and h∗ − g∗, respectively.
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Proof. From the equality in step 3, we have

c−1
k (xk − xk+1) + wk ∈ ∂εk

g(xk+1),

which implies that

g(xk) ≥ g(xk+1) + 〈wk + c−1
k (xk − xk+1), xk − xk+1〉 − εk.

Also, since wk ∈ ∂εk
h(xk), we have

h(xk+1) ≥ h(xk) + 〈wk, xk+1 − xk〉 − εk.

Adding the last inequalities, we obtain

f(xk+1) ≤ f(xk)− c−1
k ‖xk − xk+1‖2 + 2εk, (2.1)

which in turn implies that
f(xk+1) ≤ f(xk) + 2εk, (2.2)

hence

f(xk) ≤ f(x0) + 2
k−1∑

i=0

εi

which together with the assumption
∑+∞

k=0 εk < +∞ implies that the sequence (f(xk)) is
bounded from above. On the other hand, f is assumed bounded from below by assumption,
hence (f(xk)) is bounded and thus has at least one cluster point. In fact the whole sequence
converges. Indeed, let (f(xk)) admits two cluster points f∞1 and f∞2 such that f∞1 < f∞2 and
let (f(xν1)) and (f(xν2)) be two subsequences converging to f∞1 and f∞2 , respectively. Set
ε̃ = f∞2 −f∞1

4 . Then, there exist two integers ν̃1, ν̃2 such that

f(xν1) < f∞1 + ε̃ ∀ν1 > ν̃1 and f(xν2) > f∞2 − ε̃ ∀ν2 > ν̃2.

Moreover, since
∑+∞

k=0 εk < +∞, there exists ν̃3 ∈ IN such that
∑+∞

k=ν̃3
εk < ε̃. Now, choose an

integer ν̄1 such that ν̄1 ≥ max{ν̃1, ν̃2, ν̃3}. Then, by virtue of (2.5), we can write

f(xν1) < f(xν̄1) + 2
ν1−1∑

i=ν̄1

εi < f∞1 + 3ε̃ = f∞2 − ε̃ ∀ν1 > ν̄1.

This is a contradiction, and hence (f(xk)) has at the most one cluster point.
With this result in hand, we infer from (2.4) that

lim
k→+∞

c−1
k ‖xk − xk+1‖2 = 0,

which in turn, since ck ≥ c > 0, implies that lim
k→+∞

c−1
k ‖xk − xk+1‖ = 0.

Now let’s consider two subsequences (xkν ) and (wkν ) of (xk) and (wk) (we will use the same
notation for the index even if it needs extracting other subsequences) converging respectively
to x∞ and w∞. By passing to the limit in the following relations

c−1
kν

(xkν
− xkν+1) + wkν

∈ ∂εkν
g(xkν+1) and wkν

∈ ∂εkν
h(xkν

)

and taking into account the fact that the multi-valued maps ∂(·)f(·) and ∂(·)h(·) are closed on
IR+ × IRn, we obtain

w∞ ∈ ∂g(x∞) and w∞ ∈ ∂h(x∞),

from which we infer that ∂g(x∞) ∩ ∂h(x∞) 6= ∅, in other words that x∞ is a critical point of
g − h and by duality that w∞ is a critical point of h∗ − g∗.
Remark 2.1. It should be noticed that the assumption that (xk) is bounded holds true if, for
example, the function f is inf-compact, namely for each λ the {x ∈ IRn, f(x) ≤ λ} is a compact
set. Indeed, (xk) ⊂ {x; f(x) ≤ f(x0) +

∑+∞
k=0 εk}. Furthermore, it is a well known fact that

the sequence (wk) is bounded if, for instance, xk ∈ int(domh).
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Example. We consider the problem of maximizing a convex lower semi-continuous function
h on a closed convex set C of IRn. This problem has received a great attention and can be
rewritten as a DC programming problem, namely

− min
x∈IRn

{δC(x)− h(x)}, (2.3)

where δC stands for the indicator function of C.
In this context Algorithm PMDC takes the following form:

xk+1 = projεk

C (xk + ckwk), where wk ∈ ∂h(xk),

more precisely xk+1 solves the approximate variational inequality:

〈c−1
k (xk − xk+1) + wk, u− xk+1〉 ≤ εk ∀u ∈ C.

2.2 An Interesting Special Case
Let us consider now the case where the function h is differentiable. In this context the exact

algorithm (i.e with εk = 0 for all k ∈ IN) reduces to

xk+1 = proxckg(xk + ck∇h(xk)),

which looks like the prox-gradient algorithm and we have the following result:
Proposition 2.1. If the exact algorithm converges to a point x∞ that admits a neighborhood,
V(x∞), in which the function f is convex and the function h is differentiable with a Lipschitz
gradient and if we assume that the sequence (ck) is bounded, then x∞ is a local minimizer of
f .

Proof. From theorem 2.1, we have that lim
k→+∞

‖xk − xk+1‖ = 0 which together with the fact

that ∇h is Lipschitz continuous on V(x∞) yield, for k sufficiently large, that

lim
k→+∞

‖∇h(xk)−∇h(xk+1)‖ = 0.

We also have
c−1
k (xk − xk+1) +∇h(xk) ∈ ∂g(xk+1),

which can be rewritten as

c−1
k (xk − xk+1) +∇h(xk)−∇h(xk+1) ∈ ∂g((xk+1))−∇h(xk+1) ⊂ ∂(g − h)(xk+1),

in other words, for all x ∈ V(x∞)

f(x) ≥ f(xk+1) + 〈c−1
k (xk − xk+1) +∇h(xk)−∇h(xk+1), x− xk+1〉. (2.4)

According to what we saw before, we have

lim
k→+∞

(c−1
k (xk − xk+1) +∇h(xk)−∇h(xk+1)) = 0,

and taking into account the fact that f is lower semi-continuous which ensures that

lim inf
k→+∞

f(xk) ≥ f(x∞),

we obtain the required result by passing to the lower limit in relation (2.7).
Remark 2.2. We would like to point out that the assumption on h is automatically satisfied
if we replace h by its Moreau-Yosida approximate which is C1,1 and since hλ ↑ h as λ ↓ 0, the
function g − hλ ↓ cl(g − h) as λ ↓ 0 and thus approximates the function g − h in the sense of
epi-convergence if h is continuous.

1) Indeed, since gλ ↑ g as λ ↓ 0, by an epi-convergence argument, see for example [5], we have ∂g −∇h ⊂
lim inf

λ→0
(∇gλ −∇h) = lim inf

λ→0
∇(gλ − h) ⊂ lim sup

λ→0
∇(gλ − h) ⊂ ∂(g − h)
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2.3 Numerical Experiments
This part is intended to illustrate, by means of some examples, the convergence of the

algorithm PMDC to local solutions and to show at the same time its robustness and efficiency
with respect to DCA. It is worth mentioning that the source codes of all numerical experiences
are written in Fortran.

First, we focus our attention on problem (2.6) with a polyhedral set C, it is worth mentioning
that in this case the convergence of the algorithm is finite.
Example 1. We are concerned here with the following problem

max
(x,y)∈C

h(x, y),

where h(x, y) = |x| + |y| and C = {(u, v) ∈ IR2; |u| ≤ 1, |v| ≤ 1}. Let us note that h admits
over C four local maxima at (1, 1), (−1, 1), (−1,−1) and (1,−1).

Table 1. Solutions found by PMDC with respect to different initial points
ck = 1 ck = 0.5

(x0, y0) iter (x∗, y∗) iter (x∗, y∗)
(−7, 7) 1 (−1, 1) 1 (-1,1)

(−1, 0.5) 1 (−1, 1) 1 (-1,1)

(7, 7) 1 (1, 1) 1 (1,1)

(0.5,−0.5) 2 (1, 1) 3 (1,1)

(−0.5, 0.5) 1 (−1, 1) 1 (-1,1)

(0.1, 0.1) 1 (1, 1) 2 (1,1)

(0.1,−0.1) 2 (1, 1) 3 (1,1)

(−0.1, 0.1) 1 (−1, 1) 2 (-1,1)

(−0.1,−0.1) 1 (−1,−1) 2 (-1,-1)

Now, let us take up an example solved in [9] by the algorithm DCA. Table 2.3 shows clearly
the robustness and efficiency of PMDC with respect to DCA.
Example 2. The function f is defined by

f(x, y) =
1
2

( −83.75 28.34
28.34 − 48.24

)(
x
y

)
+ (17.72 15.22)

(
x
y

)
,

and the problem under consideration is

min
(x,y)∈C

f(x, y) with C = {(u, v) ∈ IR2; 0 ≤ u ≤ 1, 0 ≤ v ≤ 1},

which amounts to
min

(x,y)∈IR2
{δC(x, y)− (−f(x, y))}.

Over the square C, f admits four local maxima at (0, 0), (0, 1), (1, 1) and (1, 0).

Table 2. Solutions found by PMDC and DCA / to the same initial points

PMDC/ck = 1 PMDC/ck = 0.1 DCA
(x0, y0) iter (x∗, y∗) iter (x∗, y∗) iter (x∗, y∗)
(0.24,0.32) 1 (0,0) 1 (0,0) 9 (0,1)

(0.24,0.31) 1 (0,0) 1 (0,0) 8 (0,0)

(0.32, 0.25) 1 (1, 0) 2 (1, 0) 3 (1, 0)

(0.25, 0.75) 1 (0, 1) 1 (0, 1) 2 (0, 1)

Last but not least, we give a Maximum Eigenvalue numerical application.
Example 3. The maximum eigenvalue of a symmetric positive definite matrix Q can be reached
by solving problem (2.6) with

h(x) = 〈x,Qx〉 and C = {x ∈ IRn; ‖x‖ ≤ 1}.
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Let us define the matrix Q by Q =
(

3/2 1/2
1/2 3/2

)
and note that its eigenvalues, which are local

critical points of (2.6), are given by sol1 = 1 and sol2 = 2.

Table 3. Results given by PMDC with respect to different initial points
iter sol(0.1,0.5) sol(−0,5,0.1) sol(0.5,−0.5)

1 0.439 1.552 1.000

2 1.862 1.774 1.000

3 1.979 1.904 1.000

4 1.992 1.963 1.000

5 1.997 1.986 1.000

6 1.999 1.995 1.000

Conclusion. This paper is aimed at studying the convergence properties of an approximate
proximal point algorithm for minimizing DC functions. It is worth mentioning that if εk =
0 ∀k ∈ IN , the approximate algorithm reduces to the exact one by Sun et al, and in this case
the presented analysis provides an alternative and elementary proof of their convergence result
whose proof is not self-contained and based on the composition of multi-valued maps. A full
numerical evaluation of our results exceeds the scope of this paper. However, we gave some
numerical experiments which proved the convergence of the algorithm PMDC to local solutions
and clearly showed its robustness and efficiency.

Our further developments will be consecrated to analyzing the bundle method as suggested
by one of the two referees, to developing a quasi Newton-PPA, to comparing its robustness and
performance to the bundle method and DCA, and also to globalizing the PMDC by combining
this method with global techniques (branch-and-bound ...) in a deeper way.
Acknowledgment. The authors thank the two anonymous referees for their careful reading of
the paper and especially the one who suggested to provide numerical experiments. This paves
the way for interesting theoretical questions.

References
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d’état Université de Grenoble, France (1972).

[3] D.T. Pham and E.B. Souad, Algorithms for solving a class of nonconvex optimization problems:

Methods of subgradient, Fermat days 85, Mathematics for optimization, Elsevier, North Holland,

(1986), 249-270.

[4] R.T. Rockafellar, Monotone operator and the proximal point algorithm, SIAM J. Control. Opt.,

14:5 (1976), 877-898.

[5] R.T. Rockafellar and R. Wets, Variational Analysis, Springer, Berlin, 1988.

[6] Wen-yu Sun, Raimundo J.B. Sampaio, M.A.B. Candido, Proximal point algorithm for minimiza-

tion of DC function, Journal of computational Mathematics, 21:4 (2003), 451-462.

[7] J.F. Toland, Duality in non convex optimization, J. of Mathematical Analysis and Applications,

66 (1978), 399-415.

[8] K.C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Math-

ematical Programming, 46 (1990), 105-122.

[9] F.C. Akoa, Approches de points intérieurs et de la programmation DC en optimisation non con-
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