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Abstract

This paper provides an analysis of the rotational form of the pressure-correction meth-
ods by spectral approximations for the unsteady Stokes equations. Error estimates in finite
time for the fully discrete case are given. Numerical experiences using both spectral and
spectral element methods are carried out to confirm the theoretical results.
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1. Introduction

Efficient solution of the Stokes equations is dependent upon the availability of fast solvers for
the pressure operator, as the pressure characteristic propagation speed is infinite for unsteady
incompressible flow. Generally, there are two principal ways to discretize the unsteady Stokes
equations in time. One way is to keep the velocity and the pressure coupled, and at each
time step it needs to solve the generalized Stokes problem which is the most computationally
expensive. A common technique for solving the algebraic system, stemming from discretization
of the Stokes equations, is the Uzawa algorithm. An Uzawa algorithm uses block Gaussian
elimination and back substitution for the pressure and the velocity yielding two positive definite
symmetric systems (see e.g. [19] and the references therein). This decoupling procedure has
been proven to be attractive than a direct algorithm. However the classical Uzawa algorithm
suffers from expensive solve of the pressure system as the pressure matrix involves the inverses
of the Helmholtz systems. This disadvantage could be overcome by using an additional splitting
technique. This approach has a common foundation with traditional splitting approaches which
leads to a Poisson equation for the pressure except that, in the former case, the splitting is
effected in the discrete form of the equations. Such an approach was analyzed and applied to
the various computations in the papers of Perot [21], Couzy et al. [9] and Fischer [11], but
no rigorous error estimate is available. The disadvantage of the Uzawa-based algorithm is that
a discrete form of the Ladyshenskaya-Brezzi-Babuška condition(LBB condition, [5]) must be
satisfied for obtaining the unique discrete solution. This means that for a high-order spectral
approximation, the degree of approximation for the pressure must be taken two degrees lower
than that for the velocity [20]. It is the so called PN ×PN−2 method. There exist some methods
that make use other space pairs than PN ×PN−2, we refer to [6] for detailed description of these
methods.

Another way to discretize the continuous unsteady Stokes equations is provided by the class
of projection methods. This class of approaches has been introduced by Chorin [7, 8] and
Temam [28]. They are based on a particular time-discretization of the equations governing
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viscous incompressible flows, in which the viscosity and the incompressibility of the fluid are
dealt within two separate steps. By doing that, the original problem is reformulated into two
new and simpler problems. The theory of saddle-point problems is then no longer needed, that
is to say, the LBB condition is not needed; as a consequence, the degree of approximation for
the velocity and the pressure can be taken the same, yielding a simpler-to-implement numerical
scheme.

The projection algorithm can be interpreted as a predictor-corrector strategy, which can be
essentially classed into two families: classical fractional step methods and pressure-correction
methods. The classical fractional step methods have only first order convergence rate due to
the fact that it is basically an artificial compressibility technique [24, 25]. Different choices of
the pressure boundary condition have been discussed to improve the efficiency of this kind of
methods (see [17] for instance). The pressure-correction methods consist of two time substeps:
first we make the pressure explicit in the convection-diffusion step, and then compute its incre-
ment (correction) in the projection step. Second-order Error estimates in the L2-norm for the
velocity have been proved in the several papers [10, 26, 15, 27] for different cases. However the
pressure accuracy in a standard pressure-correction scheme can be at most of first-order in the
L2-norm, as shown by Strikwerda and Lee in [27]. In 1996, Timmermans, Minnev and Van De
Vosse introduced in [30] a modified pressure-correction scheme. They analyzed this approach
by means of an analytical test solution in the case of spectral element spatial discretization,
and showed that the L2 errors of both the velocity and the gradient of the pressure are of
second-order, but the computed maximum pressure failed to converge due to the presence of
the corners. Recently, Guermond and Shen [14] reviewed this modified version of the pressure-
correction schemes. They termed it as the rotational form of the pressure-correction schemes,
and showed that the pressure approximation in the L2-norm is indeed 3

2 -order accurate. A
detail proof was given in the semi-discrete case.

The main task of the present paper is to provide a rigorous stability and error analysis
for the rotational form of the pressure-correction schemes in the fully discrete case using a
Galerkin spectral approximation. In order to get the optimal error estimates, we still assume
that the approximate velocity and pressure space pair satisfies the LBB condition. We prove
that the velocity error in time and in space is O(δt2 +N−m) for the l2(L2(Ω)2)-norm and that

the pressure error is O(δt
3

2 +N−m) for the l2(L2(Ω))-norm, where N is the polynomial degree
used to approximate the velocity, δt is the time step, m is the regularity of the exact pressure
solution. Our numerical experiences are in good agreement with the above theoretical results
for the velocity, but the computed pressure appears to have higher order accuracy in time than
O(δt

3

2 ). Particularly our numerical results show that the pressure accuracy is sensible to the
kinematics viscosity in the case of singular computational domain. In the case of square domain,
for the L2(Ω) norm at a given time T ≥ 1, the pressure accuracy is less than 2-order. But in
the case of smooth domain, the pressure accuracy is fully 2-order. This conforms to the results
given in [30] and [14].

We should emphasize that, in order to gain maximal simplicity in the implementation, our
numerical experiences use spectral and spectral element approximations of PN ×PN version (we
refer to [14] for the PN ×PN−2 version). As already indicated in [14], there are larger pressure
errors at the domain corners for the projection PN × PN−2 spectral methods. Our numerical
results show that these larger pressure errors will be further enlarged if the PN × PN version
is used, and the maximum pressure error fails to converge due to the presence of the corners,
specially for very small δt. However we will show that this failure can be efficiently overcome
by a simple filtering procedure, which consists in projecting the computed pressure into PN−2

space at each time step. This procedure is, in some sense, equivalent to the PN ×PN−2 version,
but is easier to implement. We refer it to as the filtered PN × PN version.

The outline of this paper is as follow: in Section 2 we recall the basic steps of projection-type
methods, and define their spectral approximation formulations. In section 3 we provide rigorous



Rotational Projection Spectral Methods 287

error estimations to the fully discrete rotational projection spectral methods. Numerical tests
are given in Section 4. Finally we give some concluding remarks in section 5.

2. Rotational Projection Spectral Methods for the Unsteady Stokes

Problem

2.1 Notations and hypotheses

Let Ω be an open connected bounded domain of IR2 with a piecewise smooth boundary ∂Ω.
More specifically, the domain must be piecewise smooth enough so that Cattabriga’s regularity
estimates for the Stokes problem hold [29]. In this paper, W s,p(Ω) denotes the real Sobolev
spaces, 0 ≤ s ≤ ∞, 0 ≤ p ≤ ∞, equipped with the norm ‖ · ‖s,p. The completion with respect
to the ‖ · ‖s,p norm of the space of the smooth functions compactly supported in Ω is denoted
by W s,p

0 (Ω). The Hilbert spaces W s,2(Ω) is denoted by Hs(Ω), the related norm is denoted by
‖ · ‖s. In particular, the norm and inner product of L2(Ω), i.e. H0(Ω), are denoted by ‖ · ‖ and
(·, ·) respectively. We also introduce the following Hilbert spaces:

X = H1
0 (Ω)2 = {v ∈ H1(Ω)2, v|∂Ω = 0}, V = {v ∈ X,∇ · v = 0},

L2
0(Ω) = {q ∈ L2(Ω),

∫

Ω

q = 0}, M = L2
0(Ω) ∩H1(Ω),

XN = X ∩ PN (Ω)2, MN = M ∩ PN−2(Ω), YN = PN (Ω)2,

HN = {vN ∈ YN ; (vN ,∇qN ) = 0, ∀qN ∈MN},

VN = {vN ∈ XN ; (∇ · vN , qN ) = (vN ,∇qN ) = 0, ∀qN ∈ MN}.

where PN (Ω) is the space of polynomials of degree less or equal than N with respect to each
variable in Ω. It is known [20] that the space pair XN ×MN satisfies the LBB condition:

inf
qN∈MN

sup
vN∈XN

−(∇ · vN , qN )

‖vN‖1‖qN‖
≥ βN > 0, (1)

where βN ∼ N−1/2.
The following projection operators are useful for the error estimations:
PHN

: YN −→ HN as the L2− orthogonal projector is defined by: given ϕN ∈ YN , PHN
ϕN ∈

HN , s.t.
(ϕN − PHN

ϕN , ψN ) = 0, ∀ψN ∈ HN .

ΠN : L2(Ω) −→ MN as the L2− orthogonal projector is defined by: given ϕ ∈ L2(Ω),ΠNϕ ∈
MN , s.t.

(ϕ− ΠNϕ, ψN ) = 0, ∀ψN ∈ MN .

Π0
N : V −→ V ∩PN (Ω)2 as the norm |·|1 orthogonal projector is defined by: given ϕ ∈ V,Π0

Nϕ ∈
V ∩ PN (Ω)2, s.t.

(∇(ϕ− Π0
Nϕ),∇ψN ) = 0, ∀ψN ∈ V ∩ PN (Ω)2.

Π1
N : H1(Ω) −→ MN as the norm ‖ · ‖1 orthogonal projector is defined by: given ϕ ∈

H1(Ω),Π1
Nϕ ∈MN , s.t.

(

∇(ϕ− Π1
Nϕ),∇ψN )

)

+ (ϕ− Π1
Nϕ, ψN ) = 0, ∀ψN ∈MN .

Then we have the following properties

‖PHN
ϕN‖ ≤ ‖ϕN‖, ∀ϕN ∈ YN ;

‖ΠNϕ‖ ≤ ‖ϕ‖, ∀ϕ ∈ L2(Ω);

‖Π1
Nϕ‖1 ≤ ‖ϕ‖1, ∀ϕ ∈ H1(Ω);
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|ϕ− Π0
Nϕ|1 +N‖ϕ− Π0

Nϕ‖ ≤ cN−m‖ϕ‖m+1, ∀ϕ ∈ V ;

|ϕ− Π1
Nϕ|1 +N‖ϕ− Π1

Nϕ‖ ≤ cN−m‖ϕ‖m+1, ∀ϕ ∈ H1(Ω),

where and hereafter in this section, c denotes a generic positive constant.
Finally, we introduce the discrete inverse Stokes operator SN : YN −→ VN : for all vN ∈

YN , (SNvN , rN ) ∈ XN ×MN is the solution of the following problem
{

(∇SNvN ,∇wN ) − (∇ · wN , rN ) = (vN , wN ), ∀wN ∈ XN ,
(∇ · SNvN , qN ) = 0, ∀qN ∈ MN .

(2)

Note that the second equation of (2) means SNvN ∈ VN , therefore the operator SN is well
defined. We assume that ∂Ω is sufficiently piecewise smooth such that the following stability
property holds:

‖∇rN‖ ≤ c‖vN‖, ∀vN ∈ YN . (3)

Remark 2.1. It is known that the stability property (3) holds in the frame of finite element
methods(see e.g. [15]). In the frame of spectral methods, this stability assumption has not been
proven theoretically. However, (3) has been verified by a number of numerical experiences.

The following symmetry can be easily obtained from (2)

(ϕN , SNψN ) = (∇SNϕN ,∇SNψN ) = (ψN , SNϕN ), ∀ϕN , ψN ∈ YN . (4)

Lemma 2.1. The linear form vN 7−→ (vN , SNvN )1/2 for vN ∈ YN induces a semi-norm on
VN , which we denote by ‖vN‖? = (vN , SNvN )1/2. Then we have |SNvN |1 = ‖vN‖?, and

‖SNvN‖1 ≤ c‖vN‖? ≤ c‖vN‖−1. (5)

Lemma 2.2. For all vN ∈ HN , wN ∈ XN , we have

(∇SNvN ,∇wN ) ≥ (PHN
wN , vN ) − c‖vN‖‖wN − PHN

wN‖. (6)

Furthermore, for all 0 < α < 1, the following properties of SN hold

(∇SNwN ,∇wN ) ≥ (1 − α)‖wN‖2 − cα‖wN − PHN
wN‖2, (7)

(∇SNPHN
wN ,∇wN ) ≥ (1 − α)‖PHN

wN‖2 − cα‖wN − PHN
wN‖2. (8)

Proof. Using (2) and (3), we have

(∇SNvN ,∇wN ) = (vN , wN ) + (∇ · wN , rN )
= (vN , wN ) − (wN ,∇rN )
= (PHN

wN , vN ) − (wN − PHN
wN ,∇rN )

≥ (PHN
wN , vN ) − ‖wN − PHN

wN‖‖∇rN‖
≥ (PHN

wN , vN ) − c‖vN‖‖wN − PHN
wN‖,

which gives (6). Taking vN = PHN
wN in (6) and using the Young inequality, we obtain (8).

Finally, let vN = wN in (2), then

(∇SNwN ,∇wN ) = (wN , wN ) + (∇ · wN , rN )
= (wN , wN ) − (wN ,∇rN )
= ‖wN‖2 − (wN − PHN

wN ,∇rN )
≥ ‖wN‖2 − ‖wN − PHN

wN‖‖∇rN‖
≥ ‖wN‖2 − c‖wN‖‖wN − PHN

wN‖
≥ (1 − α)‖wN‖2 − cα‖wN − PHN

wN‖2,

it is the result (7).

2.2 The rotational pressure-correction projection scheme



Rotational Projection Spectral Methods 289

We consider the following time-dependent Stokes equations in which homogeneous Dirichlet
condition has been assumed for simplicity. For a given body force f (possibly dependent on
time ) and a given divergence-free initial velocity field u0, find a velocity field u and a pressure
field p so that at t = 0, u = u0, and at all subsequent time











∂u

∂t
− ν∇2u+ ∇p = f, in Ω × (0,T],

∇ · u = 0, in Ω × (0,T],
u = 0, in ∂Ω × (0,T].

(9)

We now recall the pressure-correction algorithm using BF2 [14] to march in time for solving
the problem (9). The first sub-step accounting for viscous diffusion is







3ũk+1 − 4uk + uk−1

2δt
− ν∇2ũk+1 + ∇pk = f(tk+1),

ũk+1|∂Ω = 0,
(10)

and the second sub-step accounting for incompressibility is










3uk+1 − 3ũk+1

2δt
−∇(pk+1 − pk) = 0,

∇ · uk+1 = 0,
uk+1 · n|∂Ω = 0.

(11)

This method is called as the pressure-correction scheme in standard form. Though it is second
order accurate on the velocity in the L2-norm, it is plagued by a numerical boundary layer
that prevent it to be fully second order in the H1-norm of the velocity and in the L2-norm of
the pressure. A modified scheme with a divergence correction has been proposed in [30], which
was then called in [14] as the pressure-correction scheme in rotational form. In this scheme the
second step (11) is replaced by











3uk+1 − 3ũk+1

2δt
+ ∇(pk+1 − pk + ν∇ · ũk+1) = 0,

∇ · uk+1 = 0,
uk+1 · n|∂Ω = 0.

(12)

Numerical experiences have shown that the scheme in rotational form (10) and (12) provides
better approximations for the pressure. This scheme was reviewed by Guermond and Shen,
who gave a detailed error analysis in its semi-discrete form [14].

2.3 Full discretization

Now we consider the full discretization of the scheme in rotational form (10) and (12). For
a fixed finite time T > 0, we introduce a partition of the time interval [0, T ], tk = kδt for
0 ≤ k ≤ K, where δt = T/K. We are interested in defining a fully discrete rotational form of
the pressure-correction algorithm for k ≤ K; and define two sequences of approximate velocities
ũk

N ∈ XN , uk
N ∈ YN and one sequence of approximate pressures pk

N ∈ MN such that

(3ũk+1
N − 4uk

N + uk−1
N

2δt
, vN

)

+ ν(∇ũk+1
N ,∇vN ) − (pk

N ,∇ · vN )

= (fk+1, vN ), ∀vN ∈ XN ,
(13)

and






(3uk+1
N − 3ũk+1

N

2δt
, vN

)

+
(

∇(pk+1
N − pk

N + νΠN∇ · ũk+1
N ), vN

)

= 0, ∀vN ∈ YN ,

(uk+1
N ,∇qN ) = 0, ∀qN ∈ MN .

(14)

The step (14) is a realization of the projection uk+1
N = PHN

ũk+1
N . In the implementation, we

take vN = ∇qN in the first equation of (14), so that we can obtain a discrete Poisson equation
for the pressure increment pk+1

N − pk
N + νΠN∇ · ũk+1

N .
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3. The Error Analysis

3.1 Preliminaries

Before going through the details of the error analysis, we introduce some technical tools.
For any sequence w = {w0, w1, ..., wK} in Sobolev space W , w is equipped with norm

‖w‖l2(W ) = (δt

K
∑

k=0

‖wk‖2
W )1/2.

We set
δtw

k = wk − wk−1, δttw
k = δt(δtw

k),

δtttw
k = δt(δttw

k), Dtw
k+1 =

3wk+1 − 4wk + wk−1

2
.

We can easily derive the following useful algebraic identities:

2(wk+1, wk+1 − wk) = |wk+1|2 + |wk+1 − wk|2 − |wk |2, (15)

2(wk+1, 3wk+1 − 4wk + wk−1)
= |wk+1|2 + |2wk+1 − wk|2 + |δttw

k+1|2 − |wk|2 − |2wk − wk−1|2.
(16)

We denote uk = u(tk), pk = p(tk), and

ek
N = uk

N − Π0
Nu

k, ẽk
N = ũk

N − Π0
Nu

k,
εk

N = pk
N − Π1

Np
k, ψk

N = pk
N − Π1

Np
k+1.

(17)

3.2 Error estimations

We assume that the couple exact solution (u, p) of the Stokes equations (9) is smooth enough
in time and in space. For simplicity we set ν = 1 and assume that the projection algorithm is
initialized so that

max(‖e0N‖, ‖e1N‖, ‖ẽ0N‖1, ‖ẽ
1
N‖1) ≤ cδt2, max(‖ε0N‖, ‖ε1N‖) ≤ c, (18)

where and hereafter in this paper, c denotes a generic positive constant, which may depend on
the couple exact solution.
Lemma 3.1. Under the initial hypotheses (18), for all 1 ≤ n ≤ K, we have the following
estimates,

n
∑

k=1

‖δte
k+1
N − δtẽ

k+1
N ‖2 ≤ cδt2

(

δt2 +N−2m
)

, (19)

‖ΠN∇ · ẽn+1
N ‖ ≤ cδt1/2

(

δt+N−m
)

, (20)

‖en+1
N − ẽn+1

N ‖ ≤ cδt(δt+N−m). (21)

Proof. Step 1. The solution of problem (9) satisfies at time tk+1

{

(uk+1
t , vN ) + (∇uk+1,∇vN ) − (∇ · vN , p

k+1) = (fk+1, vN ), ∀vN ∈ XN ,
(∇ · uk+1, qN ) = 0, ∀qN ∈ MN .

(22)

Then we have










(3Π0
Nu

k+1 − 4Π0
Nu

k + Π0
Nu

k−1

2δt
, vN

)

+ (∇Π0
Nu

k+1,∇vN ) − (Π1
Np

k+1,∇ · vN )

= (fk+1 −Rk+1, vN ) − (Qk+1,∇ · vN ), ∀vN ∈ XN ,
(∇ · Π0

Nu
k+1, qN ) = −(Π0

Nu
k+1,∇qN ) = 0, ∀qN ∈MN ,

(23)

where Rk+1 and Qk+1 are defined by

Rk+1 = uk+1
t −

3Π0
Nu

k+1 − 4Π0
Nu

k + Π0
Nu

k−1

2δt
,



Rotational Projection Spectral Methods 291

Qk+1 = Π1
Np

k+1 − pk+1,

which can be controlled by
‖Rk+1‖ ≤ c(δt2 +N−(m+1)),

and
‖Qk+1‖ ≤ cN−m.

By subtracting the equation (13) from (23), and adding null terms Π0
Nu

k+1 − Π0
Nu

k+1,
Π1

Np
k+1 − Π1

Np
k+1 − ΠN (∇ · Π0

Nu
k+1) to (14), we derive the equations that control the errors

(3ẽk+1
N − 4ek

N + ek−1
N

2δt
, vN

)

+ (∇ẽk+1
N ,∇vN ) − (ψk

N ,∇ · vN )

= (Rk+1, vN ) + (Qk+1,∇ · vN ), ∀vN ∈ XN ,
(24)

and






(3ek+1
N − 3ẽk+1

N

2δt
, vN

)

+
(

∇(εk+1
N − ψk

N + ΠN∇ · ẽk+1
N ), vN

)

= 0, ∀vN ∈ YN ,

(ek+1
N ,∇qN ) = 0, ∀qN ∈ MN .

(25)

Furthermore, we can derive the equations that control the time increments of the errors

(3δtẽ
k+1
N − 4δte

k
N + δte

k−1
N

2δt
, vN

)

+ (∇δtẽ
k+1
N ,∇vN ) + (∇δtψ

k
N , vN )

= (δtR
k+1, vN ) + (δtQ

k+1,∇ · vN ), ∀vN ∈ XN ,
(26)

and














3

2δt
(δte

k+1
N , vN ) +

(

∇(δtε
k+1
N + ΠN∇ · ẽk+1

N ), vN

)

=
3

2δt
(δtẽ

k+1
N , vN ) +

(

∇(δtψ
k
N + ΠN∇ · ẽk

N), vN

)

, ∀vN ∈ YN ,

(δte
k+1
N ,∇qN ) = 0, ∀qN ∈ MN .

(27)

Step 2. We take vN = 4δtδtẽ
k+1
N ∈ XN in (26) to get

2(δtẽ
k+1
N , 3δtẽ

k+1
N − 4δte

k
N + δte

k−1
N ) + 4δt(∇δtẽ

k+1
N ,∇δtẽ

k+1
N ) + 4δt(δtẽ

k+1
N ,∇δtψ

k
N )

= 4δt(δtẽ
k+1
N , δtR

k+1) + 4δt(∇ · δtẽ
k+1
N , δtQ

k+1).

We use a technique similar to that used in [14] to treat the first term which is denoted by I ,
then

I = 6(δtẽ
k+1
N , δtẽ

k+1
N − δte

k+1
N ) + 2(δte

k+1
N , 3δte

k+1
N − 4δte

k
N + δte

k−1
N )

+2(δtẽ
k+1
N − δte

k+1
N , 3δte

k+1
N − 4δte

k
N + δte

k−1
N ).

(28)

Applying the identities (15)-(16) to the first two terms of (28), which are denoted by I1 and I2
respectively, leads to

I1 = 3‖δtẽ
k+1
N ‖2 + 3‖δte

k+1
N − δtẽ

k+1
N ‖2 − 3‖δte

k+1
N ‖2,

I2 = ‖δte
k+1
N ‖2 + ‖2δte

k+1
N − δte

k
N‖2 + ‖δttte

k+1
N ‖2 − ‖δte

k
N‖2 − ‖2δte

k
N − δte

k−1
N ‖2.

Noting the fact that 3δte
k+1
N − 4δte

k
N + δte

k−1
N belongs to HN and owing to (27), we find that

the last term I3 of (28) is vanishing:

3

2δt
I3 = 2

(

∇δt(ε
k+1
N − ψk

N ) + ∇(ΠN (∇ · δtẽ
k+1
N )), 3δte

k+1
N − 4δte

k
N + δte

k−1
N

)

= 0.

Combining all above results, we have

3‖δtẽ
k+1
N ‖2 − 3‖δte

k+1
N ‖2 + 3‖δte

k+1
N − δtẽ

k+1
N ‖2 + ‖δte

k+1
N ‖2 + ‖2δte

k+1
N − δte

k
N‖2

−‖δte
k
N‖2 − ‖2δte

k
N − δte

k−1
N ‖2 + ‖δttte

k+1
N ‖2 + 4δt‖∇δtẽ

k+1
N ‖2 + 4δt(δtẽ

k+1
N ,∇δtψ

k
N )

= 4δt(δtẽ
k+1
N , δtR

k+1) + 4δt(∇ · δtẽ
k+1
N , δtQ

k+1)

≤ c1δt‖δtẽ
k+1
N ‖2 + c(c1)δt‖δtR

k+1‖2 + c2δt‖∇ · δtẽ
k+1‖2 + c(c2)δt‖δtQ

k+1‖2

≤ c1c̃δt‖∇δtẽ
k+1
N ‖2 + c2δt‖∇ · δtẽ

k+1
N ‖2 + cδt‖δtR

k+1‖2 + cδt‖δtQ
k+1‖2.

(29)
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Where c̃ is a constant such that ‖v‖2 ≤ c̃‖∇v‖2 and the positive constants c1, c2 will be
determined in the later.
Step 3. By taking vN in (27) to be 2δtδte

k+1
N , 2δtδtẽ

k+1
N , 4δt2

3 ∇(δtε
k+1
N + ΠN∇ · ẽk+1

N ),
4δt2

3 ∇(δtψ
k
N + ΠN∇ · ẽk

N ) respectively, and using the second equation of (27), we obtain the
following equalities:

3‖δte
k+1
N ‖2 = 3(δtẽ

k+1
N , δte

k+1
N ),

3(δte
k+1
N , δtẽ

k+1
N ) + 2δt

(

δtẽ
k+1
N ,∇(δtε

k+1
N + ΠN∇ · ẽk+1

N )
)

= 3‖δtẽ
k+1
N ‖2 + 2δt

(

δtẽ
k+1
N ,∇(δtψ

k
N + ΠN∇ · ẽk

N)
)

,

4δt2

3
‖∇(δtε

k+1
N + ΠN∇ · ẽk+1

N )‖2

= 2δt
(

δtẽ
k+1
N ,∇(δtε

k+1
N + ΠN∇ · ẽk+1

N )
)

+
4δt2

3

(

∇(δtε
k+1
N + ΠN∇ · ẽk+1

N ),∇(δtψ
k
N + ΠN∇ · ẽk

N )
)

,

4δt2

3

(

∇(δtε
k+1
N + ΠN∇ · ẽk+1

N ),∇(δtψ
k
N + ΠN∇ · ẽk

N )
)

= 2δt
(

δtẽ
k+1
N ,∇(δtψ

k
N + ΠN∇ · ẽk

N )
)

+
4δt2

3
‖∇(δtψ

k
N + ΠN∇ · ẽk

N )‖2.

By summing up the above relations, we derive

3‖δte
k+1
N ‖2 +

4δt2

3
‖∇(δtε

k+1
N + ΠN∇ · ẽk+1

N )‖2

= 3‖δtẽ
k+1
N ‖2 + 4δt

(

δtẽ
k+1
N ,∇(δtψ

k
N + ΠN∇ · ẽk

N )
)

+
4δt2

3
‖∇(δtψ

k
N + ΠN∇ · ẽk

N )‖2.
(30)

We now give a bound for the last two terms in the right-hand side of (30). First, the term
4δt(δtẽ

k+1
N ,∇δtψ

k
N ) cancels out with the same term in (29). Using relation (15), we derive

4δt(δtẽ
k+1
N ,∇ΠN∇ · ẽk

N)

= −4δt(∇ · (ẽk+1
N − ẽk

N ),ΠN∇ · ẽk
N)

= −4δt(ΠN∇ · ẽk+1
N − ΠN∇ · ẽk

N ,ΠN∇ · ẽk
N)

= 2δt(‖ΠN∇ · ẽk
N‖2 − ‖ΠN∇ · ẽk+1

N ‖2 + ‖ΠN∇ · δtẽ
k+1
N ‖2)

≤ 2δt(‖ΠN∇ · ẽk
N‖2 − ‖ΠN∇ · ẽk+1

N ‖2 + ‖∇ · δtẽ
k+1
N ‖2).

(31)

From the well-known relation

‖∇v‖2 = ‖∇ · v‖2 + ‖∇× v‖2, ∀v ∈ H1
0 (Ω)2, (32)

we deduce

‖∇ · δtẽ
k+1
N ‖2 ≤ ‖∇δtẽ

k+1
N ‖2. (33)

Noting that ψk
N = εk

N − δtΠ
1
Np

k+1, we can bound ‖∇(δtψ
k
N + ΠN∇ · ẽk

N )‖2 by

‖∇(δtψ
k
N + ΠN∇ · ẽk

N )‖2

= ‖∇(δtε
k
N + ΠN∇ · ẽk

N) −∇δttΠ
1
Np

k+1‖2

≤
(

‖∇(δtε
k
N + ΠN∇ · ẽk

N )‖ + cδt2
)2

≤ cδt4 + 2cδt2‖∇(δtε
k
N + ΠN∇ · ẽk

N )‖ + ‖∇(δtε
k
N + ΠN∇ · ẽk

N)‖2

≤ cδt4 + cδt
(

δt2 + ‖∇(δtε
k
N + ΠN∇ · ẽk

N)‖2
)

+ ‖∇(δtε
k
N + ΠN∇ · ẽk

N )‖2

≤ cδt3 + (1 + cδt)‖∇(δtε
k
N + ΠN∇ · ẽk

N )‖2.

(34)
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We combine the above estimations and choose c1, c2 in (29) to satisfy c1c̃ + c2 = 2, then we
obtain

3‖δte
k+1
N − δtẽ

k+1
N ‖2 + ‖δte

k+1
N ‖2 + ‖2δte

k+1
N − δte

k
N‖2 + 2δt‖ΠN∇ · ẽk+1

N ‖2

+
4

3
δt2‖∇(δtε

k+1
N + ΠN∇ · ẽk+1

N )‖2

≤ ‖δte
k
N‖2 + ‖2δte

k
N − δte

k−1
N ‖2 + 2δt‖ΠN∇ · ẽk

N‖2 + cδt5

+
4

3
δt2(1 + cδt)‖∇(δtε

k
N + ΠN∇ · ẽk

N)‖2 + cδt‖δtR
k+1‖2 + cδt‖δtQ

k+1‖2.

(35)

Taking the sum of (35) for k = 1 to n gives

n
∑

k=1

‖δte
k+1
N − δtẽ

k+1
N ‖2 + ‖δte

n+1
N ‖2 + ‖2δte

n+1
N − δte

n
N‖2 + δt‖ΠN∇ · ẽn+1

N ‖2

+δt2‖∇(δtε
n+1
N + ΠN∇ · ẽn+1

N )‖2

≤ c
(

δt4 + ‖δte
1
N‖2 + ‖2δte

1
N − δte

0
N‖2 + δt‖ΠN∇ · ẽ1N‖2

+δt2‖∇(δtε
1
N + ΠN∇ · ẽ1N )‖2 + δt3

n
∑

k=1

‖∇(δtε
k
N + ΠN∇ · ẽk

N)‖2

+δt
n
∑

k=1

‖δtR
k+1‖2 + δt

n
∑

k=1

‖δtQ
k+1‖2

)

.

(36)

By using the discrete Gronwall lemma to the above inequality and taking into account the
initial hypotheses, we obtain the first two desired results

n
∑

k=1

‖δte
k+1
N − δtẽ

k+1
N ‖2 + δt2‖∇(δtε

n+1
N + ΠN∇ · ẽn+1

N )‖2 + δt‖ΠN∇ · ẽn+1
N ‖2

≤ cδt2
(

δt2 +N−2m
)

.
(37)

To derive the estimate on ek+1
N − ẽk+1

N , we use the first equation of (25) with vN = ek+1
N − ẽk+1

N .
Noting ψk

N = εk
N − δtΠ

1
Np

k+1 and above estimates, then we have

‖en+1
N − ẽn+1

N ‖ ≤ cδt‖∇(εn+1
N − ψn

N + ΠN∇ · ẽn+1
N )‖

≤ cδt‖∇(δtε
n+1
N + ΠN∇ · ẽn+1

N )‖ + δt‖∇δtΠ
1
Np

n+1‖
≤ cδt(δt+N−m).

(38)

Theorem 3.1. Under the initial hypotheses (18), the solution of the projection scheme (13)-
(14) satisfies:

‖u− uN‖l2(L2(Ω)2) + ‖u− ũN‖l2(L2(Ω)2) ≤ c(δt2 +N−m). (39)

Proof. From (24)-(25), we derive

(3ek+1
N − 4ek

N + ek−1
N

2δt
, vN

)

+ (∇ẽk+1
N ,∇vN ) +

(

∇(εk+1
N + ΠN∇ · ẽk+1

N ), vN

)

= (Rk+1, vN ) + (Qk+1,∇ · vN ), ∀vN ∈ XN .
(40)

Taking vN = 4δtSNe
k+1
N in (40), we get

2(3ek+1
N −4ek

N +ek−1
N , SNe

k+1
N )+4δt

(

∇ẽk+1
N ,∇(SNe

k+1
N )

)

+4δt
(

∇(εk+1
N +ΠN∇· ẽk+1

N ), SNe
k+1
N

)

= 4δt(Rk+1, SNe
k+1
N ) + 4δt(Qk+1,∇ · SNe

k+1
N ).

From the definition of SN , we have,

4δt
(

∇(εk+1
N + ΠN∇ · ẽk+1

N ), SNe
k+1
N

)

= 0.

By the property (4), we derive the following identity which is similar to (16):

2(3ek+1
N −4ek

N +ek−1
N , SNe

k+1
N ) = ‖ek+1

N ‖2
?+‖2ek+1

N −ek
N‖2

?+‖δtte
k+1
N ‖2

?−‖ek
N‖2

?−‖2ek
N−ek−1

N ‖2
?.
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Hence

‖ek+1
N ‖2

? + ‖2ek+1
N − ek

N‖2
? + ‖δtte

k+1
N ‖2

? + 4δt(∇ẽk+1
N ,∇

(

SNe
k+1
N )

)

≤ ‖ek
N‖2

? + ‖2ek
N − ek−1

N ‖2
? + 4δt(SNe

k+1
N , Rk+1) + 4δt(∇ · SNe

k+1
N , Qk+1).

Using the identity ek+1
N = PHN

ẽk+1
N and (8) with α = 1

4 , we derive

‖ek+1
N ‖2

? + ‖2ek+1
N − ek

N‖2
? + ‖δtte

k+1
N ‖2

? + 3δt‖ek+1
N ‖2

≤ ‖ek
N‖2

? + ‖2ek
N − ek−1

N ‖2
? + cδt‖ek+1

N − ẽk+1
N ‖2

+4δt(SNe
k+1
N , Rk+1) + 4δt(∇ · SNe

k+1
N , Qk+1).

(41)

The last two terms can be bounded by using (5) :

4δt(SNe
k+1
N , Rk+1) ≤ 4δt‖SNe

k+1
N ‖‖Rk+1‖ ≤

1

2
δt‖ek+1

N ‖2
? + cδt‖Rk+1‖2. (42)

4δt(∇ · SNe
k+1
N , Qk+1) ≤ 4δt‖SNe

k+1
N ‖1‖Q

k+1‖ ≤
1

2
δt‖ek+1

N ‖2
? + cδt‖Qk+1‖2. (43)

Combining (41)-(43) and taking the sum of (41) for k = 1 to n, we have

‖en+1
N ‖2

? + ‖2en+1
N − en

N‖2
? +

n
∑

k=1

‖δtte
k+1
N ‖2

? + δt
n
∑

k=1

‖ek+1
N ‖2

≤ ‖e1N‖2
? + ‖2e1N − e0N‖2

? + cδt
n
∑

k=1

‖ek+1
N − ẽk+1

N ‖2 + δt
n
∑

k=1

‖ek+1
N ‖2

? + c(δt4 +N−2m).

Applying the discrete Gronwall lemma, estimates (38), and the initial hypotheses (18), we get

‖eN‖l2(L2(Ω)2) ≤ c(δt2 +N−m).

Furthermore, thanks to the relations

‖ẽk+1
N ‖ ≤ ‖ek+1

N − ẽk+1
N ‖ + ‖ek+1

N ‖,

and
uk

N − uk = ek
N + Π0

Nu
k − uk, ũk

N − uk = ẽk
N + Π0

Nu
k − uk,

we arrive at the desired result.
Lemma 3.2. Under the hypotheses (18), we have

‖DtẽN‖l2(L2(Ω)2) ≤ cδt
(

δt3/2 +N−m
)

. (44)

Proof. we obtain the following equation from (26)-(27):

(3δtẽ
k+1
N − 4δtẽ

k
N + δtẽ

k−1
N

2δt
, vN

)

+ (∇δtẽ
k+1
N ,∇vN ) + (∇δtγ

k+1
N , vN )

= (δtR
k+1, vN ) + (δtQ

k+1,∇ · vN ), ∀vN ∈ XN ,
(45)

where δtγ
k+1
N represents all the other terms which belong to MN . Taking vN = 4δtSNδtẽ

k+1
N ∈

VN in (45) and repeating the same arguments as in the theorem 3.1 and using the inequality (7),
we obtain

‖δtẽ
k+1
N ‖2

? + ‖2δtẽ
k+1
N − δtẽ

k
N‖2

? + ‖δtttẽ
k+1
N ‖2

? + δt‖δtẽ
k+1
N ‖2

≤ ‖δtẽ
k
N‖2

? + ‖2δtẽ
k
N − δtẽ

k−1
N ‖2

? + cδt‖δtẽ
k+1
N ‖2

?

+cδt‖δtẽ
k+1
N − δte

k+1
N ‖2 + cδt‖δtR

k+1‖2 + cδt‖δtQ
k+1‖2.

(46)

Summing the above relations for k = 1 to n, we have

‖δtẽ
n+1
N ‖2

? + ‖2δtẽ
n+1
N − δtẽ

n
N‖2

? + δt
n
∑

k=1

‖δtẽ
k+1
N ‖2

≤ ‖δtẽ
1
N‖2

? + ‖2δtẽ
1
N − δtẽ

0
N‖2

? + cδt
n
∑

k=1

‖δtẽ
k+1
N ‖2

?

+cδt
n
∑

k=1

‖δtẽ
k+1
N − δte

k+1
N ‖2 + cδt

n
∑

k=1

‖δtR
k+1‖2 + cδt

n
∑

k=1

‖δtQ
k+1‖2.

(47)
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By the discrete Gronwall lemma and the initial hypotheses (18), we have

‖δtẽN‖l2(L2(Ω)2) ≤ cδt(δt3/2 +N−m).

Finally from the relation 2Dtẽ
k+1
N = 3δtẽ

k+1
N − δtẽ

k
N , we derive (44).

Theorem 3.2. Under the hypotheses (18), the solution of the projection scheme (13)-(14)
satisfies:

‖u− ũN‖l2(H1(Ω)2) + βN‖p− pN‖l2(L2(Ω)) ≤ c(δt3/2 +N−m). (48)

Proof. We use the same argument as in [14]. The error equations corresponding to (40)
and (25) can be written as a discrete nonhomogeneous Stokes system for the couple (ẽk+1

N , εk+1
N +

ΠN∇ · ẽk+1
N ) ∈ XN ×MN :

{

(∇ẽk+1
N ,∇vN ) −

(

(εk+1
N + ΠN∇ · ẽk+1

N ),∇ · vN

)

= (hk+1, vN ), ∀vN ∈ XN ,

(∇ · ẽk+1
N , qN ) = (gk+1, qN ), ∀qN ∈ MN ,

(49)

where

hk+1 = Rk+1 −
3ek+1

N − 4ek
N + ek−1

N

2δt
−∇Qk+1,

gk+1 =
2δt

3
∇ · ∇(εk+1 − ψk

N + ΠN∇ · ẽk+1
N ).

Since ek
N = PHN

ẽk
N , we obtain

‖
3ek+1

N − 4ek
N + ek−1

N

2δt
‖ =

1

δt
‖Dte

k+1
N ‖ ≤

1

δt
‖Dtẽ

k+1
N ‖.

Hence, we have

‖hk+1‖−1 ≤ ‖Rk+1‖−1 + ‖
3ek+1

N − 4ek
N + ek−1

N

2δt
‖−1 + ‖∇Qk+1‖−1

≤ ‖Rk+1‖ +
1

δt
‖Dtẽ

k+1
N ‖ + ‖∇Qk+1‖−1

≤ c(δt3/2 +N−m).

(50)

From the second equation of (49), we have

(gk+1, qN ) = (∇ · ẽk+1
N , qN ) = (ΠN∇ · ẽk+1

N , qN ), ∀qN ∈MN ,

then

‖gk+1‖ ≤ ‖ΠN∇ · ẽk+1
N ‖ ≤ cδt1/2(δt+N−m). (51)

Applying the standard stability result ([4]) to the non-homogeneous Stokes systems (49), we
obtain

‖ẽk+1
N ‖1 + βN‖εk+1

N + ΠN∇ · ẽk+1
N ‖ ≤ c(‖hk+1‖−1 + ‖gk+1‖).

Now we use the triangle inequality to get

‖εk+1
N ‖ = ‖εk+1

N + ΠN∇ · ẽk+1
N − ΠN∇ · ẽk+1

N ‖

≤ ‖εk+1
N + ΠN∇ · ẽk+1

N ‖ + ‖ΠN∇ · ẽk+1
N ‖.

Therefore

‖ẽk+1
N ‖1 + βN‖εk+1

N ‖ ≤ βN‖ΠN∇ · ẽk+1
N ‖ + c(‖hk+1‖−1 + ‖gk+1‖) ≤ c(δt3/2 +N−m).

Thanks to above relations, we derive

‖ẽN‖l2(H1(Ω)2) + βN‖εN‖l2(L2(Ω)) ≤ c(δt3/2 +N−m).
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Finally, using the relations

ũk
N − uk = ẽk

N + Π0
Nu

k − uk, pk
N − pk = εk + Π1

Np
k − pk,

the desired result is obtained.

4. Numerical Results

In order to test the accuracy of the projection schemes, a Stokes problem with an analytical
solution is solved. Numerical experiences are carried out using PN × PN Legendre spectral
methods for the spatial approximation, although theoretical analysis has been done in the
frame of PN × PN−2 version. This is for the following reasons: First, numerical tests using
PN×PN−2 spectral projection schemes (mono-domain case) have been carried out by Guermond
and Shen in their recent paper [14], where desired convergence rate has been obtained; Second,
in view of computational efficiency, it is highly hopeful to use PN × PN version that allows to
produce a true discrete Laplacian system. Such a system is much easier to solve than a pseudo-
Laplacian stemming from a PN ×PN−2 spectral method (see e.g. [3, 1]); Third, analysis shows
that PN × PN projection scheme is a spurious mode-free method, contrast to the usual point
of view that PN × PN spectral methods suffer still from the space incompatibility, which is
generally present when the velocity and pressure is solved in coupled form. In fact it is easy
to check that all classical pressure spurious modes, such as L′

N(x)L′

N (y), L0(x)LN (y), · · · (see
e.g. [4], proposition 5.2), are excluded if we compute the pressure by problem (14). Recently
reported instability [2] in the use of the PN × PN version in the frame of projection methods
is probably caused by the inconsistent pressure boundary conditions at the corners, as already
indicated by some authors (see e.g. [30]). As we will see in the following numerical tests,
this eventual instability can be efficiently overcome by using a simple filtering procedure, and
desired convergence rate is then recovered.

Precisely, the following full discretization is used in our numerical experiences: for k =
1, 2, · · · , find ũk

N ∈ XN , uk
N ∈ YN and pk

N ∈M ′

N such that

(3ũk+1
N − 4uk

N + uk−1
N

2δt
, vN

)

+ ν(∇ũk+1
N ,∇vN ) − (pk

N ,∇ · vN )

= (fk+1, vN ), ∀vN ∈ XN ,

and






(3uk+1
N − 3ũk+1

N

2δt
, vN

)

+
(

∇(pk+1
N − pk

N + νΠN∇ · ũk+1
N ), vN

)

= 0, ∀vN ∈ YN ,

(uk+1
N ,∇qN ) = 0, ∀qN ∈ M ′

N .

where M ′

N = M ∩ PN (Ω), different with the definition of MN used in (13)-(14). At each time
step, once pk+1

N −pk
N +νΠN∇·ũk+1

N is obtained, we project it into the space MN = M∩PN−2(Ω)
(see [22] for a related description). This formulation is formally close to (13)-(14), but they
are not equivalent. The former allows use of a unique mesh, which can greatly reduce the
computational complexity. More importantly, we will show by numerical tests that the new
formulation possesses the desired accuracy same as (13)-(14), as predicted by our theoretical
analysis.

The exact solution (u, p) of the Stokes equations is set to be:






u1(x, y, t) = sin(t) sin (2πx) cos (2πy),
u2(x, y, t) = − sin(t) cos(2πx) sin(2πy),
p(x, y, t) = sin2(t) cos(πx) sin(πy),

(52)

the source term is given by f = ut − ν∆u+ ∇p:
{

f1 = [cos(t) + 8νπ2 sin(t)] sin(2πx) cos(2πy) − π sin2(t) sin(πx) sin(πy),
f2 = [− cos(t) − 8νπ2 sin(t)] cos(2πx) sin(2πy) + π sin2(t) cos(πx) cos(πy),

(53)
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with zero initial condition and time-dependent boundary conditions for the velocity according
to the exact solution. We take ν = 0.1 except stated otherwise.

4.1 Mono-domain spectral approximation

Now we solve the above problem on the domain Ω = (0, 1)× (0, 1). In the first test, we take
N large enough such that the spatial discretization errors are negligible as compared with the
time discretization errors. Then a small enough time step is fixed in order to study the spatial
errors. All errors are calculated up to T = 1.

In Figure 1, we plot pressure error fields at T = 1 for a typical time step δt = 0.01 with
N = 38. We see that for the standard form of the projection schemes, a numerical boundary
layer appears on the two boundaries where the exact pressure is such that ∂p

∂n
6= 0 (i.e. the

boundaries y = 0 or y = 1). For the rotational form, there is no numerical boundary layer, but
we observe larger spikes at the four corners of the domain. In order to know whether the larger
spikes at the corners are caused by the use of PN ×PN methods, we filter the pressure solution
by projecting it into PN−2 space at each time step. The filtered errors are shown in the two
down figures in Figure 1. It is seen that the filtering has no effect on the standard form, but
efficiently smoothes the spikes on the error plot given by the rotational form. These observations
indicate that the divergence correction in the rotational projection methods successfully cured
the numerical boundary layer problem, and the filtered PN × PN spectral methods recovered
the accuracy that PN × PN−2 methods possess (see [14]).

It is worth noting that although more accurate than the standard projection methods, the
filtered PN ×PN , like PN ×PN−2 rotational projection methods suffer still the corner problem.
Larger errors on the corners do not seem due to the classical spurious modes since any eventual
such modes would already have been removed by the filtering. It is mostly related to the fact
that the use of a Neumann condition overdetermines the problem at the corner points [30].
This point will be further confirmed by the following tests using spectral element methods.

In Figure 2, we compare the errors on the velocity measured in various norms as functions
of the time step δt. Comparison on the pressure errors is given in Figure 3. As expected, for
the velocity in the norms l2(L2(Ω)2) and l2(H1(Ω)2), both the rotational projection schemes
and the standard one attain 2-order convergence. The filtering procedure does not allow to
increase the convergence rate, but allows to improve the accuracy, as shown in the right graph
of Figure 2. For the pressure, as shown in Figure 3, the errors on the norm l2(L2(Ω)) are not
fully 3/2−order for the non-filtering PN ×PN version because of the larger errors at the corners
of the domain. Precisely, l2(L2(Ω)) norm errors are 3/2−order only for moderate time steps
while it doesn’t remain true for small time steps (Figure 3, left). However for a reason not yet
clear, the errors in the norms l2(H1(Ω)) are only 1-order for the non-filtering PN ×PN version
while 3/2−order is obtained for the filtered PN ×PN version, specially for the rotational form.
Furthermore, the right graph of Figure 3 shows that, even higher order convergence rate than
3/2 is obtained for the pressure errors in the norm l2(L2(Ω)) by using filtered PN ×PN version.
In summary, the rotational form and filtered version are more accurate than the standard form
and simple version for both velocity and pressure. All the following tests are carried out with
the filtered PN × PN version.

In Figure 4, spatial accuracy of the rotational projection spectral methods are investigated
by plotting the errors in norm l2(L2(Ω)) as functions of the polynomial degree N . From the
left graph of the figure, the spectral convergence is obvious for both the velocity and pressure
solutions. Influence of the viscosity ν on the accuracy is also studied. In the right graph of
the figure, the errors for several values of ν are plotted. It is seen that the velocity errors are
almost independent of ν, while the pressure errors decrease quickly when ν decreases. This
observation offers additional support to the suggestion that the pressure error spikes at the
corners are related to inconsistent pressure conditions at the corners.

4.2 Spectral element approximation
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Figure 1: Pressure error fields at T = 1 with δt = 0.01 and N = 38 for the projection spectral methods.
Up: PN × PN version; down: filtered PN × PN version. Left: standard form; right: rotational form.

The above numerical experiences are repeated in the case of spectral element methods (SEM)
and we successively study:

- Influence of the domain decomposition;
- Convergence behavior in the case of smooth domain.
Implementation of the projection schemes in the PN × PN SEM depends essentially on the

formulation of the pressure system. The easiest way to discretize the Laplacian system for the
pressure is to define the discrete pressure in the (N + 1)2 Gauss-Lobatto collocation points in
each macro-element. In such a way, there are pressure nodes located on the elemental interfaces,
hence continuity of the pressure on the interfaces can be naturally imposed.

First we take the domain Ω = (0, 1) × (0, 1) which is divided into 4 equal square elements.
In order to check the temporal accuracy, the computation is run up to T = 1 using polynomial
degree N large enough such that the spatial errors are negligible as compared with the temporal
errors.

In Figure 5, we draw the pressure error fields at T = 1 using the projection SEM with
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Figure 2: Errors on the velocity as a function of the time step for N = 38. Left: PN × PN version;
right: filtered PN × PN version.
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Figure 3: Errors on the pressure as a function of the time step for N = 38. Left: PN × PN version;
right: filtered PN × PN version.

δt = 0.01, N = 24. The results are similar to the case of mono-domain: numerical boundary
layer by the standard form, large spikes at the corners by the rotational form. However it is
remarkable that the large spikes are only present at the four physical corners. The situation is
the same for the non-filtered PN ×PN version (results non shown). This supports our previous
statement that larger pressure errors at the corners are not due to the PN ×PN methods, but to
the incompatibility of the pressure boundary conditions. In Figure 6, we plot the errors on the
velocity and pressure measured in various norms as functions of the time step δt. The results
are also similar to the case of mono-domain.

To clarify the role of the singularity of the boundary, we carry out a test in the circular
domain Ω = {(x, y) : 1

4 < x2 +y2 < 1}, which is divided into 12 equal elements. Figure 7 shows
the pressure error fields computed in this smooth domain at T = 1 with δt = 0.01, N = 16.
A numerical boundary layer exists still on the entire boundary for the pressure calculated by
means of the standard form, but the errors are small everywhere for the rotational form. The
results are similar to the non-filtered PN × PN SEM (non shown). This test confirms that the
pressure oscillation at the corners is related to the singularity of the domain, not to the PN ×PN
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Figure 4: Left: Errors varying with the polynomial degree N (y-axis is log scale); Right: Errors varying
with ν (log scale).
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Figure 5: Pressure error fields at T = 1 by the projection SEM with δt = 0.01, N = 24. Left: standard
form; right: rotational form.

method.
From the left graph of Figure 8, we observe that for the circular domain, the pressure

errors measured in norm l2(L2(Ω)) and l2(H1(Ω)) are 3/2-order. The pressure errors measured
in norm L2(Ω)) at time T = 1 are given in the right graph of Figure 8. We see that the
convergence rates are now fully second order. This conforms to the results obtained in [14] and
[30].

5. Concluding Remarks

There exists much works concerning numerical and theoretical investigations on the con-
vergence rates of projection methods. We have presented in this paper a detail analysis of
the rotational pressure-correction methods in the frame of the spectral spatial approximations
for the unsteady Stokes equations. Error estimations for the fully discrete scheme show that
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Figure 6: Velocity (left) and pressure (right) errors obtained by the projection SEM with N = 24 in
each element.
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Figure 8: Convergence rates of the pressure with N = 16. Left: l2-norm; Right: L2-norm at time
T = 1.

the convergence rate for the velocity in the l2(L2(Ω))-norm is order O(δt2 +N−m), while the

convergence rate for the pressure is order O(δt
3

2 + N−m), with here m the regularity of the
exact pressure solution.

The error estimates have been obtained by assuming that the discrete velocity and pressure
space pair satisfies the LBB condition (1), precisely by using the PN × PN−2 approximation.
The role of the LBB conditions in the frame of the projection-type schemes has been discussed
by several authors. We refer to [2, 13] for recent detail discussions in this sense.

However we would like to mention here that the compatibility assumption used in our proof
for the convergence rate seems to be a technical need.

From the point of view of implementation, the LBB condition (1) between the velocity and
pressure approximation space is not mandatory for the projection methods to work. Indeed, a
principal interest in using the projection-type method is that we are free from the compatibility
restriction on the choice of the discrete velocity and pressure space. Otherwise, the fractional
step methods, which were introduced and analyzed in [21, 9, 11, 18, 31], could be the preference.

From the theoretical point of view, it is well-known that the LBB condition (1) is a necessary
and sufficient condition to obtain the optimal convergence rate when the velocity and pressure
are formulated in a coupled form. This is because that the well-known spurious modes (see
e.g. [4], p126) may pollute the pressure if the LBB condition (1) is violated. However, when
solving the velocity and pressure in two decoupled steps by the rotational projection schemes,
there is no evidence showing that the LBB condition (1) is a necessary condition to guarantee
the uniqueness of the pressure solution. Although numerical pressure oscillations using PN ×
PN spectral projection methods (in standard forms) with very small time steps were recently
reported [2], the cause of these oscillations is not yet clear. It seems to us that the most possible
reason for these oscillations is the inconsistent pressure boundary conditions, especially when
the domain includes corners. In fact it is readily to see, as mentioned at the beginning of the
numerical experiences, that the spurious modes presented in a coupled PN × PN scheme are
excluded from the pressure in the projection step (14) even if the space MN is taken to be PN .
Furthermore, our numerical experiences have shown that PN × PN version works well, and no
numerical oscillations occur in the case where the computational domain is smooth.

Acknowledgments. We would like to thank J. Shen for his suggestion and many helpful
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