
Journal of Computational Mathematics, Vol.23, No.6, 2005, 657 –672.

A DYNAMICS APPROACH TO THE COMPUTATION OF

EIGENVECTORS OF MATRICES ∗

S. Jiménez
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Abstract

We construct a family of dynamical systems whose evolution converges to the eigenvec-
tors of a general square matrix, not necessarily symmetric. We analyze the convergence
of those systems and perform numerical tests. Some examples and comparisons with the
power methods are presented.
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1. Introduction

In a previous work [1, 2], a method was proposed to solve systems of linear equations

A~x = ~b, by means of considering a dissipative mechanical system associated to the matrix A.
This mechanical system evolves under Newton’s Second Law towards the solution of the linear
system. A numerical simulation was proposed then to calculate the solution in an iterative
procedure.

Following a similar point of view, in this paper we construct dynamical systems that have as
critical points the eigenvectors of a real square matrix and that evolve towards an eigenvector. In
section 2 we present the dynamical systems and their basic properties. In section 3 a numerical
scheme is proposed to simulate the evolution and some examples and applications are presented.
The main conclusions are summarized in Section 4. Finally, we present the proof of the results
in an Appendix.

2. The Dynamical Systems

Let us consider the dynamical system

~̇x = − A

‖~x‖p
~x +

~xTA~x

‖~x‖p+2
~x (1)

where p ∈ IR, ~x ∈ IRq for some q ∈ IN and A is a real, q × q matrix. The norm ‖ ‖ is the
euclidean vectorial norm. If A is symmetric and p = 2, the system is equivalent to

~̇x = −~∇U(~x), U(~x) =
1

2

~xTA~x

‖~x‖2
, (2)

but we are not assuming any restriction on A.
This system has the following basic properties:
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1. The fixed points are the eigenvectors of A (and conversely).

2. Conservation law:
d‖~x‖2

dt
= ~0. (3)

3. Only if A es symmetric and p = 2, dissipation law:

d

dt
[U(~x)] = − ~̇x 2. (4)

They are established in a straightforward way: in the first case the equivalence is clear. The
conservation and the dissipation laws are obtained taking scalar product with ~x in (??) and ~̇x
in (2), respectively.

The conservation law (3) supposes that given an initial data ~x0, the corresponding solution
lies for all times on the sphere ‖~x(t)‖ = ‖~x0‖. By Chillingworth’s Theorem (see, for instance,
Theorem 1.0.3 in [3]), we know that the solution always exists and is unique provided ~x0 6= ~0.

By direct calculation, the jacobian Jp(~x) of the dynamical system (??) at a given vector ~x
is:

Jp(~x) =
1

‖~x‖p

([

A − r(~x)I
][

pP (~x) − I
]

+ P (~x)
[

A + AT − 2r(~x)I
]

)

. (5)

Here I stands for the q × q identity matrix, P (~x) is the orthogonal projector on span{~x} and
r(~x) is the Rayleigh quotient at ~x:

P (~x) =
~x~x+

‖~x‖2
, r(~x) =

~x+A~x

‖~x‖2
,

where the superscript + denotes the transposed, complex conjugate (or in case the vector is
real, just the transposed).

Let us consider now the linear stability of the critical points. Let ~u be an eigenvector of
A associated to the eigenvalue λ. From Lemma 1 in the Appendix, we have that Jp(~u) is a
singular matrix and that the very eigenvector ~u belongs to the kernel:

Jp(~u)~u =
−1

‖~u‖p

[

I − P (~u)
]

[A − λI]~u = ~0. (6)

Thus, we see that the jacobian at any critical point has at least one eigenvector with zero real
part. This means that in principle nothing can be said on the stability of the critical points from
the study of the linear part. If we consider a symmetric A, the conservation law would allow
us to conclude that the eigensubspace associated to the smallest eigenvalue is asymptotically
stable. In the general case, we have to consider that given an initial data ~x0, the evolution
is confined to the surface of the sphere ‖~x(t)‖ = ‖~x0‖, thus in order to check linear stability
we must restrict ourselves to this manifold. The normal direction to the surface at ~u is given
precisely by ~u, thus we need to know the local behaviour around ~u in the orthogonal directions
to ~u. To do this, we compute all the eigenvalues of the jacobian, using the following result:

Theorem 1. Let ~u be an eigenvector of A associated to the eigenvalue λ. The spectrum of A
and that of Jp(~u) are related in the following way:

1. eigenvalue λ for A corresponds to eigenvalue 0 for Jp(~u)

2. eigenvector ~w associated to µ for A corresponds to

eigenvector
[

I − P (~u)
]

~w with eigenvalue
λ − µ

‖~u‖p
for Jp(~u)

and this includes the case where µ = λ, the case of complex eigenvalues and eigenvectors,
as well as the case of generalized eigenvectors.
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3. If the eigensubspace associated to λ has algebraic multiplicity ma and geometric multiplic-
ity mg such that mg < ma, then the eigensubspace associated to 0 for Jp(~u) has algebraic
multiplicity equal to ma and geometric multiplicity equal to either mg or mg + 1. In that
later case, a generalized eigenvector of A gives rise to a proper (i.e. not generalized)
eigenvector of Jp(~u).

4. If µ 6= λ, and the eigensubspace associated to µ has algebraic multiplicity ma and geometric
multiplicity mg, then the eigensubspace associated to

λ − µ

‖~u‖p

for Jp(~u) has algebraic multiplicity equal to ma and geometric multiplicity equal to mg.

We prove this in the Appendix. From here we have the following stability result:

Theorem 2. Let A be such that the eigenvalue with smallest real part, λmin, is unique and real.
Let be ma and mg, respectively, the algebraic and geometric multiplicites of λmin. Let Umin be
the set of eigenvectors associated to λmin and Ūmin the set of generalized eigenvectors (in case
ma > mg). Then Umin is a limit set for the system, and:

• Solutions inside Umin are fixed points of the system.

• The components of the solutions ~x(t) outside Ūmin decay towards an eigenvector ~u ∈ Umin

with asymptotic behaviour:

‖~x(t) − ~u‖ ∼ exp

[

λmin −Re(λ′)

‖~u‖p
t

]

where λ′ is the eigenvalue with real part nearest to λmin.

• The components of the solutions ~x(t) inside Ūmin decay towards ~u which is the eigenvector
such that ~u = (A − λI) ~w1, in the notation of Lemma 4 of the Appendix, with asymptotic
behaviour:

‖~x(t) − ~u‖ ∼ ma − mg

t
.

See also the Appendix for the proof.

We see that the convergence is much faster in the case ma = mg, when λmin has no gener-
alized eigenvectors. It must be noted that if ~x0 has not a component in Umin, the dynamical
system cannot reach that eigensubspace. This corresponds to initial values outside Ūmin. In
that case, we should expect convergence towards an eigenvector associated to the next smaller
eigenvalue of A (provided it is real etc.). In fact, when performing numerical simulations, one
would expect that small errors may give a component on Umin that gets enhanced, and the
numerical solution approaches eventually Umin.

Finally, we have a convergence result in the case where λmin is not unique, for instance in
the sense that A has also eigenvalues of the form λmin ± iα (α 6= 0):

Theorem 3. Let A be real and such that there are several complex eigenvalues with smallest
real part, say Remin. Let U be the direct sum of all the eigensubspaces associated to those
eigenvalues. Then U is a limit set for the system and r(~x) converges to Remin.

(See the Appendix for the proof.) In this case, there is not convergence towards an eigen-
vector, but the Rayleigh quotient converges to the real part of the eigenvalues. Checking

sepparately the behaviour of ~x(t) and of r
(

~x(t)
)

, it is thus possible to identify the case when

λmin is not unique.
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3. Numerical Simulations

The idea is now to simulate the dynamical system, starting with some initial data ~x0. We
chose, for instance, a simple numerical scheme of the form:

~xn+1 − ~xn

τ
= − A

‖~xn‖p
~xn +

~xn · A~xn

‖~xn‖p+2
~xn (7)

⇐⇒ ~xn+1 = ~xn − τ
A

‖~xn‖p
~xn + τ

~xn · A~xn

‖~xn‖p+2
~xn. (8)

This has the advantage of being explicit. If we take scalar product with ~xn, we get the discrete
conservation law

~xn+1 · ~xn = ‖~xn‖2 (9)

which is the discrete analog to the conservation of the norm. With this numerical scheme the
norm is not exactly preserved, but if we consider ~xn+1 = ~xn +~δn, we have ~δn orthogonal to ~xn.

We can understand the scheme as a fixed point iterative method. The specific scheme
we have chosen, has the eigenvectors of A as fixed points. So we can consider the numerical
scheme as a method in its own and not an approximation. Obviously both methods, discrete
and continuous, are related as we will see in what follows.

If the numerical errors are small, we may suppose that the simulations will reproduce the
convergence towards an eigenvector and the minimal eigenvalue of A. On the other hand we
can study the convergence of the fixed point iteration: the jacobian of the iteration given by (8)
is I + τJp(~x) (where Jp is the jacobian of the dynamical system) and its eigenvalues µ satisfy

|I + τJp(~x) − µI| = 0 ⇐⇒
∣

∣

∣

∣

Jp(~x) − µ − 1

τ
I

∣

∣

∣

∣

= 0

which means that if we denote by γ the eigenvalues of Jp, we have

µ = 1 + γτ. (10)

We can thus ensure the convergence of the numerical scheme if max |µ| < 1. Near the eigenvector
~u of A, to which the dynamical system converges, this supposes

0 <
τ

‖~u‖p
<

2

λ′ − λmin

(11)

where λ′ is the eigenvalue of A nearest to λmin (and bigger).
This means that the choice of τ is relevant to the convergence and also to the rate of

convergence. In fact, numerical simulations show that for a given problem there is an optimal
range of values of τ that minimize the number of iterations required to obtain the solution
with a given precision. That range depends in general on p but also on the choice of the initial
vector, both direction and norm, although the norm that minimizes the number of iterations is
usually close to 1. The case p = 0 is different in the sense that the number of iterations do not
depend on the norm of the initial vector, but only on its direction. On the other hand, if for a
given problem we fix the direction of the initial vector, but consider two different choices of p
and of the initial norm, the values of τ that optimize employ the same number of iterations in
both cases. We may also perform a rescaling on τ defining the new time step as τ/‖~u‖p.

For all this, we have chosen to fix p = 0 in all our calculations. This leaves us with two
objects to consider instead of three: τ and the direction of the initial vector. Of course we do not
have a priori indications of which vectors are better suited: if would amount to know beforehand
what are the eigenvectors of A. As happens for the dynamical system, if the initial vector has
not a component on Umin, the iterative method will not converge to that eigensubspace, but to
some other eigenvectors, unless numerical errors modify the situation. So finaly we just have
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one parameter to consider and that is the value of τ , keeping in mind that we do not need τ
to be smaller than 1, since the discrete method can be considered exact and thus without a
truncation error.

It is easily seen that the value of τ such that

τ

‖~u‖p
=

1

λ′ − λmin

(12)

is optimal in the sense that the component of the solution that belongs to eigenvectors of λ′

decays very fast. In that case the next eigenvalue, say λ′′, closer to λmin gives the asymptotic
behaviour. The optimal τ that minimizes the total number of iterations for a given precision
is difficult to establish a priori, but it can be done minimizing the product of all eigenvalues
of the matrix I + τJp(~u) where ~u is the eigenvector associated to λmin that is the limit of the
solution ~x(t). For instance (12) corresponds to minimizing the eigenvalue that comes from λ′,
minimizing that one and the next gives

τ

‖~u‖p
=

(λ′ − λmin) + (λ′′ − λmin)

2(λ′ − λmin)(λ′′ − λmin)
(13)

and so on. There is not much point to this, since these values can only be deduced a posteriori.
In practice, one should try a value of τ not too small: the discrete time is tn = τn which means
that small vallues of τ imply bigger values of the number of iterations n.

Let us present details of the method with some simple examples.

3.1 Some examples in dimension 3

3.1.1 Choice of parameters and rate of convergence
Let be

A =





6 0 0
0 4 0
0 0 1



 ; ~x0 =
1√
3
(1, 1, 1)T. (14)

We have chosen the initial data such that it has the same component on the three eigensub-
spaces. We have fixed the relative precision of the solution to be less than 10−10 in λ. We can
compute the values τ1 and τ2 according to (12) and (13), respectively. In this case (λmin = 1,
λ′ = 4, λ′′ = 6), they are:

τ1 =
1

3
, τ2 =

4

15
. (15)

In figure 1 we compare the convergence for these values of τ . We have chosen different initial
vectors (normalized to 1):

~v1 = (1, 1, 1)T, ~v2 = (1, 0, 1)T, ~v3 = (1, 1, 0)T. (16)

The first one has components along all three eigensubspaces, the second one has components
only along the eigenvectors associated to λmin and λ′, and the third one only along the eigen-
vectors associated to λmin and λ′′. We see that the decay with τ = τ1 is governed by the
asymptotic behaviour of the eigenvectors associated to λ′′ (first and fourth curves) and that
the eigenvectors associated to λ′ decay superlinearly to zero (second curve). Finally τ2 (third
curve) is the optimal choice in the general case when the initial data has components along all
three eigenspaces.

In this example, we may wish to compute all three eigenvalues and the corresponding eigen-
vectors. The mimimum is computed using the method. The maximum can be obtained using
the method on the matrix −A, in which case we have to change the sign of the eigenvalue. As
for the intermediate value, we can obtain it using the method on A but with an initial data with
no components on Umin. In this case, and once the eigenvector associated to λmin is known, it
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Figure 1: |r(~xn) − λmin| versus number of iterations n for matrix A with different values of τ and of
the initial vector ~x0 according to (15) and (16). The vertical segment in the second curve means that
at the following iteration step (number 4) the value is exactly λmin.

is very simple. In a more general situation, it is possible to compute all eigenvalues and their
eigenvectors: the details will be presented elsewhere.

3.1.2 Real eigenvectors
Let us compare now the cases of diagonalizable versus non-diagonalizable: we will consider

four cases, given by matrices

A1 = A =





6 0 0
0 3 0
0 0 1



 ; A2 =





6 0 0
0 1 0
0 0 1



 ;

A3 =





6 0 0
0 1 1
0 0 1



 ; A4 =





1 1 0
0 1 1
0 0 1



 .

The first case corresponds to a diagonalizable problem with dim Umin = 1. In the second
one dimUmin = 2, with algebraic and geometric dimensions equal to 2. The third case is
nondiagonalizable with algebraic dimension 2 and geometric dimension 1. Finally, the fourth
case has algebraic dimension 3 and geometric dimension 1. In all cases λmin = 1. We have
represented in figure 2 the two dimensional projection of trajectories on a semi-sphere.

In case 1, we have plotted the projection on the z-plane of the attracting basin of eigenvector
~u = (0, 0, 1)T, which corresponds to vectors with positive z component, and trajectories of
solutions from different initial values, all of them with unit norm. The arrows give the indication
of movement along the solutions as time increases. The eigenvalues of the jacobian J0(~u) are
−2 with eigenvector ~v1 = (0, 1, 0)T and −5 with eigenvector ~v2 = (1, 0, 0)T. As we see, near the
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Figure 2: Projection of solutions in the cases 1 to 4: matrices with real eigenvalues

equilibrium point (that coresponds to the origin of the plot) the y component of the solutions
decays faster than the x component, which agrees with the linear approximation. The picture
is similar to that of a node in a planar system.

In case 2, Umin = span{~u1, ~u2} with ~u1 = (0, 0, 1)T, ~u2 = (0, 1, 0)T, and all the points of the
sphere with x = 0 correspond to eigenvectors of λmin. It is represented in the plot by a dotted
line. Solutions tend towards an eigenvector, in fact following a geodesic on the sphere.

In case 3, ~u = (0, 1, 0)T, the other eigenvector (both of A and of J0(~u)) being ~v = (1, 0, 0)T.
The third direction corresponds to a generalized eigenvector of λmin: ~w = (0, 0, 1)T. We have
plotted the projections on the y-plane. Simulations show that the x component decays rapidly
and, as we see in the plot, the trajectories approach the generalized eigensubspace of λmin, that
is span{~u, ~w}, and eventually they reach the equilibrium point ~u. The general picture is similar
to that of case 1.

Case 4 is clearly different. Here we have only one eigenvector: ~u = (1, 0, 0)T, and two gener-
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alized eigenvectors ~w1 = (0, 1, 0)T, ~w2 = (0, 0, 1)T, such that A~w1 = ~u+ ~w1 and A~w2 = ~w1 + ~w2.
We have projected the trajectories with positive z component on the z-plane. The behaviour is
similar to that of a parabolic sector in a planar system. As we see, near ~u the direction along
~w1 is unstable and that along −~w1 stable, such that eventually all trajectories approach the
equilibrium point. The behaviour on the other semisphere is similar and approaches −~u.

3.1.3 Complex eigenvectors

Although our hypothesis is that λmin is real, we present in case 5 an example where the
(generalized) eigenvectors of a second eigenvalue are complex. We also consider case 6 where
λmin is unique but imaginary and there is another real eigenvalue with bigger real part. Finally
we consider case 7 where λmin is not unique, but there are two eigenvalues with same real part,
one real and the other imaginary. In this two last cases, the convergence is not guaranteed since
we do not fulfill the fundamental hypothesis of λmin being unique and real. The matrices we
are considering in these examples are:

A5 =





6 −2 0
2 6 0
0 0 1



 ; A6 =





1 −2 0
2 1 0
0 0 3



 ; A7 =





1 −2 0
2 1 0
0 0 1



 .

The corresponding plots are in figure 3

In case 5, λmin = 1 associated to (0, 0, 1)T and we have two complex conjugate eigenvalues:
6 ± i2 associated to (1, 0, 0)T and(0, 1, 0)T. We have plotted the projection of trajectories with
z > 0 on the z-plane. The eigenvector is an asymptotically stable focus.

In case 6, we have that the eigenvalues with minimal real part are 1 ± i2, associated to
~u1 = (1, 0, 0)T and ~u2 = (0, 1, 0)T. Besides, there is a real eigenvalue, 3, associated to (0, 0, 1)T.
This last eigenvector behaves as an unstable focus and the trajectories tend to span{~u1, ~u2},
and describe a circular motion. Although there is no convergence towards any vector, if we
compute r(~x), we see that it converges towards the real part of the complex eigenvalues.

Finally, in case 7, all eigenvalues have the same real part. The complex eigenvalues are
1 ± i2, associated to ~u1 = (1, 0, 0)T and ~u2 = (0, 1, 0)T, and the real eigenvalue is 1, associated
to (0, 0, 1)T. This eigenvector behaves as a center and the trajectories describe a circular motion.
As in the previous case, there is no convergence towards any vector, but if we compute r(~x),
we see that it is always equal to 1.

3.2 Examples in dimension 5: comparison with the Power Methods

We will now compare the performance of the method and that of similar iterative methods
such as the Direct Power Method (DPM) and the Inverse Power Method with Seed (IPMS)[4].

We define different matrices with a specific spectrum and use them as a test. Let us consider
matrices

M1 =













−6 6 −4 4 1
−23 21 −14 14 5
−23 20 −14 15 6

22 −18 13 −12 −5
−68 56 −42 42 17













, M2 =













−7 8 −5 6 2
−24 23 −15 16 6
−23 20 −14 15 6

13 −10 8 −8 −4
−46 37 −30 33 15













.

These matrices have canonical Jordan forms Λi, such that PΛiP
−1 = Mi with:

Λ1 =













−1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 3













, Λ2 =













1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 3 1
0 0 0 0 3













,
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Figure 3: Projection of solutions in the cases 5 to 7: matrices with complex eigenvalues

P =













1 0 1 1 0
1 0 0 1 1
0 1 −2 0 1

−1 1 0 1 −1
3 0 −1 −2 2













.

Matrix P has been chosen assigning arbitrarily the values 0, ±1, ±2 to its elements (an element
has been changed to 3 so that the resulting matrices Mi have all the elements with integer
values, for sake of simplicity). In this way, the eigenvectors are not mutually orthogonal.

In figure 4 we compare the results of simulating the dynamical system (DS) with different
values of τ and of the DPM for matrix M1 in order to obtain λmax ≡ 3. In order to have DS
converging towards the maximum eigenvalue, we have taken −M1. In all computations the
initial vector is (0, 0, 1, 1, 1)T, normalized. As we see, the number of iterations is similar for
both methods, provided we chose a reasonable value of τ for the DS.

In figure 5 we compare the results of simulating the dynamical system (DS) with different
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Figure 4: Comparison of |r(~xn) − λmax| versus number of iterations n for matrix M1 with the Power
Method and the dynamical system with three different values of τ .
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Figure 5: Comparison of |r(~xn) − λmin| versus number of iterations n for matrix M1 with the Inverse
Power Method with three seeds and the dynamical system with three different values of τ .
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Power Method and the dynamical system with three different values of τ .
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values of τ and of the IDPS for matrix M1 in order to obtain λmin = −1. We cannot start the
IPMS with seed 0, since 1 is also an eigenvalue and the method do not converge. As we see,
the number of iterations is similar for both methods, provided we chose a reasonable value of τ
for the DS and of the seed for the IPMS.

In figure 6 we compare the results of simulating the dynamical system (DS) with different
values of τ and of the DPM for matrix M2 in order to obtain λmax ≡ 3. In order to have DS
converging towards the maximum eigenvalue, we have taken −M2. In all computations the
initial vector is (0, 0, 1, 1, 1)T, normalized. As we see, the precition of both methods is similar
for a number of iterations fixed. We are in the case of generalized eigenvectors where the decay
towards the eigenvector is not exponential.

In figure 7 we compare the results of simulating the dynamical system (DS) with different
values of τ and of the IDPS for matrix M2 in order to obtain λmin = 1. We start the IPMS
with seed 0. The precition of both methods is similar for a number of iterations fixed.

4. Conclusions

We have presented a new family of methods to obtain the eigenvectors of the given matrix
A. The different kinds of behaviour allow in pratice to know whether the associated eigenvalue
is real and unique or if there are others with the same real part. We also can deduce whether
there are generalized eigenvectors.

From the numerical point of view, its performance is similar to that of the Power Methods,
with the difference of the conditions of applicability: this method can be used in situations where
the Power Methods do not converge because there are two eigenvalues with same absolute value
or equally distant from the seed.
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Appendix: proof of the theorems

In this Appendix, we give proofs of the three theorems. Each section corresponding to one
of the results.

A.1 Proof of Theorem 1

In order to build the proof, we start with some preliminary Lemmas.

Lemma 1. Let ~u be an eigenvector of A associated to eigenvalue λ. We have

Jp(~u) =
−1

‖~u‖p

[

I − P (~u)
]

[A − λI]

Proof. we just consider the hypothesis and perform the computations. The result is obtained
from (5) using that AP (~u) = λP (~u) = P (~u)AT.

Lemma 2. Let ~u be an eigenvector of A associated to eigenvalue λ. Let µ be an arbitray value.
We have

(

Jp(~u) − λ − µ

‖~u‖p
I

)

[

I − P (~u)
]

=
−1

‖~u‖p

[

I − P (~u)
]

[A − µI].

Proof. The result is obtained by direct calculations and Lemma 1.

Lemma 3. Let ~u and ~v be mutually linearly independent eigenvectors of A, associated respec-
tively to eigenvalues λ and µ. Then

[

I − P (~u)
]

~v is an eigenvector of Jp(~u) with eigenvalue
λ − µ

‖~u‖p
.
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Furthermore: that eigenvector of Jp(~u) is orthogonal to ~u.

Proof. Using Lemma 2 we have
(

Jp(~u) − λ − µ

‖~u‖p
I

)

[

I − P (~u)
]

~v =
−1

‖~u‖p

[

I − P (~u)
]

[A − µI]~v.

This is null since [A − µI]~v = ~0. On the other hand, ~u and ~v being linearly independent, we

have
[

I − P (~u)
]

~v 6= ~0. Thus we prove the existence of the eigenvector and eigenvalue of Jp(~u).

Besides, since I − P (~u) is the orthogonal projector on span{~x}⊥, the eigenvector is by
construction orthogonal to ~u.

What happens if A is not diagonalizable is dealt with in the next lemmas:

Lemma 4. Let ~u be an eigenvector of A associated to λ. We suppose that λ has an algebraic
multiplicity ma and a geometric multiplicity mg < ma. Let ~wk be a generalized eigenvector
associated to λ such that:















(A − λI)~wk 6= ~0,
. . .

(A − λI)k ~wk 6= ~0,

(A − λI)k+1 ~wk = ~0,

with 1 ≤ k ≤ mg.

We have two possibilities:

a) If (A − λI)~w1 ∈ span{~u} then b) If (A − λI)~w1 /∈ span{~u} then














Jp(~u)~wk 6= ~0,
. . .

Jk−1
p (~u)~w 6= ~0,

Jk
p (~u)~w = ~0.















Jp(~u)~wk 6= ~0,
. . .

Jk
p (~u)~w 6= ~0,

Jk+1
p (~u)~w = ~0.

Proof. From Lemma 1 we know that for any vector ~w

Jp(~u)~w =
−1

‖~u‖p

[

I − P (~u)
]

[A − λI]~w

and thus, to the power `,

J`
p(~u)~w =

(−1)`

‖~u‖`p

([

I − P (~u)
]

[A − λI]
)`

~w =
(−1)`

‖~u‖`p

[

I − P (~u)
]

[A − λI]` ~w

since:
[A − λI]

[

I − P (~u)
]

= [A − λI].

Applying this to ~w = ~wk with ` = 1, . . . , k + 1 proves case b). On the other hand, if

(A − λI)~w1 ∈ span{~u}
we have that

[

I − P (~u)
]

[A − λI]~w1 = ~0

and then
Jp(~u)~w1 = ~0,

which is the difference needed to prove case a).
Case a) always happens if mg = ma − 1. It also happens by chance if, among all the proper

eigenvectors associated to λ, we choose our vector ~u belonging to span{(A − λI)~w1}.
Now we study the case when the generalized eigenvectors are associated to an eigenvalue µ

of A such that µ 6= λ:
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Lemma 5. Let ~u be an eigenvector of A associated to λ. Let be µ 6= λ and ~wk a generalized
eigenvector associated to µ, such that:















(A − µI)~wk 6= ~0,
. . .

(A − µI)k ~wk 6= ~0,

(A − µI)k+1 ~wk = ~0.

We have:


























(

Jp(~u) − λ−µ
‖~u‖p I

) [

I − P (~u)
]

~wk 6= ~0,

. . .
(

Jp(~u) − λ−µ
‖~u‖p I

)k [

I − P (~u)
]

~wk 6= ~0,
(

Jp(~u) − λ−µ
‖~u‖p I

)k+1 [

I − P (~u)
]

~wk = ~0.

Proof. We use Lemma 2, repetedly, on any vector ~w:

(

Jp(~u) − λ − µ

‖~u‖p
I

)`
[

I − P (~u)
]

~w =
(−1)`

‖~u‖`p

[

I − P (~u)
]

[A − µI]` ~w

and apply this to ~w = ~wk, ` = 1, . . . , k + 1. Now, contrarily to what happened in the case a) of
Lemma 4, [A − µI]k ~w never belongs to span{~u} since λ 6= µ, and only when ` = k + 1 can this
be null.

We are now in a position to prove Theorem 1: the first point is proven using Lemma 3
with λ = µ. The second point is proven using Lemma 3 in the case of proper eigenvectors,
and Lemmas 4 and 5 in the case of generalized eigenvectors. It is easily seen that the complex
case is also fulfilled. The third point is given directly by Lemma 4. Finally, the fourth point is
proven by Lemma 5, which completes the proof.

A.2 Proof of Theorem 2

As for the proof of Theorem 2, if the solution belongs to Umin it is an eigenvector and thus
a fixed point. Even if we have several eigenvectors linearly independent (say {~ui}q

i=1, where

q = mg) associated to the eigenvalue, any solution of the form ~x(t) =

q
∑

i=1

ai(t)~ui is a constant:

substituting in the equation we have

q
∑

i=1

ȧi(t)~ui +
λmin

‖~x‖p

q
∑

i=1

ai(t)~ui −
λmin

‖~x‖p

q
∑

i=1

ai(t)~ui = ~0

⇐⇒
q

∑

i=1

ȧi(t)~ui = ~0 ⇐⇒ ∀i, ȧi = 0. (17)

Thus, any point of Umin is a fixed point.
We suppose thus that a general solution has components outside Umin. Those can be of two

types: outside Ūmin and inside Ūmin − Umin.
Let us start considering the first case. It is the only possibility, for instance, if ma =

mg. From point 2 in theorem 1, we have that all eigenvectors of Jp(~u) but ~u (either true or
generalized) belong to span{~u}⊥. Thus the local behaviour around ~u is given by those other
eigenvectors. Let be ~umin ∈ Umin such that it lies on the surface of the sphere ‖~x‖ = ‖~x0‖. If the
geometric multiplicity mg of λmin is 1 and if we force the solutions to lie on that same sphere, it
is clear that ~umin is asymptotically stable. We only have to show that something similar is also
true if mg > 1. Let us denote by Ūmin the set of generalized eigenvectors associated to λmin. We
have that on one hand Jp(~umin) has no eigenvalues with positive real part, and that all other
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eigenvectors associated to λmin are eigenvectors of Jp(~umin) with zero real part. On the other
hand, for any other eigenvector ~v of A (either true or generalized), any eigenvector of A that
belongs to Umin give rise to eigenvectors of Jp(~v) with negative real part. Thus any trajectory
outside Ūmin decays towards Ūmin, and its behaviour is governed by the smallest eigenvalue of
Jp(~u) which is

λmin − λ′

‖~u‖p
,

hence the asymptotic behaviour.

We study now the second case, and consider trajectories evolving inside Ūmin. We will see
that they tend to some true eigenvector of λmin. In order to simplify the computations we
choose ‖~x(0)‖ = 1, but this is not necessary. We use a notation similar to that of Lemma 4:

let be B =
{

~u1, ~u2, . . . , ~uq

}

an orthonormal basis of Umin and B′ =
{

~w1, ~w2, . . . , ~wK

}

a basis

of Ūmin − Umin (the subspace of generalized but not true eigenvectors of λmin) such that:

{

(A − λminI)~wj = ~wj−1, j = 2, 3, . . . , K,
(A − λminI)~w1 = ~uq.

(18)

(q = mg and K = ma − mg, but we have chosen this in order to simplify the notation).

Let us now consider a more general solution of the form

~x(t) =

q
∑

i=1

ai(t)~ui +

K
∑

j=1

bj(t)~wj . (19)

Using (18) we have

A~x(t) = λmin~x(t) + b1(t)~uq +

K−1
∑

j=1

bj+1(t)~wj (20)

and from here

~x(t)TA~x(t) = λmin‖~x(t)‖2 + b1(t)~x(t)T~uq +

K−1
∑

j=1

bj+1(t)~x(t)T ~wj . (21)

Let us, for the time being, call

h(t) ≡ b1(t)~x(t)T~uq +
K−1
∑

j=1

bj+1(t)~x(t)T ~wj . (22)

Substituting in the dynamical system we have

~̇x(t) = −λmin~x(t) − b1(t)~uq −
K−1
∑

j=1

bj+1(t)~wj + λmin~x(t) + h(t)~x

= −b1(t)~uq −
K−1
∑

j=1

bj+1(t)~wj + λmin~x(t) + h(t)~x, (23)

while by direct and differentiation of the solution:

~̇x(t) =

q
∑

i=1

ȧi(t)~ui +

K
∑

j=1

ḃj(t)~wj . (24)
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Putting all this together, and using the fact that all the ~u’s and ~w’s are linearly independent,
we get the following set of equations for the coefficients:















ȧi = h(t)ai, i = 1, . . . , q − 1;
ȧq = h(t)aq − b1;

ḃj = h(t)bj − bj+1, j = 1, . . . , K − 1;

ḃK = h(t)bK .

(25)

The solution of this system is of the form


































ai(t) = ±αi

[

R(t, 2K)
]−2

, i = 1, . . . , q − 1;

aq(t) = ±P(t, K)
[

R(t, 2K)
]−2

;

bj(t) = ±P(t, K − j)
[

R(t, 2K)
]−2

, j = 1, . . . , K − 1;

bK(t) = ±
[

R(t, 2K)
]−2

;

(26)

where αi = ai(0)/bK(0), and P(t, K) and R(t, 2K) are polynomial with leading terms of the
form, respectively,

(−1)KtK

K!
and

t2K

(K!)2
. (27)

A few words about this solution: first of all, none of these coefficients can become singular,
since ~x exists for all times and is bounded. Secondly, none of them can be equal to zero, unless
they were zero at the initial time, and in that case remain zero for all times. This also means
that the sign (±) we should consider is just that of bK(0). Finally, due to the form of the
leading terms (27), we see that all coefficients but aq(t), tend to zero as t goes to infinity, and
that aq(t) tends to ±1, as should be expected. The coefficient that goes to zero more slowly is
b1(t), its asymptotic behaviour is

|b1(t)| ∼
1

(K − 1)!
tK−1

(

t2K

(K!)2

)−2

=
K

t
=

ma − mg

t
. (28)

Thus we see that any trajectory inside Ūmin decays towards the proper eigenvector ~uq.

A.3 Proof of Theorem 3

We finally present the proof of Theorem 3: in this case there is not in principle convergence
to a vector, but as in the previous theorem, all solutions decay towards the eigenvectors of A
associated to the eigenvalues with smallest real part. This means the space U . On the other
hand, it is easy to check that for any vector belonging to U , the Rayleigh quotient is just Remin.
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