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Abstract

A new mixed Legendre-Hermite interpolation is introduced. Some approximation re-
sults are established. Mixed Legendre-Hermite pseudospectral method is proposed for
non-isotropic heat transfer in an infinite plate. Its convergence is proved. Numerical
results show the efficiency of this approach.
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1. Introduction

Spectral methods have been successfully used for numerical simulations of various problems
in science and engineering, such as the Fourier spectral method for periodic problems, and the
Legendre and Chebyshev spectral methods for bounded rectangular domains, see [2, 3, 5, 7, 9,
10]. Some authors also studied the Hermite spectral method for the whole line and the Laguerre
spectral method for the half line, see [4, 6, 8, 11, 12, 16, 18, 19, 21].

There are three kinds of Hermite polynomial approximations. If the exact solutions grow
fast at the infinity, then we usually take the Hermite polynomials Hn(z) as the base functions

as in [11], which are mutually orthogonal associated with the weight function e−z2

. But in many
cases, such as nonlinear wave equations, the solutions decay to zero at the infinity, and possess
certain conservations which play important role in theoretical analysis. Thereby it seems better

to use the Hermite functions e−
z2

2 Hn(z) as in [13], which form the L2(−∞,∞)-orthogonal
system. Accordingly, the numerical solutions also keep certain conservations as in continuous
cases. Furthermore, for some problems, such as heat transfer process, the solutions usually
decay exponentially at the infinity. In this case, we prefer to the generalized Hermite functions
e−z2

Hn(z) , which are mutually orthogonal with respect to the weight function ez2

, see [8].
In this paper, we consider non-isotropic heat transfer process in an infinite plate. The

simplest way is to confine our calculation to a sufficiently large subdomain with certain ar-
tificial boundary condition. However, it causes additional errors. The authors proposed a
mixed Legendre-Hermite spectral method for solving this problem, see [15]. However, it is
more convenient to use pseudospectral method in actual computation, since we only need to
evaluate unknown functions at the interpolation nodes. Especially, it is much easier to deal
with nonlinear heat transfer process.

The aim of this paper is to develop the mixed pseudospectral method for non-isotropic heat
transfer in an infinite plate, by using the Legendre interpolation in a direction, and the Hermite
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interpolation in another direction. As we know, there have been sharp results on the Jacobi
interpolation, see [14]. Thus it suffices to study the Hermite interpolation precisely. Like the
Hermite polynomial approximations, there have been also two kinds of Hermite interpolations
which have the same interpolation nodes, but different weights of numerical quadratures, cor-

responding to the base functions Hn(z) and e−
z2

2 Hn(z), respectively, see [13, 16]. Whereas the
solutions of transfer process decay exponentially at the infinity. Thus we introduce a new Her-
mite interpolation corresponding to the base functions e−z2

Hn(z), which could fit the asymp-
totic behavior of such solutions properly. Then we propose a new mixed Legendre-Hermite
pseudospectral method for non-isotropic heat transfer in an infinite plate. Numerical results
demonstrate the high accuracy in the space of this approach. We also establish some basic
results on this new mixed Legendre-Hermite interpolation, from which the convergence of pro-
posed scheme follows. These results also play important roles in forming and analyzing other
related spectral methods for an infinite strip.

The paper is organized as follow. In the next section, we introduce the new mixed Legendre-
Hermite interpolation and establish some basic approximation results. Then we describe the
mixed Legendre-Hermite pseudospectral method and its implementation, and present some
numerical results in Section 3. We prove the convergence of proposed scheme in Section 4. The
final section is for concluding remarks.

2. Mixed Legendre-Hermite Interpolation

In this section, we introduce the new mixed Legendre-Hermite interpolation.

2.1 Legendre-Gauss-Lobatto interpolation

We first recall the Legendre-Gauss-Lobatto interpolation. Let I = {x| |x| < 1}. For any
integer r ≥ 0, we define the Sobolev space Hr(I) as usual, with the inner product (u,w)r,I , the
semi-norm |u|r,I and the norm ||u||r,I . In particular, (u,w)I = (u,w)0,I and ||u||I = ||u||0,I .
Moreover, H1

0 (I) = { u| u ∈ H1(I) and u(1) = u(−1) = 0}.
Denote by Lm(x) the standard Legendre polynomial of degree m,m = 0, 1, · · ·. They satisfy

the recurrence relation

(2m+ 1)Lm(x) = ∂xLm+1(x) − ∂xLm−1(x), m ≥ 1, (2.1)

and form the L2(I)-orthogonal system, i.e.,
∫

I

Lm(x)Lm′ (x)dx =
2

2m+ 1
δm,m′ (2.2)

For any u ∈ L2(I), we have that

u(x) =

∞
∑

m=0

ûmLm(x), ûm = (m+
1

2
)

∫

I

u(x)Lm(x)dx. (2.3)

For any integer M ≥ 0, PM stands for the set of all polynomials of degree at most M .
Furthermore, P0

M = {v | v ∈ PM , v(1) = v(−1) = 0}.
The orthogonal projection PM : L2(I) → PM is defined by

(PMu− u, φ)I = 0, ∀ φ ∈ PM . (2.4)

For description of approximation results, we introduce the space Hr
A(I) with integer r ≥ 0,

equipped with the following semi-norm and norm

|u|r,A,I = ||(1 − x2)
r
2 ∂r

xu||I , ||u||r,A,I = (
r

∑

k=0

|u|2k,A,I)
1
2 .
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Furthermore, let Hr
∗(I) = {u | ∂xu ∈ Hr−1

A (I)}, with the semi-norm |u|r,∗,I = |∂xu|r−1,A,I and
the norm ||u||r,∗,I = ||∂xu||r−1,A,I . By Theorem 2.1 of [14], for any u ∈ Hr

A(I) and integer
r ≥ 0,

||PMu− u||I ≤ c1M
−r|u|r,A,I . (2.5)

Hereafter c1 denotes a generic positive constant independent of any function and M .
We now turn to the Legendre-Gauss-Lobatto interpolation. Let xM,l be the roots of (1 −

x2)∂xLM (x). The corresponding Christoffel numbers

ρM,l =
2

M(M + 1)

1

L2
M (xM,l)

, 0 ≤ l ≤M.

The related discrete inner product and norm are defined by

(u,w)M,I =

M
∑

l=0

u(xM,l)w(xM,l)ρM,l, ||u||M,I = (u, u)
1
2

M,I .

We have that (see [5, 10])

(u,w)M,I = (u,w)I , ∀ uw ∈ P2M−1, (2.6)

||φ||I ≤ ||φ||M,I ≤
√

2 +
1

M
||φ||I , ∀ φ ∈ PM . (2.7)

For any u ∈ C(Ī), the Legendre-Gauss-Lobatto interpolation IMu ∈ PM is determined by
IMu(xM,l) = u(xM,l) for 0 ≤ l ≤M. Equivalently,

(IMu− u, φ)M,I = 0, ∀ φ ∈ C(Ī). (2.8)

By Theorem 4.10 of [14], for any u ∈ Hr
∗(I), integer r ≥ 1 and 0 ≤ µ ≤ 1,

||IMu− u||µ,I ≤ c1M
µ−r|u|r,∗,I . (2.9)

It is also noted that for any u ∈ Hr
∗ (I), φ ∈ PM and integer r ≥ 1,

|(u, φ)I − (u, φ)M,I | ≤ c1M
−r|u|r,∗,I ||φ||I . (2.10)

Indeed, by virtue of (2.5)-(2.9), we have that

|(u, φ)I − (u, φ)M,I | ≤ |(u, φ)I − (PM−1u, φ)I | + |(PM−1u, φ)M,I − (IMu, φ)M,I |
≤ c1(||u− PM−1u||I + ||PM−1u− IMu||I)||φ||I
≤ c1(||u− PM−1u||I + ||u− IMu||I)||φ||I ≤ c1M

−r|u|r,∗,I ||φ||I .
The results (2.9) and (2.10) improve the corresponding results in [5, 10].

2.2 Hermite-Gauss interpolation

We next introduce the new Hermite-Gauss interpolation. Let R = {z| − ∞ < z < ∞}
and ω(z) = ez2

. For any integer r ≥ 0, we define the weighted Sobolev space Hr
ω(R) in the

usual way, with the inner product (u,w)r,ω,R, the semi-norm |u|r,ω,R and the norm ||u||r,ω,R. In
particular, (u,w)ω,R = (u,w)0,ω,R and ||u||ω,R = ||u||0,ω,R. For any r > 0, we define the space
Hr

ω(R) and its norm ||u||r,ω,R by space interpolation as in [1].
Denote by Hn(z) the standard Hermite polynomial of degree n. The generalized Hermite

functions are defined by

H̃n(z) =
1√
2nn!

e−z2

Hn(z) =
(−1)n

√
2nn!

∂n
z (e−z2

), n ≥ 0. (2.11)

They satisfy the recurrence relation (see [6])

∂zH̃n(z) = −
√

2(n+ 1) H̃n+1(z), n ≥ 0, (2.12)
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and form the L2
ω(R)−orthogonal system, namely,

∫

R

H̃n(z)H̃n′(z)ω(z)dz =
√
πδn,n′ . (2.13)

For any u ∈ L2
ω(R), we have that

u(z) =
∞
∑

n=0

ûnH̃n(z), ûn =
1√
π

∫

R

u(z)H̃n(z)ω(z)dz. (2.14)

Remark 2.1. It is shown in [15] that for any integer r ≥ 0, the semi-norm |u|r,ω,R and the

norm ||u||r,ω,R are equivalent to (
∞
∑

n=0

nr|ûn|2)
1
2 , see Appendix of this paper.

For any integer N ≥ 0, PN denotes the set of all polynomials of degree at most N . Further-
more, VN = { e−z2

q(z) | q(z) ∈ PN}.
The orthogonal projection P̃N : L2

ω(R) → VN is defined by

(P̃Nu− u, φ)ω,R = 0, ∀ φ ∈ VN . (2.15)

Due to Theorem 2.2 of [6] and Remark 2.1, for any u ∈ Hr
ω(R), integer r and 0 ≤ µ ≤ r,

||P̃Nu− u||µ,ω,R ≤ c2N
µ−r

2 |u|r,ω,R. (2.16)

Hereafter, c2 denotes a generic positive constant independent of any function and N .
We now turn to the new Hermite-Gauss interpolation corresponding to the weight ω(z). Let

σN,j (0 ≤ j ≤ N) be the zeros of H̃N+1(z), arranged as σN,N < σN,N−1 < · · · < σN,0. The
corresponding Christoffel numbers

ωN,j =
2NN !

√
πe2σ2

N,j

(N + 1)H2
N(σN,j)

, 0 ≤ j ≤ N. (2.17)

In fact, σN,j are exactly the same as the zeros of HN+1(z), and ωN,j = ω∗
N,je

2σ2
N,j , ω∗

N,j being

the Christoffel numbers of the standard Hermite-Gauss interpolation. Let aN =
√

2N be the
N−th Mhaskar-Rahmanov-Saff number. According to (2.7) of [16],

ωN,j ∼ 1√
N
eσ2

N,j (1 − |σN,j |
aN+1

)−
1
2 . (2.18)

The related discrete inner product and norm are defined by

(u,w)ω,N,R =

N
∑

j=0

u(σN,j)w(σN,j)ωN,j, ||u||ω,N,R = (u, u)
1
2

ω,N,R.

As is well known, for any q ∈ P2N+1,

∫

R

q(z)e−z2

dz =

N
∑

j=0

q(σN,j)ω
∗
N,j. (2.19)

Now, for any φ ∈ Vm, ψ ∈ V2N+1−m and non-negative integer m ≤ 2N + 1, there exist

q1(z) ∈ Pm and q2(z) ∈ P2N+1−m such that φ(z) = e−z2

q1(z) and ψ(z) = e−z2

q2(z). Thus we
use (2.19) and the relation between ωN,j and ω∗

N,j to verify that

(φ, ψ)ω,R =

∫

R

q1(z)q2(z)e
−z2

dz =

N
∑

j=0

q1(σN,j)q2(σN,j)ω
∗
N,j = (φ, ψ)ω,N,R. (2.20)
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For any u ∈ C(R), the Hermite-Gauss interpolation ĨNu ∈ VN is determined by ĨNu(σN,j) =
u(σN,j) for 0 ≤ j ≤ N. Equivalently,

(ĨNu− u, φ)ω,N,R = 0, ∀ φ ∈ C(R). (2.21)

In order to derive better approximation results, we need the following lemma, which will be
proved in Appendix of this paper.
Lemma 2.1. For any u ∈ H1

ω(R),

||u||ω,N,R ≤ c2(||u||ω,R +N− 1
6 |u|1,ω,R).

The main result on the new Hermite interpolation is stated below.
Lemma 2.2. For any u ∈ Hr

ω(R), integer r ≥ 1 and 0 ≤ µ ≤ r,

||ĨNu− u||µ,ω,R ≤ c2N
1
3
+ µ−r

2 |u|r,ω,R.

Proof. We know from Lemma 2.1 of [6] that for any φ ∈ VN , |φ|µ,ω,R ≤ c2N
µ
2 ||φ||ω,R.

Therefore, by using (2.16), (2.20), Lemma 2.1 and the fact ĨN P̃Nu = P̃Nu, we deduce that

||ĨNu− P̃Nu||µ,ω,R ≤ c2N
µ
2 ||ĨN (P̃Nu− u)||ω,R = c2N

µ
2 ||(P̃Nu− u)||ω,N,R

≤ c2N
µ
2 ||P̃Nu− u||ω,R + c2N

µ
2
− 1

6 |P̃Nu− u|1,ω,R ≤ c2N
1
3
+ µ−r

2 |u|r,ω,R.

Using (2.16) again yields that

||ĨNu− u||µ,ω,R ≤ ||P̃Nu− u||µ,ω,R + ||ĨNu− P̃Nu||µ,ω,R ≤ c2N
1
3
+ µ−r

2 |u|r,ω,R.

It is noted that by (2.21) and Lemma 2.2, for any u ∈ Hr
ω(R), r ≥ 1 and φ ∈ VN ,

|(u, φ)ω,R − (u, φ)ω,N,R| = |(ĨNu− u, φ)ω,R| ≤ c2||ĨNu− u||ω,R||φ||ω,R

≤ c2N
1
3
− r

2 |u|r,ω,R||φ||ω,R.
(2.22)

2.3 Mixed Legendre-Hermite Interpolation.

We are now in position of studying the mixed Legendre-Hermite interpolation. Let Ω = I×R
and define the weighted space L2

ω(Ω) in the usual way, with the inner product (u,w)ω and the
norm ||u||ω. For any u ∈ L2

ω(Ω),

u(x, z) =

∞
∑

m=0

∞
∑

n=0

ûm,nLm(x)H̃n(z) (2.23)

where

ûm,n =
1√
π

(m+
1

2
)

∫ ∫

Ω

u(x, z)Lm(x)H̃n(z)ω(z)dzdx.

Let VM,N = PM ⊗ VN and

V 0
M,N (Ω) = {φ | φ ∈ VM,N and φ(−1, y) = φ(1, y) = 0}.

The orthogonal projection PM,N : L2
ω(Ω) → VM,N (Ω) is defined by

(PM,Nu− u, φ)ω = 0, ∀ φ ∈ VM,N .

In order to estimate ||PM,Nu − u||ω, we introduce a non-isotropic space. For any integers
r, q ≥ 0,

H
r,q
ω,A(Ω) = L2

ω(R;Hr
A(I)) ∩Hq

ω(R;L2(I)),
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equipped with the norm

||u||Hr,q
ω,A

= (||u||2L2
ω(R;Hr

A
(I)) + ||u||2Hq

ω(R;L2(I)))
1
2 .

The corresponding semi-norm |u|Hr,q
ω,A

is given by

|u|Hr,q
ω,A

= (|u|2L2
ω(R;Hr

A(I)) + |u|2Hq
ω(R;L2(I)))

1
2 .

It is proved in [15] that for any u ∈ H
r,q
ω,A(Ω) and integer r, q ≥ 0,

||PM,Nu− u||ω ≤ c2(M
−r +N− q

2 )|u|Hr,q
ω,A

. (2.24)

We now turn to the mixed Legendre-Hermite interpolation. Let xM,l, ρM,l, σN,j and ωN,j be
the same as in the previous two subsections, and ΛM,N = {(xM,l, σN,j), 0 ≤ l ≤M, 0 ≤ j ≤ N}.
The corresponding discrete inner product and norm are given by

(u,w)ω,M,N =

M
∑

l=0

N
∑

j=0

u(xM,l, σN,j)w(xM,l, σN,j)ρM,lωN,j, ||u||ω,M,N = (u, u)
1
2

ω,M,N .

By (2.6) and (2.20), for any φ ∈ V2M−1,2N+1,

∫ ∫

Ω

φ(x, z)ω(z)dxdz =
M
∑

l=0

N
∑

j=0

φ(xM,l, σN,j)ρM,lωN,j. (2.25)

In particular, for any u,w ∈ VM−1,N , (u,w)ω = (u,w)ω,M,N . Moreover, by (2.7) and (2.20),

||φ||ω ≤ ||φ||ω,M,N ≤
√

2 +
1

M
||φ||ω , ∀ φ ∈ VM,N . (2.26)

For any u ∈ C(Ω̄), the mixed Legendre-Hermite interpolation IM,Nu ∈ VM,N is determined
by IM,Nu(x, z) = u(x, z) for all (x, z) ∈ ΛM,N . Equivalently,

(IM,Nu− u, φ)ω,M,N = 0, ∀ φ ∈ VM,N . (2.27)

We now present the main result of this section.
Theorem 2.1. Let 0 ≤ α, β ≤ 1 and integers r, λ, q, σ ≥ 1. Then for any u ∈ Hβ

ω (R;Hr
∗(I)) ∩

Hq
ω(R;Hα(I)) ∩Hσ

ω (R;Hλ
∗ (I)),

||IM,Nu− u||Hβ
ω(R;Hα(I)) ≤ cMα−r|u|Hβ

ω(R;Hr
∗
(I)) + cN

1
3
+ β−q

2 |u|Hq
ω(R;Hα(I))

+cMα−λN
1
3
+ β−σ

2 |u|Hσ
ω(R;Hλ

∗
(I)).

Hereafter c is a generic positive constant independent of M,N and any function.

Proof. Let ϑ be the identity operator. Clearly, IM,Nu = IM (ĨNu) = ĨN (IMu) where IM and

ĨN are given by (2.8) and (2.21), respectively. Therefore, ||IM,Nu − u||Hβ
ω(R;Hα(I)) ≤ D1 +D2

where

D1 = ||IMu− u||Hβ
ω(R;Hα(I)) + ||ĨNu− u||Hβ

ω(R;Hα(I)), D2 = ||(IM −ϑ)(ĨN −ϑ)u||Hβ
ω(R;Hα(I)).

Using (2.9), Lemma 2.2 and the Poincaré inequality, we deduce that

D1 ≤ cMα−r|u|Hβ
ω(R;Hr

∗
(I)) + cN

1
3
+ β−q

2 |u|Hq
ω(R;Hα(I)),

D2 ≤ cMα−λ|ĨNu− u|Hβ
ω(R;Hλ

∗
(I)) ≤ cMα−λN

1
3
+ β−σ

2 |u|Hσ
ω(R;Hλ

∗
(I)).
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Corollary 2.1. For any u ∈ L2
ω(R;Hr

∗ (I))∩Hq
ω(R;L2(I))∩Hσ

ω (R;Hλ
∗ (I)), integer r, λ, s, σ ≥ 1

and φ ∈ VM,N ,

|(u, φ)ω − (u, φ)ω,M,N |
≤ c(M−r|u|L2

ω(R;Hr
∗
(I)) +N

1
3
− q

2 |u|Hq
ω(R;L2(I)) +M−λN

1
3
−σ

2 |u|Hσ
ω(R;Hλ

∗
(I)))||φ||ω .

Proof. By (2.25) and (2.26),

|(u, φ)ω − (u, φ)ω,M,N | ≤ |(u, φ)ω − (PM−1,Nu, φ)ω| + |(PM−1,Nu, φ)ω,M,N − (IM,Nu, φ)ω,M,N |
≤ c(||PM−1,Nu− u||ω + ||IM,Nu− u||ω)||φ||ω .

Due to Hr
∗ (I) ⊆ Hr

A(I), the desired result follows from the above, (2.24) and Theorem 2.1 with
α = β = 0.

3. Mixed Legendre-Hermite Pseudospectral Method

In this section, we propose the mixed Legendre-Hermite pseudospectral method for non-
isotropic heat transfer in an infinite plate.

Let R̃ = {y | − ∞ < y < ∞} and Ω̃ = I × R̃ with the boundary Γ̃ = {(x, y)| |x| = 1}.
W (x, y, t) is the temperature. The positive constants ν and µ stand for the conductivities. a
and b are convective constants. F (x, y, t) and W0(x, y) describe the heat source and the initial
state, respectively. We consider the following initial-boundary value problem,















∂tW (x, y, t) + a∂xW (x, y, t) + b∂yW (x, y, t)

−ν∂2
xW (x, y, t) − µ∂2

yW (x, y, t) = F (x, y, t), (x, y) ∈ Ω̃, 0 < t ≤ T,

W (x, y, t) = W1(x, y, t), (x, y) on Γ̃, 0 < t ≤ T,

W (x, y, 0) = W0(x, y), (x, y) ∈ ¯̃Ω.

(3.1)

As we know, if F (x, y, t) and W0(x, y) decays exponentially as |y| → ∞, then the solution
of (3.1) also decays exponentially as |y| → ∞. To fit this behavior, it seems reasonable to
approximate (3.1) in the y-direction directly by the Hermite interpolation with the base func-

tions e−αy2

Hn(y), α > 0, which are mutually orthogonal associated with the weight function

e(2α−1)y2

. However it does not works in our case. To show this, we multiply (3.1) by ve(2α−1)y2

and integrate the result over Ω̃. Then we obtain the following term corresponding to the last
term at the left side of (3.1),

µ

∫

Ω̃

∂yW (x, y, t)∂yv(x, y, t)e
(2α−1)y2

dxdy + 2µ(2α− 1)

∫

Ω̃

y∂yW (x, y, t)v(x, y, t)e(2α−1)y2

dxdy.

Clearly, the above quantity with W (x, y, t) = v(x, y, t) might be negative. In other words,
the leading term in (3.1), −ν∂2

xW (x, y, t) − µ∂2
yW (x, y, t), loses the ellipticity in the weighted

Sobolev space. To remedy this deficiency, we make the transformation

z =
y

2
√

µ(t+ 1)
, s = ln(t+ 1). (3.2)

Accordingly,

U(x, z, s) = W (x, y, t), U0(x, z) = W0(x, y), f(x, z, s) = (t+ 1)F (x, y, t), S = ln(T + 1).

Then the equation in (3.1) becomes

∂sU(x, z, s) +aes∂xU(x, z, s) + b
2
√

µe
s/2∂zU(x, z, s) − 1

2z∂zU(x, z, s)

−νes∂2
xU(x, z, s) − 1

4∂
2
zU(x, z, s) = f(x, z, s), (x, z) ∈ Ω, 0 < s ≤ S.

(3.3)

Next, we try to choose a suitable weight function so that the corresponding weak formulation
of (3.3) is well-posed in the related weighted Sobolev space. To do this, we multiply (3.3) by
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ve(2α−1)z2

and integrate the resulting equation over Ω. Then we obtain the following term
corresponding to the last two term at the left side of (3.3),

1

4

∫

Ω

∂yU(x, z, s)∂zv(x, z, s)e
(2α−1)z2

dxdz + (α− 1)

∫

Ω

z∂zW (x, z, s)v(x, z, s)e(2α−1)z2

dxdz.

We find that the above term is always non-negative, if and only if α = 1. This is the main
reason why we use the Hermite interpolation with the base functions e−z2

Hn(z). Moreover, in
this case, the relation (2.12) simplifies actual computation and numerical analysis essentially.
Remark 3.1. The transformation (3.2) is similar to the similarity transformation used in
[8, 11]. But they are not exactly the same, since the domain Ω̃ is not the whole space. As a
result, the reformed equation (3.3) is no longer a simple heat equation. Thereby, we have to
deal with it very carefully.

In the forthcoming discussions, we use the same notations as in the last section, such as
I, R,Ω,Γ, ω, L2

ω(Ω), (u,w)ω and ||u||, etc.. For any r > 0, we define the space Hr
ω(Ω) and

its norm ||u||r,ω as usual. Furthermore, Hr
0,ω(Ω) denotes the closure in Hr

ω(Ω) of the set
consisting of all infinitely differentiable functions with compact support in Ω. For r < 0,
Hr

ω(Ω) = (H−r
0,ω(Ω))′. We also let V = L∞(0, T ;L2

ω(Ω)) ∩ L2(0, T ;H1
0,ω(Ω)), equipped with the

norm

||u||V = (ess sup
0≤s≤S

||u(s)||2ω +

∫ S

0

|u(η)|21,ωdη)
1
2 .

For simplicity of statements, we assume W1(x, y, t) ≡ 0. Let u(x, z) ∈ H1
0,ω(Ω). By multi-

plying (3.3) by u(x, z)ω(z), integrating the result over Ω, and noticing that

−2(∂zU(s), zu)ω − (∂2
zU(s), u)ω = (∂zU(s), ∂zu)ω,

we derive a weak formulation of (3.3). It is to seek U(s) ∈ V for 0 ≤ s ≤ S, such that

(∂sU(s), u)ω + aes(∂xU(s), u)ω +
b

2
√
µ
e

s
2 (∂zU(s), u)ω + νes(∂xU(s), ∂xu)ω

+
1

4
(∂zU(s), ∂zu)ω = (f(s), u)ω, ∀ u ∈ H1

0,ω(Ω), 0 < s ≤ S. (3.4)

It is shown in [15] that if U0 ∈ Hr
ω(Ω), f ∈ L2(0, S;Hr−1

ω (Ω)) and r ≥ 0, then (3.4) has a unique
solution U ∈ L∞(0, S;Hr

ω(Ω)) ∩ L2(0, S;Hr+1
ω (Ω)).

A mixed Legendre-Hermite pseudospectral scheme for (3.4) is to find uM,N(s) ∈ V 0
M,N for

0 ≤ s ≤ S, such that














(∂suM,N(s), φ)ω,M,N + aes(∂xuM,N(s), φ)ω,M,N

+ b
2
√

µe
s
2 (∂zuM,N(s), φ)ω,M,N + νes(∂xuM,N (s), ∂xφ)ω,M,N

+ 1
4 (∂zuM,N(s), ∂zφ)ω,M,N = (f(s), φ)ω,M,N , ∀ φ ∈ V 0

M,N , 0 < s ≤ S,

uM,N(0) = IM,NU0.

(3.5)

Thanks to (2.25), (3.5) is equivalent to















(∂suM,N(s), φ)ω,M,N + aes(∂xuM,N(s), φ)ω

+ b
2
√

µe
s
2 (∂zuM,N(s), φ)ω,M,N + νes(∂xuM,N (s), ∂xφ)ω

+ 1
4 (∂zuM,N(s), ∂zφ)ω,M,N = (f(s), φ)ω,M,N , ∀ φ ∈ V 0

M,N , 0 < s ≤ S,

uM,N(0) = IM,NU0.

(3.6)

Now, we describe the implementation of algorithm of (3.6). Let (see [20])

φm(x) = cm (Lm(x) − Lm+2(x)), cm =
1√

4m+ 6
, 0 ≤ m ≤M − 2. (3.7)
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Clearly
V 0

M,N = span{φm(x)H̃n(z), 0 ≤ m ≤M − 2, 0 ≤ n ≤ N}.
We expand the numerical solution as

uM,N(x, z, s) =

M−2
∑

m=0

N
∑

n=0

vm,n(s)φm(x)H̃n(z).

Moreover, we set

V (s) = (v0,0(s), v1,0(s), · · · , vM−2,0(s), v0,1(s), v1,1(s), · · · , vM−2,1(s),

· · · , v0,N (s), v1,N (s), · · · , vM−2,N (s))T ,

F (s) = (f0,0(s), f1,0(s), · · · , fM−2,0(s), f0,1(s), f1,1(s), · · · , fM−2,1(s),

· · · , f0,N(s), f1,N (s), · · · , fM−2,N(s))T ,

fm,n = (f(s), φmH̃n)ω,M,N , 0 ≤ m ≤M − 2, 0 ≤ n ≤ N.

Taking φ = φm′(x)H̃n′ (z) in (3.6), we obtain the following set of ordinary differential equations,

(BT
1 ⊗A1)

d

ds
V (s) + aes(BT

2 ⊗ A2)V (s) +
b

2
√
µ
e

s
2 (BT

3 ⊗A3) V (s)

+νes(BT
4 ⊗A4)V (s) +

1

4
(BT

5 ⊗A5)V (s) = F (s), (3.8)

where the matrices Aq = (a
(q)
m′,m) and Bq = (b

(q)
n,n′), with the entries

a
(1)
m′,m = a

(3)
m′,m = a

(5)
m′,m =







(φm′ , φm)M , m′ = m = M − 2,
∫

I

φm′(x)φm(x)dx, otherwise,

a
(2)
m′,m =

∫

I

φm′(x)∂xφm(x)dx, a
(4)
m′,m =

∫

I

∂xφm′(x)∂xφm(x)dx, 0 ≤ m′,m ≤M − 2,

b
(1)
n,n′ = b

(2)
n,n′ = b

(4)
n,n′ =

∫

R

H̃n(z)H̃n′(z)ω(z)dz, b
(3)
n,n′ =

∫

R

∂zH̃n(z)H̃n′(z)ω(z)dz,

b
(5)
n,n′ =

∫

R

∂zH̃n(z)∂zH̃n′(z)ω(z)dz, 0 ≤ n, n′ ≤ N.

We next calculate the entries of Aq and Bq. Firstly, by (2.2) and (3.7), we obtain that for
0 ≤ m′,m ≤M − 2,

a
(1)
m′,m = a

(3)
m′,m = a

(5)
m′,m =























(φm′ , φm)M , m′ = m = M − 2,
cm′cm( 2

2m+1 + 2
2m+5 ), m′ = m < M − 2,

−cm′cm
2

2m′+1 , m′ = m+ 2,

−cm′cm
2

2m+1 , m′ = m− 2,

0, otherwise.

Further, we use (2.1) and (2.2) to obtain that for 0 ≤ m′,m ≤M − 2,

a
(2)
m′,m = −a(2)

m,m′ =

{

2cm′cm, m = m′ + 1,
0, otherwise,

a
(4)
m′,m =

{

1, m′ = m,

0, otherwise.
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Finally, using (2.12) and (2.13) yields that for 0 ≤ n, n′ ≤ N,

b
(1)
n,n′ = b

(2)
n,n′ = b

(4)
n,n′ =

{√
π, n = n′,

0, otherwise,

b
(3)
n,n′ =

{

−
√

2(n+ 1)π, n = n′ − 1,
0, otherwise,

b
(5)
n,n′ =

{

2(n+ 1)
√
π, n = n′,

0, otherwise.

Obviously, A1, A3 and A5 are five-diagonal matrices, A2 and B3 are three-diagonal matrices,
A4, B1, B2, B4 and B5 are diagonal matrices. This feature simplifies the actual calculation.

Now,
let

fn(s) = (f0,n(s), f1,n(s), · · · , fM−2,n(s))T , 0 ≤ n ≤ N,

vn(s) = (v0,n(s), v1,n(s), · · · , vM−2,n(s))T , 0 ≤ n ≤ N.

Then by the definition of Kronecker product, (3.8) reads that for s > 0,










A1
d
dsv0(s) + aesA2v0(s) + νesI(M−1)×(M−1)v0(s) + 1

2A5v0(s) = 1√
π
f0,

A1
d
dsvj(s) + aesA2vj(s) + νesI(M−1)×(M−1)vj(s) + j+1

2 A5vj(s)

= 1√
π
fj +

√

j
2µ be

s
2A3vj−1(s), 1 ≤ j ≤ N.

(3.9)

In addition, vn(0) is determined by the system A1vn(0) = cn, 0 ≤ n ≤ N, where

cn = (c0,n, c1,n, · · · , cM−2,n)T , cm,n =
1√
π

(U0(x, z), φm(x)H̃n(z))ω,M,N .

In actual calculation, we firstly resolve the first equation of (3.9) to obtain v0(s). Then we
use the forward substitution procedure to evaluate other vectors vj(s), 1 ≤ j ≤ N , successively.

By the variable transformation (3.2), the numerical solution of the original problem (3.1) is
given by

wM,N (x, y, t) = uM,N(x,
y

2
√

µ(t+ 1)
, ln(t+ 1)). (3.10)
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Figure 1: The exact solution
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Figure 2: The numerical solution

Now, we present some numerical results. We take the test function U(x, z, s) = (1 −
x2)ex− 1

2
s−z2

. Let a = 1, b =
√

2, ν = 1, µ = 1
2 in (3.9). We use the explicit Runge-

Kutta method of fourth order in time s with the step size τ .
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We plot the exact solution U(x, z, s) at s = 2 in Figure 1, and the numerical solution
uM,N(x, z, s) at s = 2, with M = 7, N = 49 and τ = 0.001 in Figure 2. They demonstrate that
the numerical solution fits the exact solution very well.

4. Error Estimate

In this section, we deal with the convergence of scheme (3.6). In order to obtain the optimal
error estimate, we introduce a special orthogonal projection. Let β, γ > 0 and

Aω,β,γ(u,w) = β(∂xu, ∂xw)ω + γ(∂zu, ∂zw)ω .

The orthogonal projection P 1,0
M,N,β,γ : H1

0,ω(Ω) → V 0
M,N is defined by

Aω,β,γ(P 1,0
M,N,β,γu− u, φ) = 0, ∀ φ ∈ V 0

M,N . (4.1)

For describing approximation results, we introduce the space

M r,q
ω,∗(Ω) = L2

ω(R;Hr
∗(I)) ∩Hq

ω(R;L2(I)) ∩H1
ω(R;Hr−1

∗ (I)) ∩Hq−1
ω (R;H1(I)), r, q ≥ 1,

with the norm

||u||Mr,q
ω,∗

= (||u||2L2
ω(R;Hr

∗
(I)) + ||u||2Hq

ω(R;L2(I)) + ||u||2
H1

ω(R;Hr−1
∗ (I))

+ ||u||2
Hq−1

ω (R;H1(I))
)

1
2 .

In particular, for integers r, q ≥ 1, we use the notations |u|Mr,q
ω,∗

= B
r,q
1,1(u) and

B
r,q
β,γ(u) = (β|u|2L2

ω(R;Hr
∗
(I)) + γ|u|2Hq

ω(R;L2(I)) + γ|u|2
H1

ω(R;Hr−1
∗ (I))

+ β|u|2
Hq−1

ω (R;H1(I))
)

1
2 .

It is proved in [15] that for any u ∈ H1
0,ω(Ω) ∩M r,q

ω,∗,β,γ(Ω), integers r, q ≥ 1 and 0 ≤ µ ≤ 1,

||P 1,0
M,N,β,γu− u||µ,ω ≤ c

(min(β, γ))
1
2

(M1−r +N
1−q
2 )(M−1 +N− 1

2 )1−µB
r,q
β,γ(u). (4.2)

Now, let U be the solution of (3.4) and UM,N = P
1,0
M,N,β,γU with β(s) = νes and γ = 1

4 . By
using (2.25) and (4.1), we have from (3.4) that for 0 < s ≤ S,



























(∂sUM,N (s), φ)ω,M,N + aes(∂xUM,N(s), φ)ω

+ b
2
√

µe
s
2 (∂zUM,N(s), φ)ω,M,N + νes(∂xUM,N (s), ∂xφ)ω

+ 1
4 (∂zUM,N(s), ∂zφ)ω,M,N +

6
∑

j=1

Gj(s, φ) = (f(s), φ)ω,M,N , ∀ φ ∈ V 0
M,N ,

UM,N (0) = P
1,0
M,N,β,γU0

(4.3)

where
G1(s, φ) = (∂sU(s), φ)ω − (∂sUM,N(s), φ)ω,M,N ,

G2(s, φ) = aes(∂xU(s) − ∂xUM,N (s), φ)ω ,

G3(s, φ) = νes(∂xU(s) − ∂xUM,N(s), ∂xφ)ω ,

G4(s, φ) = b
2
√

µe
s
2 ((∂zU(s), φ)ω − (∂zUM,N (s), φ)ω,M,N ),

G5(s, φ) = 1
4 ((∂zU(s), ∂zφ)ω − (∂zUM,N(s), ∂zφ)ω,M,N ),

G6(s, φ) = (f(s), φ)ω,M,N − (f(s), φ)ω .

Let uM,N be the solution of (3.6) and ŨM,N = uM,N − UM,N . Subtracting (4.3) from (3.6)
yields that



























(∂sŨM,N(s), φ)ω,M,N + aes(∂xŨM,N (s), φ)ω

+ b
2
√

µe
s
2 (∂zŨM,N(s), φ)ω,M,N + νes(∂xŨM,N(s), ∂xφ)ω

+ 1
4 (∂zŨM,N (s), ∂zφ)ω,M,N =

6
∑

j=1

Gj(s, φ), ∀ φ ∈ V 0
M,N , 0 < s ≤ S,

ŨM,N(0) = IM,NU0 − P
1,0
M,N,β,γU0.

(4.4)
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Taking φ = 2ŨM,N in (4.4), we deduce that

∂s||ŨM,N (s)||2ω,M,N +2νes||∂xŨM,N(s)||2ω +
1

2
||∂zŨM,N(s)||2ω,M,N = 2

7
∑

j=1

Gj(s, ŨM,N(s)) (4.5)

where

G7(s, ŨM,N (s)) = − b√
µ
e

s
2 (∂zŨM,N (s), ŨM,N(s))ω,M,N .

Therefore, it remains to estimate the terms |Gj(s, ŨM,N (s))|. Firstly, by (2.24)-(2.26) and (4.2),

2|G1(s, ŨM,N (s))| = 2|(∂sU(s) − PM−1,N∂sU(s), ŨM,N (s))ω

+(PM−1,N∂sU(s) − ∂sUM,N (s), ŨM,N(s))ω,M,N |
≤ c(||∂sU(s) − PM−1,N∂sU(s)||ω + ||PM−1,N∂sU(s) − ∂sUM,N(s)||ω)||ŨM,N(s)||ω
≤ c(||∂sU(s) − PM−1,N∂sU(s)||ω + ||∂sU(s) − ∂sUM,N (s)||ω)||ŨM,N (s)||ω
≤ c(M2−2r +N1−q)(M−2 +N−1)(Br,q

β,γ(∂sU(s)))2

+c(M−2r +N−q)|∂sU(s)|2
Hr,q

ω,A

+ 1
2 ||ŨM,N(s)||2ω .

(4.6)

Next, by the Cauchy inequality,

2|G2(s, ŨM,N(s))| + 2|G3(s, ŨM,N(s))|
≤ (a+ ν)es||∂x(U(s) − UM,N(s))||2ω + aes||ŨM,N(s)||2ω + νes||∂xŨM,N(s)||2ω .

(4.7)

In virtue of (2.25) and (2.26), we deduce that

2|G4(s, ŨM,N (s))|
= b√

µe
s
2 |(∂zU(s) − PM−1,N∂zU(s), ŨM,N(s))ω

+(PM−1,N∂zU(s) − ∂zUM,N(s), ŨM,N (s))ω,M,N |
≤ cb√

µe
s
2 (||PM−1,N∂zU(s) − ∂zU(s)||ω + ||∂z(U(s) − UM,N (s))||ω)||ŨM,N (s)||ω

≤ c||PM−1,N∂zU(s) − ∂zU(s)||2ω + c||∂z(U(s) − UM,N(s))||2ω + b2

2µe
s||ŨM,N (s)||2ω.

(4.8)

Similarly,

2|G5(s, ŨM,N (s))| ≤ c||PM−1,N∂zU(s)−∂zU(s)||2ω+c||∂z(U(s)−UM,N(s))||2ω+
1

8
||∂zŨM,N(s)||2ω .

(4.9)
Putting (4.7)-(4.9) together, and using (2.24) and (4.2), we derive that

2

5
∑

j=2

|Gj(s, ŨM,N (s))| ≤ c(M−2r+N−q)|∂zU(s)|2Hr,q
ω,A

+c(1+
a

ν
)(M−2r+N−q)(Br+1,q+1

β,γ (U(s)))2

+
1

8
||∂zŨM,N(s)||2ω+νes||∂xŨM,N(s)||2ω+(aes+

b2

2µ
es)||ŨM,N(s)||2ω .

(4.10)
Using Corollary 2.1 yields that

2|G6(s, ŨM,N(s))| ≤ c(M−2r|f |2L2
ω(R;Hr

∗
(I)) +N−q− 1

3 |f |2
Hq+1

ω (R;L2(I))

+M−2λN
2
3
−σ|f |2Hσ

ω(R;Hλ
∗
(I))) + ||ŨM,N (s)||2ω . (4.11)

Furthermore, by (2.26) and the Cauchy inequality,

2|G7(s, ŨM,N (s))|≤ 3b√
µ
e

s
2 ||∂zŨM,N(s)||ω ||ŨM,N(s))||ω≤

1

8
||∂zŨM,N (s)||2ω+

18b2

µ
es||ŨM,N(s)||2ω .

(4.12)
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It is observed that β(s) = ν at s = 0 and γ = 1
4 . Therefore, using (4.2) and Theorem 2.1 with

α = β = 0 gives that

||ŨM,N(0)||2ω ≤ c||P 1,0

M,N,ν, 1
4

U0 − U0||2ω + c||IM,NU0 − U0||2ω

≤ c(M−2r +N−q− 1
3 +M−2λN

2
3
−σ)(|U0|2L2

ω(R;Hr
∗
(I)) + |U0|2Hq+1

ω (R;L2(I))
+ |U0|2Hσ

ω(R;Hλ
∗
(I)))

+c(M2−2r +N1−q)(M−2 +N−1)|U0|2Mr,q
ω,∗
. (4.13)

Now, we use the following notation to present the average numerical errors,

E(u(s)) = ||u(s)||2ω +

∫ s

0

(νeη||∂xu(η)||2ω +
1

4
||∂zu(η)||2ω)dη.

By inserting (4.6) and (4.10)-(4.12) into (4.5) and using the fact Hr
∗(I) ⊆ Hr

A(I), we find that

d

ds
(E(ŨM,N (s))) ≤ DM,N(s) + φ(s)E(ŨM,N (s)), (4.14)

where

φ(s) = 2 + aes +
37b2

2µ
es,

DM,N(s) = c(M−2r +N−q)|∂sU(s)|2Hr,q
ω,A

+ c(M2−2r +N1−q)(M−2 +N−1)(Br,q
β,γ(∂sU(s)))2

+c(1 + a
ν )(M−2r +N−q)(Br+1,q+1

β,γ (U(s)))2

+c(M−2r|f |2L2
ω(R;Hr

∗
(I)) +N−q− 1

3 |f |2
Hq+1

ω (R;L2(I))
+M−2λN

2
3
−σ|f |2Hσ

ω(R;Hλ
∗
(I))).

Furthermore, (4.14) implies that

d

ds
(E(ŨM,N (s)) exp(−

∫ s

0

φ(η)dη)) ≤ DM,N(s) exp(−
∫ s

0

φ(η)dη).

By integrating the above with respect to s and using (4.13), we reach that

E(ŨM,N(s)) ≤ ρM,N(s) exp(

∫ s

0

φ(η)dη) (4.15)

where

ρM,N (s) =

∫ s

0

DM,N(η) exp(−
∫ η

0

φ(ξ)dξ)dη + c(M2−2r +N1−q)(M−2 +N−1)|U0|2Mr,q
ω,∗

+c(M−2r +N−q− 1
3 +M−2λN

2
3
−σ)

(|U0|2L2
ω(R;Hr

∗
(I)) + |U0|2Hq+1

ω (R;L2(I))
+ |U0|2Hσ

ω(R;Hλ
∗
(I))).

For any weight function χ(s), we define the weighted space Hδ
χ(0, S;Hr,q

ω,A(Ω)) and

Hδ
χ(0, S;M r,q

ω,∗(Ω)) in the usual way. Then the following conclusion comes form (4.15) immedi-
ately.

Theorem 4.1. Let integer r, q, λ, σ,≥ 1. If U ∈ L2(0, S;H1
0,ω(Ω)) ∩ L2

es(0, S;M r+1,q+1
ω,∗ (Ω)) ∩

H1
es(0, S;M r,q

ω,∗(Ω))∩H1(0, S;Hr,q
ω,A(Ω)), U0 ∈ L2

ω(R;Hr
∗(I))∩Hq+1

ω (R;L2(I))∩H1
ω(R;Hr−1

∗ (I))∩
Hq−1

ω (R;H1(I))∩Hσ
ω (R;Hλ

∗ (I)) and f ∈ L2(0, S;L2
ω(R;Hr

∗(I))∩Hq+1
ω (R;L2(I))∩Hσ

ω (R;Hλ
∗ (I))),

then for all 0 ≤ s ≤ S,

E(ŨM,N (s)) ≤ ρM,N (s) exp(

∫ s

0

φ(η)dη).
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According to (4.2),

E(U(s) − UM,N(s)) ≤ c(M2−2r +N1−q)(M−2 +N−1)(Br,q

es, 1
4

(U(s)))2

+c(M−2r +N−q)

∫ s

0

(Br+1,q+1

es, 1
4

(U(η)))2dη.

The above with Theorem 4.1 leads to

E(U(s)−uM,N (s)) ≤ c∗((M2−2r +N1−q)(M−2+N−1)+M−2r+N−q− 1
3 +M−2λN

2
3
−σ) (4.16)

where c∗ is a positive constant depending only on µ, ν, a, b, S and the norms of U , U0 and f in
the space mentioned in Theorem 4.1.

We can use the above results and the transformation (3.2) to derive a sharp error estimate
for the numerical solution, given by (3.10), of the original problem (3.1). In particular, the
weight function es appearing in Theorem 4.1 becomes t + 1. Thus the numerical errors grow
slowly as t increases. Therefore, the transformation (3.2) not only ensures the proper algorithm,
but also leads to the better stability of computation.

5. Concluding Remarks

In this paper, we introduced the new Hermite interpolation associated with the weight
function ez2

, which is very appropriate for approximations to functions decaying exponentially
at the infinity. We also introduced the new mixed Legendre-Hermite interpolation on an in-
finite strap, based on which we proposed the Legendre-Hermite pseudospectral method for
non-isotropic heat transfer in an infinite plate. This is a high order method, and is very suit-
able for parallel computation. The numerical results demonstrated the high accuracy in the
space of this algorithm, and coincide very well with theoretical analysis.

In this paper, we established some basic results on the new Hermite interpolation and the
corresponding mixed Legendre-Hermite interpolation. They play important roles in numerical
analysis of the related pseudospectral methods for unbounded domains.

Although we only considered a simple model problem in this paper, the proposed method
and techniques used in theoretical analysis are also applicable to other problems defined on
certain unbounded domains, such as nonlinear heat transfer in an infinite plate, nonlinear wave
equations in an infinite strip, some problems in statistical physics and so on.

Appendix: Proof of Lemma 2.1.

We have from [2] that for any u ∈ H1(a, b) and a < b,

sup
z∈[a:,b]

|u(z)|2 ≤ c2

b− a
||u||2L2(a,b) + c2(b− a)|u|2H1(a,b). (A1)

On the other hand, by Lemmas 2.2 and 2.3 of [6], for any u ∈ H1
ω(R),

ez2

u2(z) ≤ 4||u||ω,R|u|1,ω,R, ∀z ∈ R. (A2)

Let ΛN,j = (σN,j+1, σN,j−1) and ∆N,j = σN,j−1 − σN,j+1. It is proved in [17] that

−aN+1(1 −N− 2
3 ) ≤ c2σN,N , σN,0 ≤ c2aN+1(1 −N− 2

3 ), (A3)

and for 1 ≤ j ≤ N − 1,

∆N,j ∼ 1√
N + 1

(1 − |σN,j|
aN+1

)−
1
2 . (A4)

Now, by (A1), for 1 ≤ j ≤ N − 1,

eσ2
N,ju2(σN,j) ≤

c2

∆N,j
||u||2L2

ω(ΛN,j)
+ c2∆N,j

∫

ΛN,j

(∂z(e
z2

2 u(z)))2dz. (A5)
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Meanwhile, due to (A2) and (A3), for j = 0, N ,

eσ2
N,ju2(σN,j)(1 − |σN,j|

aN+1
)−

1
2 ≤ c2N

1
3 ||u||ω,R|u|1,ω,R. (A6)

Therefore, we use (2.18), (A5) and (A6) to obtain that

||u||2ω,N,R ≤ c2N
− 1

2

N
∑

j=0

u2(σN,j)e
σ2

N,j (1 − |σN,j |
aN+1

)−
1
2

≤ c2N
− 1

6 ||u||ω|u|1,ω,R + c2N
− 1

2

N−1
∑

j=1

1

∆N,j
(1 − |σN,j|

aN+1
)−

1
2 ||u||2L2

ω(ΛN,j)

+c2N
− 1

2

N−1
∑

j=1

∆N,j(1 − |σN,j|
aN+1

)−
1
2

∫

ΛN,j

(∂z(e
z2

2 u(z)))2dz. (A7)

We next estimate the right side of (A7). Obviously,
∫

ΛN,j

(∂x(e
z2

2 u(z)))2dz ≤ c2

∫

ΛN,j

ez2

(z2u2(z) + (∂zu(z))
2)dz. (A8)

Furthermore, by (A4),

N− 1
2

1

∆N,j
(1 − |σN,j |

aN+1
)−

1
2 ≤ c2. (A9)

On the other hand, (A3) implies that

|1 − |σN,j|
aN+1

| ≥ |1 − |σN,0|
aN+1

| ≥ c2N
− 2

3 , 1 ≤ j ≤ N − 1.

A combination of the above estimate and (A4) leads to that

N− 1
2 ∆N,j(1 − |σN,j|

aN+1
)−

1
2 ≤ c2N

−1(1 − |σN,j|
aN+1

)−1 ≤ c2N
− 1

3 . (A10)

Moreover, by Lemma 2.2 of [6],
∫

R

ez2

z2u2(z)dz ≤
∫

R

(∂zu(z))
2ez2

dz. (A11)

Substituting (A8)-(A10) into (A7), we use (A11) to obtain that

||u||2ω,N ≤ c2N
− 1

6 ||u||ω,R|u|1,ω,R +c2||u||2ω,R +c2N
− 1

3 |u|21,ω,R ≤ c2||u||2ω,R +c2N
− 1

3 |u|21,ω,R.

Proof of Remark 2.1. We have from (2.12) that

∂r
zu(z) = (−1)r2

r
2

∞
∑

n=0

ûn(

r
∏

j=1

(n+ j))
1
2 H̃n+r(z).

Thus by (2.13),

2r
√
π

∞
∑

n=0

(n+ 1)rû2
n ≤ |∂r

zu|2ω,R ≤ 2r
√
π

∞
∑

n=0

(n+ r)rû2
n.

This implies the first result. The second result comes from the above and the fact that |u|k,ω,R ≤
|u|r,ω,R for all k ≤ r.
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